9 research outputs found

    이동통신 네트워크에서의 QoS 패킷 스케줄러 설계 및 고정 릴레이 관련 주파수 재사용 관리 기법 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 전기·컴퓨터공학부, 2017. 8. 박세웅.The main interest of this paper is to understand a basic approach to provide more efficient method to allocate radio resources in the mobile communication systems, especially in which radio resources could be allocated by both frequency and time division multiple access. So, we consider OFDMA system and the ideas described in this paper could be easily applied to the current and next generation mobile communication systems. This paper studies two basic research themesa QoS packet scheduler design and fixed relay resource management policies based on frequency reuse in mobile networks. This paper considers novel scheduler structures that are executable in the environments of multiple traffic classes and multiple frequency channels. To design a scheduler structure for multiple traffic classes, we first propose a scheduler selection rule that uses the priority of traffic class and the urgency level of each packet. Then we relax the barrier of traffic class priority when a high priority packet has some room in waiting time. This gives us a chance to exploit multiuser diversity, thereby giving more flexibility in scheduling. Our considered scheduler can achieve higher throughput compared to the simple extension of conventional modified largest weighted delay first (MLWDF) scheduler while maintaining the delay performance for QoS class traffic. We also design a scheduler structure for multiple frequency channels that chooses a good channel for each user whenever possible to exploit frequency diversity. The simulation results show that our proposed scheduler increases the total system throughput by up to 50% without degrading the delay performance. This paper also introduces radio resource management schemes based on frequency reuse for fixed relay stations in mobile cellular networks. Mobile stations in the cell boundary experience poor spectral efficiency due to the path loss and interference from adjacent cells. Therefore, satisfying QoS requirements of each MS at the cell boundary has been an important issue. To resolve this spectral efficiency problem at the cell boundary, deploying fixed relay stations has been actively considered. In this paper, we consider radio resource management policies based on frequency reuse for fixed relays that include path selection rules, frequency reuse pattern matching, and frame transmission pattern matching among cells. We evaluate performance of each policy by varying parameter values such as relay stations position and frequency reuse factor. Through Monte Carlo simulations and mathematical analysis, we suggest some optimal parameter values for each policy and discuss some implementation issues that need to be considered in practical deployment of relay stations. We also surveyed further works that many researchers have been studied to tackle the similar problems of QoS scheduling and resource management for relay with our proposed work. We expect that there would be more future works by priority-based approach and energy-aware approach for QoS scheduling. Also current trends such as the rising interest in IoT system, discussion of densification of cells and D2D communications in 5G systems make us expect that the researches in these topics related with relays would be popular in the future. We also think that there are many interesting problems regarding QoS support and resource management still waiting to be tackled, especially combined with recent key topics in mobile communication systems such as 5G standardization, AI and NFV/SDN.Chapter 1 Introduction 1 1.1 QoS Packet Scheduler 4 1.2 Fixed Relay Frequency Reuse Policies 6 Chapter 2 Scheduler Design for Multiple Traffic Classes in OFDMA Networks 10 2.1 Proposed Schedulers 10 2.1.1 Scheduler Structures 12 2.1.2 MLWDF scheduler for Multiple Traffic Classes 13 2.1.3 Joint Scheduler 13 2.2 System Model 18 2.3 Performance Evaluation 19 2.3.1 Schedulers for Multiple Traffic Classes 20 2.3.2 Impact of Scheduler Selection Rule 25 2.3.3 Frame Based Schedulers 27 2.3.4 Impact of Partial Feedback 30 2.3.5 Adaptive Threshold Version Schedulers 33 2.4 Conclusion 36 Chapter 3 Frequency Reuse Policies for Fixed Relays in Cellular Networks 40 3.1 System Model 40 3.1.1 Frame Transmission and Frequency Reuse Patterns among RSs 42 3.1.2 Positioning of RSs and Channel Capacity 44 3.1.3 Area Spectral Efficiency 45 3.2 Radio Resource Management Policies Based on Frequency Reuse 46 3.2.1 Path Selection Rule 46 3.2.2 Frequency Reuse and Frame Transmission Pattern Matchings among Cells 52 3.3 Monte Carlo Simulation and Results 53 3.4 Consideration of Practical Issues 80 3.5 Conclusion 81 Chapter 4 Surveys of Further Works 83 4.1 Further Works on QoS Schedulers 83 4.1.1 WiMAX Schedulers 85 4.1.2 LTE Schedulers 92 4.2 Further Works on Radio Resource Management in Relay Systems 98 4.3 Future Challenges 100 Chapter 5 Conclusion 104 Bibliography 107 초록 127Docto

    Multi-cell Coordination Techniques for DL OFDMA Multi-hop Cellular Networks

    Get PDF
    The main objective of this project is to design coordinated spectrum sharing and reuse techniques among cells with the goal of mitigating interference at the cell edge and enhance the overall system capacity. The performance of the developed algorithm will be evaluated in an 802.16m (WiMAX) environment. In conventional cellular networks, frequency planning is usually considered to keep an acceptable signal-to-interference-plus noise ratio (SINR) level, especially at cell boundaries. Frequency assignations are done under a cell-by-cell basis, without any coordination between them to manage interference. Particularly this approach, however, hampers the system spectral efficiency at low reuse rates. For a specific reuse factor, the system throughput depends highly on the mobile station (MS) distribution and the channel conditions of the users to be served. If users served from different base stations (BS) experience a low level of interference, radio resources may be reused, applying a high reuse factor and thus, increasing the system spectral efficiency. On the other side, if the served users experience large interference, orthogonal transmissions are better and therefore a lower frequency reuse factor should be used. As a consequence, a dynamic reuse factor is preferable over a fixed one. This work addresses the design of joint multi-cell resource allocation and scheduling with coordination among neighbouring base stations (outer coordination) or sectors belonging to the same one (inner coordination) as a way to achieve flexible reuse factors. We propose a convex optimization framework to address the problem of coordinating bandwidth allocation in BS coordination problems. The proposed framework allows for different scheduling policies, which have an impact on the suitability of the reuse factor, since they determine which users have to be served. Therefore, it makes sense to consider the reuse factor as a result of the scheduling decision. To support the proposed techniques the BSs shall be capable of exchanging information with each other (decentralized approach) or with some control element in the back-haul network as an ASN gateway or some self-organization control entity (centralized approach)

    QoS-aware and Policy Based Mobile Data O oading

    Get PDF

    Multi-cell Coordination Techniques for DL OFDMA Multi-hop Cellular Networks

    Get PDF
    The main objective of this project is to design coordinated spectrum sharing and reuse techniques among cells with the goal of mitigating interference at the cell edge and enhance the overall system capacity. The performance of the developed algorithm will be evaluated in an 802.16m (WiMAX) environment. In conventional cellular networks, frequency planning is usually considered to keep an acceptable signal-to-interference-plus noise ratio (SINR) level, especially at cell boundaries. Frequency assignations are done under a cell-by-cell basis, without any coordination between them to manage interference. Particularly this approach, however, hampers the system spectral efficiency at low reuse rates. For a specific reuse factor, the system throughput depends highly on the mobile station (MS) distribution and the channel conditions of the users to be served. If users served from different base stations (BS) experience a low level of interference, radio resources may be reused, applying a high reuse factor and thus, increasing the system spectral efficiency. On the other side, if the served users experience large interference, orthogonal transmissions are better and therefore a lower frequency reuse factor should be used. As a consequence, a dynamic reuse factor is preferable over a fixed one. This work addresses the design of joint multi-cell resource allocation and scheduling with coordination among neighbouring base stations (outer coordination) or sectors belonging to the same one (inner coordination) as a way to achieve flexible reuse factors. We propose a convex optimization framework to address the problem of coordinating bandwidth allocation in BS coordination problems. The proposed framework allows for different scheduling policies, which have an impact on the suitability of the reuse factor, since they determine which users have to be served. Therefore, it makes sense to consider the reuse factor as a result of the scheduling decision. To support the proposed techniques the BSs shall be capable of exchanging information with each other (decentralized approach) or with some control element in the back-haul network as an ASN gateway or some self-organization control entity (centralized approach)

    Performance evaluation of voice handover between LTE and UMTS

    Get PDF
    M.Sc.(Eng.), Faculty of Engineering and the Built Environment, 2011The main objective of seamless mobility is to enable mobile users to stay connected while roaming across heterogeneous networks. As cellular networks evolve from the third generation Universal Mobile Telecommunication System (UMTS) to the Long Term Evolution (LTE), a new Evolved Packet Core (EPC) will support heterogeneous radio access networks on the same platform. UMTS provides voice services in the circuit switched domain; while LTE operates in the packet switched domain. Cellular network operators thus face the challenge of providing voice services during initial deployment of LTE due to difficulty in mobility between the two domains. Seamless voice handover between packet switched LTE and the circuit switched UMTS network is therefore an important tool in solving this problem. This report investigates the performance of inter-Radio Access Technology voice handover between LTE and UMTS. The schemes evaluated were Voice Call Continuity (VCC) for UMTS to LTE handover and Single Radio Voice Call Continuity (SRVCC) for LTE to UMTS handover. The performance evaluation was done using mathematical models and equations that were derived for the handover service interruption time. The resulting equations were simulated and the output was analysed and compared with the Third Generation Partnership Project (3GPP) specifications

    Traffic Scheduling in Point-to-Multipoint OFDMA-based Systems

    Get PDF
    The new generation of wireless networks (e.g., WiMAX, LTE-Advanced, Cognitive Radio) support many high resource-consuming services (e.g., VoIP, video conference, multiplayer interactive gaming, multimedia streaming, digital video broadcasting, mobile commerce). The main problem of such networks is that the bandwidth is limited, besides to be subject to fading process, and shared among multiple users. Therefore, a combination of sophisticated transmission techniques (e.g., OFDMA) and proper packet scheduling algorithms is necessary, in order to provide applications with suitable quality of service. This Thesis addresses the problem of traffic scheduling in Point-to-Multipoint OFDMA-based systems. We formally prove that in such systems, even a simple scheduling problem of a Service Class at a time, is NP-complete, therefore, computationally intractable. An optimal solution is unfeasible in term of time, thus, fast and simple scheduling heuristics are needed. First, we address the Best Effort traffic scheduling issue, in a system adopting variable-length Frames, with the objective of producing a legal schedule (i.e., the one meeting all system constraints) of minimum length. Besides, we present fast and simple heuristics, which generate suboptimal solutions, and evaluate their performance in the average case, as in the worst one. Then, we investigate the scheduling of Real Time traffic, with the objective of meeting as many deadlines as possible, or equivalently, minimizing the packet drop ratio. Specifically, we propose two scheduling heuristics, which apply two different resource allocation mechanisms, and evaluate their average-case performance by means of a simulation experiment

    Converged wireline and wireless signal distribution in optical fiber access networks

    Get PDF

    Identification of Technologies for Provision of Future Aeronautical Communications

    Get PDF
    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes

    An Efficient Subcarrier and Power Allocation Algorithm For Dual-Service Provisioning in OFDMA Based WiBro Systems

    No full text
    This paper investigates the problem of resource allocation for quality of service (QoS) support in Orthogonal Frequency Division Multiple Access (OFDMA) based WiBro systems. We identify the key QoS parameters as data rate and bit error rate (BER), which are used to determine the individual traffic demands. We propose a resource allocation algorithm to provide dual-service, Guaranteed Performance (GP) and Best Effort (BE) differentiated on the basis of required QoS. Subcarrier assignment and power allocation are carried out sequentially to reduce the complexity, and GP users are given priority over BE users in assigning subcarrier and allocating power. We present the simulation results of the proposed algorithms applied to frequency selective Rayleigh fading channel with additive white Gaussian noise (AWGN) and OFDMA
    corecore