4 research outputs found

    An efficient shortest path routing algorithm in the data centre network DPillar

    Get PDF
    DPillar has recently been proposed as a server-centric data centre network and is combinatorially related to the well-known wrapped butterfly network. We explain the relationship between DPillar and the wrapped butterfly network before proving a symmetry property of DPillar. We use this symmetry property to establish a single-path routing algorithm for DPillar that computes a shortest path and has time complexity O(klog(n))O(klogā”(n)), where k parameterizes the dimension of DPillar and n the number of ports in its switches. Moreover, our algorithm is trivial to implement, being essentially a conditional clause of numeric tests, and improves significantly upon a routing algorithm earlier employed for DPillar. A secondary and important effect of our work is that it emphasises that data centre networks are amenable to a closer combinatorial scrutiny that can significantly improve their computational efficiency and performance

    An efficient shortest path routing algorithm in the data centre network DPillar.

    Get PDF
    DPillar has recently been proposed as a server-centric data centre network and is combinatorially related to the well-known wrapped butterfly network. We explain the relationship between DPillar and the wrapped butterfly network before proving a symmetry property of DPillar. We use this symmetry property to establish a single-path routing algorithm for DPillar that computes a shortest path and has time complexity O(klog(n))O(klogā”(n)), where k parameterizes the dimension of DPillar and n the number of ports in its switches. Moreover, our algorithm is trivial to implement, being essentially a conditional clause of numeric tests, and improves significantly upon a routing algorithm earlier employed for DPillar. A secondary and important effect of our work is that it emphasises that data centre networks are amenable to a closer combinatorial scrutiny that can significantly improve their computational efficiency and performance

    End-host Driven Troubleshooting Architecture for Software-Defined Networking

    Get PDF
    The high variability in traffic demands, the advanced networking services at various layers (e.g., load- balancers), and the steady penetration of SDN technology and virtualization make the crucial network troubleshooting tasks ever more challenging over multi-tenant environments. Service degradation is first realized by the users and, as being the only one having visibility to many relevant information (e.g., connection details) required for accurate and timely problem resolution, the infrastructure layer is often forced upon continuous monitoring resulting in wasteful resource management, not to mention the long time frames. In this paper, we propose an End-host-Driven Troubleshooting architecture (EDT), where users are able to share the application-specific connection details with the infrastructure to accelerate the identification of root causes of performance degradation, and to avoid the need for always-on, resource-intensive, and network- wide monitoring. Utilizing EDT, we provide some essential tools for real end-to-end trace routing (PTR), identifying packet losses, and carry out hop-by-hop latency measurements (HEL). In contrast to existing proposals, PTR traces the practical production traffic without the need of crafted probe packets by means of careful tagging mechanisms and additional ephemeral capturing flow rules. Besides involving negligible data plane deterioration, in certain cases PTR can drastically reduce the time needed to find a traversed path compared to existing solutions. Finally, by means of individual network functions, HEL measures the latency of each link along the found path without involving the controller into the calculation, hence resulting in significant reduction of control plane overhead
    corecore