1,684 research outputs found

    Robust Bayesian Regression with Synthetic Posterior

    Full text link
    Although linear regression models are fundamental tools in statistical science, the estimation results can be sensitive to outliers. While several robust methods have been proposed in frequentist frameworks, statistical inference is not necessarily straightforward. We here propose a Bayesian approach to robust inference on linear regression models using synthetic posterior distributions based on γ\gamma-divergence, which enables us to naturally assess the uncertainty of the estimation through the posterior distribution. We also consider the use of shrinkage priors for the regression coefficients to carry out robust Bayesian variable selection and estimation simultaneously. We develop an efficient posterior computation algorithm by adopting the Bayesian bootstrap within Gibbs sampling. The performance of the proposed method is illustrated through simulation studies and applications to famous datasets.Comment: 23 pages, 5 figure

    On the asymptotic rate of convergence of Stochastic Newton algorithms and their Weighted Averaged versions

    Full text link
    The majority of machine learning methods can be regarded as the minimization of an unavailable risk function. To optimize the latter, given samples provided in a streaming fashion, we define a general stochastic Newton algorithm and its weighted average version. In several use cases, both implementations will be shown not to require the inversion of a Hessian estimate at each iteration, but a direct update of the estimate of the inverse Hessian instead will be favored. This generalizes a trick introduced in [2] for the specific case of logistic regression, by directly updating the estimate of the inverse Hessian. Under mild assumptions such as local strong convexity at the optimum, we establish almost sure convergences and rates of convergence of the algorithms, as well as central limit theorems for the constructed parameter estimates. The unified framework considered in this paper covers the case of linear, logistic or softmax regressions to name a few. Numerical experiments on simulated data give the empirical evidence of the pertinence of the proposed methods, which outperform popular competitors particularly in case of bad initializa-tions.Comment: Computational Optimization and Applications, 202

    Conditionally conjugate mean-field variational Bayes for logistic models

    Full text link
    Variational Bayes (VB) is a common strategy for approximate Bayesian inference, but simple methods are only available for specific classes of models including, in particular, representations having conditionally conjugate constructions within an exponential family. Models with logit components are an apparently notable exception to this class, due to the absence of conjugacy between the logistic likelihood and the Gaussian priors for the coefficients in the linear predictor. To facilitate approximate inference within this widely used class of models, Jaakkola and Jordan (2000) proposed a simple variational approach which relies on a family of tangent quadratic lower bounds of logistic log-likelihoods, thus restoring conjugacy between these approximate bounds and the Gaussian priors. This strategy is still implemented successfully, but less attempts have been made to formally understand the reasons underlying its excellent performance. To cover this key gap, we provide a formal connection between the above bound and a recent P\'olya-gamma data augmentation for logistic regression. Such a result places the computational methods associated with the aforementioned bounds within the framework of variational inference for conditionally conjugate exponential family models, thereby allowing recent advances for this class to be inherited also by the methods relying on Jaakkola and Jordan (2000)

    Targeted Maximum Likelihood Estimation using Exponential Families

    Get PDF
    Targeted maximum likelihood estimation (TMLE) is a general method for estimating parameters in semiparametric and nonparametric models. Each iteration of TMLE involves fitting a parametric submodel that targets the parameter of interest. We investigate the use of exponential families to define the parametric submodel. This implementation of TMLE gives a general approach for estimating any smooth parameter in the nonparametric model. A computational advantage of this approach is that each iteration of TMLE involves estimation of a parameter in an exponential family, which is a convex optimization problem for which software implementing reliable and computationally efficient methods exists. We illustrate the method in three estimation problems, involving the mean of an outcome missing at random, the parameter of a median regression model, and the causal effect of a continuous exposure, respectively. We conduct a simulation study comparing different choices for the parametric submodel, focusing on the first of these problems. To the best of our knowledge, this is the first study investigating robustness of TMLE to different specifications of the parametric submodel. We find that the choice of submodel can have an important impact on the behavior of the estimator in finite samples

    Model based clustering of multinomial count data

    Full text link
    We consider the problem of inferring an unknown number of clusters in replicated multinomial data. Under a model based clustering point of view, this task can be treated by estimating finite mixtures of multinomial distributions with or without covariates. Both Maximum Likelihood (ML) as well as Bayesian estimation are taken into account. Under a Maximum Likelihood approach, we provide an Expectation--Maximization (EM) algorithm which exploits a careful initialization procedure combined with a ridge--stabilized implementation of the Newton--Raphson method in the M--step. Under a Bayesian setup, a stochastic gradient Markov chain Monte Carlo (MCMC) algorithm embedded within a prior parallel tempering scheme is devised. The number of clusters is selected according to the Integrated Completed Likelihood criterion in the ML approach and estimating the number of non-empty components in overfitting mixture models in the Bayesian case. Our method is illustrated in simulated data and applied to two real datasets. An R package is available at https://github.com/mqbssppe/multinomialLogitMix.Comment: to appear in ADA

    Particle algorithms for optimization on binary spaces

    Full text link
    We discuss a unified approach to stochastic optimization of pseudo-Boolean objective functions based on particle methods, including the cross-entropy method and simulated annealing as special cases. We point out the need for auxiliary sampling distributions, that is parametric families on binary spaces, which are able to reproduce complex dependency structures, and illustrate their usefulness in our numerical experiments. We provide numerical evidence that particle-driven optimization algorithms based on parametric families yield superior results on strongly multi-modal optimization problems while local search heuristics outperform them on easier problems

    Smooth Transition Regression Models in UK Stock Returns

    Get PDF
    This paper models UK stock market returns in a smooth transition regression (STR) framework. We employ a variety of financial and macroeconomic series that are assumed to influence UK stock returns, namely GDP, interest rates, inflation, money supply and US stock prices. We estimate STR models where the linearity hypothesis is strongly rejected for at least one transition variable. These non-linear models describe the in-sample movements of the stock returns series better than the corresponding linear model. Moreover, the US stock market appears to play an important role in determining the UK stock market returns regime.
    • …
    corecore