5,498 research outputs found

    The biopsychology of maternal behavior in nonhuman mammals

    Get PDF
    The term “maternal behavior,” when applied to nonhuman mammals, includes the behaviors exhibited in preparation for the arrival of newborn, in the care and protection of the newly arrived young, and in the weaning of those young, and represents a complex predictable pattern that is often regarded as a single, comprehensive, species-specific phenomenon. Although the delivering first-time mammalian mother is immediately and appropriately maternal, a maternal “virgin” with no prior exposure to young does not show immediate and appropriate behavior toward foster young. Nevertheless, the virgin female, and indeed the male, possess the neural circuitry that underlies the pattern referred to as maternal behavior, despite not exhibiting the pattern under normal circumstances. At parturition, or after extensive exposure to young, what emerges appears to be a single stereotyped maternal behavior pattern. However, it is actually a smoothly coordinated constellation of simpler actions with proximate causes that, when sequenced properly, have the appearance of a motivated, purposive, adaptive, pattern of caretaking. Over the past 50 years, much research has focused on finding the principal external and internal factors that convert the nonmaternal behavior patterns of the nonpregnant nullipara, the virgin, to the almost immediate and intense maternal behavior characteristic of the puerpera, the mother. This review is an attempt to summarize the many comprehensive, even encyclopedic, reviews of these factors, with an emphasis on brain mechanisms, and to highlight the gaps that remain in understanding the processes involved in the almost immediate onset of maternal caretaking behaviors observed in mammals at delivery. Where possible, the reader is directed to some of those excellent reviews

    The Bases of Association Rules of High Confidence

    Full text link
    We develop a new approach for distributed computing of the association rules of high confidence in a binary table. It is derived from the D-basis algorithm in K. Adaricheva and J.B. Nation (TCS 2017), which is performed on multiple sub-tables of a table given by removing several rows at a time. The set of rules is then aggregated using the same approach as the D-basis is retrieved from a larger set of implications. This allows to obtain a basis of association rules of high confidence, which can be used for ranking all attributes of the table with respect to a given fixed attribute using the relevance parameter introduced in K. Adaricheva et al. (Proceedings of ICFCA-2015). This paper focuses on the technical implementation of the new algorithm. Some testing results are performed on transaction data and medical data.Comment: Presented at DTMN, Sydney, Australia, July 28, 201

    Biometric Security for Cell Phones

    Get PDF
    Cell phones are already prime targets for theft. The increasing functionality of cell phones is making them even more attractive. With the increase of cell phone functionality including personal digital assistance, banking, e-commerce, remote work, internet access and entertainment, more and more confidential data is stored on these devices. What is protecting this confidential data stored on cell phones? Studies have shown that even though most of the cell phone users are aware of the PIN security feature more than 50% of them are not using it either because of the lack of confidence in it or because of the inconvenience. A large majority of those users believes that an alternative approach to security would be a good idea.biometrics, security, fingerprint, face recognition, cell phones

    Aversive bimodal associations differently impact visual and olfactory memory performance in Drosophila

    Get PDF

    GABA and Muscimol as Reversible Inactivation Tools in Learning and Memory

    Get PDF
    Reversible inactivation of brain areas is a useful method for inferring brain-behavior relationships. Infusion of GABA or of the GABA receptor agonist muscimol is considered one interesting reversible inactivation method because it may not affect fibers of passage and may therefore be compared to axon-sparing types of lesions. This article reviews the data obtained with this method in learning and memory experiments. A critical analysis of data, collected in collaboration with Simon Brailowsky, with chronic GABA infusion is presented, together with an illustration of data obtained with muscimol-induced inactivation

    Smell's puzzling discrepancy: Gifted discrimination, yet pitiful identification

    Get PDF
    Mind &Language, Volume 35, Issue 1, Page 90-114, February 2020
    • …
    corecore