19 research outputs found

    An efficient quantum algorithm for the hidden subgroup problem in extraspecial groups

    Get PDF
    Extraspecial groups form a remarkable subclass of p-groups. They are also present in quantum information theory, in particular in quantum error correction. We give here a polynomial time quantum algorithm for finding hidden subgroups in extraspecial groups. Our approach is quite different from the recent algorithms presented in [17] and [2] for the Heisenberg group, the extraspecial p-group of size p3 and exponent p. Exploiting certain nice automorphisms of the extraspecial groups we define specific group actions which are used to reduce the problem to hidden subgroup instances in abelian groups that can be dealt with directly.Comment: 10 page

    Efficient Quantum Algorithm for Identifying Hidden Polynomials

    Full text link
    We consider a natural generalization of an abelian Hidden Subgroup Problem where the subgroups and their cosets correspond to graphs of linear functions over a finite field F with d elements. The hidden functions of the generalized problem are not restricted to be linear but can also be m-variate polynomial functions of total degree n>=2. The problem of identifying hidden m-variate polynomials of degree less or equal to n for fixed n and m is hard on a classical computer since Omega(sqrt{d}) black-box queries are required to guarantee a constant success probability. In contrast, we present a quantum algorithm that correctly identifies such hidden polynomials for all but a finite number of values of d with constant probability and that has a running time that is only polylogarithmic in d.Comment: 17 page

    Hidden Translation and Translating Coset in Quantum Computing

    Get PDF
    We give efficient quantum algorithms for the problems of Hidden Translation and Hidden Subgroup in a large class of non-abelian solvable groups including solvable groups of constant exponent and of constant length derived series. Our algorithms are recursive. For the base case, we solve efficiently Hidden Translation in Zpn\Z_{p}^{n}, whenever pp is a fixed prime. For the induction step, we introduce the problem Translating Coset generalizing both Hidden Translation and Hidden Subgroup, and prove a powerful self-reducibility result: Translating Coset in a finite solvable group GG is reducible to instances of Translating Coset in G/NG/N and NN, for appropriate normal subgroups NN of GG. Our self-reducibility framework combined with Kuperberg's subexponential quantum algorithm for solving Hidden Translation in any abelian group, leads to subexponential quantum algorithms for Hidden Translation and Hidden Subgroup in any solvable group.Comment: Journal version: change of title and several minor update
    corecore