278 research outputs found

    Performance of LTE network for VoIP users

    Get PDF
    With the arrival of LTE standard, it is expected that the mobile voice services paradigm will shift from the circuit switched to fully packet switched mode supporting the VoIP services. VoIP services took quite a bit of time before they were accepted as the main stream telephony service in the fixed networks. To provide VoIP services over the LTE networks with appropriate QoS, it is necessary to analyse the performance of such services and optimise the network parameters. This paper analyses the performance of VoIP services on the LTE network using the FD and the SMP packet scheduling techniques. This work identifies and analyses the features of above LTE packet scheduling techniques to enhance the QoS of VoIP services. An OPNET-based simulation model is used to analyse the performance of VoIP services on the LTE network by incorporating G.711 and G.723 speech coders. The work also studied the performance of VoIP services in variable transmission channel conditions

    Cross-layer scheduling and resource allocation for heterogeneous traffic in 3G LTE

    Get PDF
    3G long term evolution (LTE) introduces stringent needs in order to provide different kinds of traffic with Quality of Service (QoS) characteristics. The major problem with this nature of LTE is that it does not have any paradigm scheduling algorithm that will ideally control the assignment of resources which in turn will improve the user satisfaction. This has become an open subject and different scheduling algorithms have been proposed which are quite challenging and complex. To address this issue, in this paper, we investigate how our proposed algorithm improves the user satisfaction for heterogeneous traffic, that is, best-effort traffic such as file transfer protocol (FTP) and real-time traffic such as voice over internet protocol (VoIP). Our proposed algorithm is formulated using the cross-layer technique. The goal of our proposed algorithm is to maximize the expected total user satisfaction (total-utility) under different constraints. We compared our proposed algorithm with proportional fair (PF), exponential proportional fair (EXP-PF), and U-delay. Using simulations, our proposed algorithm improved the performance of real-time traffic based on throughput, VoIP delay, and VoIP packet loss ratio metrics while PF improved the performance of best-effort traffic based on FTP traffic received, FTP packet loss ratio, and FTP throughput metrics

    Evaluating the effectiveness of Cooperative/Coordinated Multipoint (CoMP) LTE feature in uplink and downlink transmissions

    Get PDF
    Shannon demonstrated that the channel capacity depends of the ratio of the received signal power to interference plus noise power (SINR). Inter-cell interference caused by neighbouring base stations (BSs) has been identified as one of the most severe problem towards the deployment of LTE technology as it can significantly deteriorate the performance of cellside User Equipment (UE). However, because of regulatory and radiation restrictions as well as operational costs, signal power may only be increased only up to a certain limit to reduce the interference. The other common radio propagation impairment is multipath. Multipath refers to a scenario where multiple copies of a signal propagate to a receiver using different paths. The paths can be created due to signal reflection, scattering and diffraction. As will be discussed later the effects of multipath contribute little to intercell interference because multipath characteristics such as delay spread are compensated for using cyclic prefixes. In this work, we will limit our scope to interference as it has been identified as the main cause of performance degradation for cell edge users due to the full frequency reuse technique used in LTE. To mitigate interference 3GPP devised options of increasing the capacity in LTEAdvanced Release 12 which include the use of spectral aggregation, employing Multiple Input and Multiple Output (MIMO) Antenna techniques, deploying more base stations and micro and femto cells, increasing the degree of sectorisation and Coordinated Multipoint (CoMP). We are primarily interested in evaluating performance improvements introduced when uplink (UL) and downlink (DL) coordinated/cooperative multipoint (CoMP) is enabled in LTE Advanced Release 12 as a way of reducing interference among sites. The CoMP option of reducing interference does not require deployment of new equipment compared to the other options mentioned above hence network deployment costs are minimal. CoMP in theory is known to reduce interference especially for cell edge users and therefore improves network fairness. With CoMP, multiple points coordinate with each other such that transmission of signals to and from other points do not incur serious interference or the interference can even be exploited as a meaningful signal. In September 2011 work on specifications for CoMP support was started in 3GPP LTEAdvanced as one of the core features in LTE-Advanced Release 11 to improve cell edge user throughput as well as the average network throughput. We set to do field measurements in the evaluation of the effectiveness of CoMP in LTE. 3GPP LTE Release 12 was used and cell edge users' performance was the focus. The network operates in 2330 - 2350 MHz band (Channel 40). From the field measurements, it was demonstrated that the CoMP (Scenario 2) feature indeed effective in improving service quality/user experience/fairness for cell edge users. CoMP inherently improves network capacity. A seven (7) percent throughput was noticed

    3G migration in Pakistan

    Get PDF
    The telecommunication industry in Pakistan has come a long way since the country\u27s independence in 1947. The initial era could be fairly termed as the PTCL (Pakistan Telecommunication Company Limited) monopoly, for it was the sole provider of all telecommunication services across the country. It was not until four decades later that the region embarked into the new world of wireless communication, hence ending the decades old PTCL monopoly. By the end of the late 1990\u27s, government support and international investment in the region opened new doors to innovation and better quality, low cost, healthy competition. Wireless licenses for the private sector in the telecommunication industry triggered a promising chain of events that resulted in a drastic change in the telecommunication infrastructure and service profile. The newly introduced wireless (GSM) technology received enormous support from all stakeholders (consumers, regulatory body, and market) and caused a vital boost in Pakistan\u27s economy. Numerous tangential elements had triggered this vital move in the history of telecommunications in Pakistan. Entrepreneurs intended to test the idea of global joint ventures in the East and hence the idea of international business became a reality. The technology had proven to be a great success in the West, while Pakistan\u27s telecom consumer had lived under the shadow of PTCL dominance for decades and needed more flexibility. At last the world was moving from wired to wireless! Analysts termed this move as the beginning of a new era. The investors, telecommunication businesses, and Pakistani treasury prospered. It was a win-win situation for all involved. The learning curve was steep for both operators and consumers but certainly improved over time. In essence, the principle of deploying the right technology in the right market at the right time led to this remarkable success. The industry today stands on the brink of a similar crossroads via transition from second generation to something beyond. With the partial success of 3G in Europe and the USA, the government has announced the release of three 3G licenses by mid 2009. This decision is not yet fully supported by all but still initiated parallel efforts by the operators and the vendors to integrate this next move into their existing infrastructure

    A Study of Packet Scheduling Schemes for VoIP and Best Effort Traffic in LTE Networks

    Get PDF
    The Long Term Evolution (LTE) provides all services over Internet Protocol (IP) since it is an all IP network. To use available radio resources in an effective utilization, Packet Scheduling (PS) should be considered to enhance the Quality of Service (QoS) of Real Time (RT) and Non-Real Time (NRT) traffic. In this thesis, the PS of both RT and NRT traffic is studied in LTE networks. Apriority packet scheduling algorithm is proposed. The proposed algorithm has the ability to schedule the mixed traffic, RT and NRT, simultaneously. The objective of the algorithm is to maximize the Best Effort (BE) throughput while achieves the satisfaction QoS requirements of RT throughput. According to the obtained results of the thesis, the traffic should be differentiated and the services should be prioritized, when applying delay sensitive services. A system simulation is performed to support the study for mixed services approaches with Voice over IP (VoIP) and a second BE service such as File Transfer Protocol (FTP). The performance of the proposed algorithm and the impact of the different factors on the overall system performance have been tested. The work is done at Medium Access Control (MAC) layer and Physical Layer (PHY). Finally, a good results are achieved that guarantee a good end to end performance for both voice and data services

    Optimization and Performance Analysis of High Speed Mobile Access Networks

    Get PDF
    The end-to-end performance evaluation of high speed broadband mobile access networks is the main focus of this work. Novel transport network adaptive flow control and enhanced congestion control algorithms are proposed, implemented, tested and validated using a comprehensive High speed packet Access (HSPA) system simulator. The simulation analysis confirms that the aforementioned algorithms are able to provide reliable and guaranteed services for both network operators and end users cost-effectively. Further, two novel analytical models one for congestion control and the other for the combined flow control and congestion control which are based on Markov chains are designed and developed to perform the aforementioned analysis efficiently compared to time consuming detailed system simulations. In addition, the effects of the Long Term Evolution (LTE) transport network (S1and X2 interfaces) on the end user performance are investigated and analysed by introducing a novel comprehensive MAC scheduling scheme and a novel transport service differentiation model
    corecore