4,376 research outputs found

    Beacon-Assisted Spectrum Access with Cooperative Cognitive Transmitter and Receiver

    Full text link
    Spectrum access is an important function of cognitive radios for detecting and utilizing spectrum holes without interfering with the legacy systems. In this paper we propose novel cooperative communication models and show how deploying such cooperations between a pair of secondary transmitter and receiver assists them in identifying spectrum opportunities more reliably. These cooperations are facilitated by dynamically and opportunistically assigning one of the secondary users as a relay to assist the other one which results in more efficient spectrum hole detection. Also, we investigate the impact of erroneous detection of spectrum holes and thereof missing communication opportunities on the capacity of the secondary channel. The capacity of the secondary users with interference-avoiding spectrum access is affected by 1) how effectively the availability of vacant spectrum is sensed by the secondary transmitter-receiver pair, and 2) how correlated are the perceptions of the secondary transmitter-receiver pair about network spectral activity. We show that both factors are improved by using the proposed cooperative protocols. One of the proposed protocols requires explicit information exchange in the network. Such information exchange in practice is prone to wireless channel errors (i.e., is imperfect) and costs bandwidth loss. We analyze the effects of such imperfect information exchange on the capacity as well as the effect of bandwidth cost on the achievable throughput. The protocols are also extended to multiuser secondary networks.Comment: 36 pages, 6 figures, To appear in IEEE Transaction on Mobile Computin

    Distributed Algorithms for Learning and Cognitive Medium Access with Logarithmic Regret

    Get PDF
    The problem of distributed learning and channel access is considered in a cognitive network with multiple secondary users. The availability statistics of the channels are initially unknown to the secondary users and are estimated using sensing decisions. There is no explicit information exchange or prior agreement among the secondary users. We propose policies for distributed learning and access which achieve order-optimal cognitive system throughput (number of successful secondary transmissions) under self play, i.e., when implemented at all the secondary users. Equivalently, our policies minimize the regret in distributed learning and access. We first consider the scenario when the number of secondary users is known to the policy, and prove that the total regret is logarithmic in the number of transmission slots. Our distributed learning and access policy achieves order-optimal regret by comparing to an asymptotic lower bound for regret under any uniformly-good learning and access policy. We then consider the case when the number of secondary users is fixed but unknown, and is estimated through feedback. We propose a policy in this scenario whose asymptotic sum regret which grows slightly faster than logarithmic in the number of transmission slots.Comment: Submitted to IEEE JSAC on Advances in Cognitive Radio Networking and Communications, Dec. 2009, Revised May 201

    Secrecy outage probability of a NOMA scheme and impact imperfect channel state information in underlay cooperative cognitive networks

    Get PDF
    Security performance and the impact of imperfect channel state information (CSI) in underlay cooperative cognitive networks (UCCN) is investigated in this paper. In the proposed scheme, relay R uses non-orthogonal multiple access (NOMA) technology to transfer messages e1, e2 from the source node S to User 1 (U-1) and User 2 (U-2), respectively. An eavesdropper (E) is also proposed to wiretap the messages of U-1 and U-2. The transmission's security performance in the proposed system was analyzed and performed over Rayleigh fading channels. Through numerical analysis, the results showed that the proposed system's secrecy performance became more efficient when the eavesdropper node E was farther away from the source node S and the intermediate cooperative relay R. The secrecy performance of U-1 was also compared to the secrecy performance of U-2. Finally, the simulation results matched the Monte Carlo simulations well.Web of Science203art. no. 89
    • …
    corecore