10 research outputs found

    Tensor-based process control and monitoring for semiconductor manufacturing with unstable disturbances

    Full text link
    With the development and popularity of sensors installed in manufacturing systems, complex data are collected during manufacturing processes, which brings challenges for traditional process control methods. This paper proposes a novel process control and monitoring method for the complex structure of high-dimensional image-based overlay errors (modeled in tensor form), which are collected in semiconductor manufacturing processes. The proposed method aims to reduce overlay errors using limited control recipes. We first build a high-dimensional process model and propose different tensor-on-vector regression algorithms to estimate parameters in the model to alleviate the curse of dimensionality. Then, based on the estimate of tensor parameters, the exponentially weighted moving average (EWMA) controller for tensor data is designed whose stability is theoretically guaranteed. Considering the fact that low-dimensional control recipes cannot compensate for all high-dimensional disturbances on the image, control residuals are monitored to prevent significant drifts of uncontrollable high-dimensional disturbances. Through extensive simulations and real case studies, the performances of parameter estimation algorithms and the EWMA controller in tensor space are evaluated. Compared with existing image-based feedback controllers, the superiority of our method is verified especially when disturbances are not stable.Comment: 30 pages, 5 figure

    An Online Adaptive Algorithm for Change Detection in Streaming Sensory Data

    Get PDF
    There has been a keen interest in detecting abrupt sequential changes in streaming data obtained from sensors in wireless sensor networks for Internet of Things applications, such as fire/fault detection, activity recognition, and environmental monitoring. Such applications require (near) online detection of instantaneous changes. This paper proposes an online, adaptive filtering-based change detection (OFCD) algorithm. Our method is based on a convex combination of two decoupled least mean square windowed filters with differing sizes. Both filters are applied independently on data streams obtained from sensor nodes such that their convex combination parameter is employed as an indicator of abrupt changes in mean values. An extension of our method (OFCD) based on a cooperative scheme between multiple sensors (COFCD) is also presented. It provides an enhancement of both convergence and steady-state accuracy of the convex weight parameter. Our conducted experiments show that our approach can be applied in distributed networks in an online fashion. It also provides better performance and less complexity compared with the state-of-the-art on both of single and multiple sensors

    High-Dimensional, Multiscale Online Changepoint Detection

    Get PDF
    Abstract We introduce a new method for high-dimensional, online changepoint detection in settings where a p-variate Gaussian data stream may undergo a change in mean. The procedure works by performing likelihood ratio tests against simple alternatives of different scales in each coordinate, and then aggregating test statistics across scales and coordinates. The algorithm is online in the sense that both its storage requirements and worst-case computational complexity per new observation are independent of the number of previous observations; in practice, it may even be significantly faster than this. We prove that the patience, or average run length under the null, of our procedure is at least at the desired nominal level, and provide guarantees on its response delay under the alternative that depend on the sparsity of the vector of mean change. Simulations confirm the practical effectiveness of our proposal, which is implemented in the R package ocd, and we also demonstrate its utility on a seismology data set.</jats:p

    Design and Mining of Health Information Systems for Process and Patient Care Improvement

    Get PDF
    abstract: In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking HIS, which tracks the care each patient receives at multiple encounters and facilities. Archive HISs are typically specialized databases to store large-size data collected as part of the patient care. A typical example of an archive HIS is the Picture Archive and Communication System (PACS), which provides economical storage and convenient access to diagnostic images from multiple modalities. How to integrate such HISs and best utilize their data remains a challenging problem due to the disparity of HISs as well as high-dimensionality and heterogeneity of the data. My PhD dissertation research includes three inter-connected and integrated topics and focuses on designing integrated HISs and further developing statistical models and machine learning algorithms for process and patient care improvement. Topic 1: Design of super-HIS and tracking of quality of care (QoC). My research developed an information technology that integrates multiple HISs in radiology, and proposed QoC metrics defined upon the data that measure various dimensions of care. The DDD assisted the clinical practices and enabled an effective intervention for reducing lengthy radiologist turnaround times for patients. Topic 2: Monitoring and change detection of QoC data streams for process improvement. With the super-HIS in place, high-dimensional data streams of QoC metrics are generated. I developed a statistical model for monitoring high- dimensional data streams that integrated Singular Vector Decomposition (SVD) and process control. The algorithm was applied to QoC metrics data, and additionally extended to another application of monitoring traffic data in communication networks. Topic 3: Deep transfer learning of archive HIS data for computer-aided diagnosis (CAD). The novelty of the CAD system is the development of a deep transfer learning algorithm that combines the ideas of transfer learning and multi- modality image integration under the deep learning framework. Our system achieved high accuracy in breast cancer diagnosis compared with conventional machine learning algorithms.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201
    corecore