45 research outputs found

    An Efficient Manifold Algorithm for Constructive Interference based Constant Envelope Precoding

    Get PDF
    In this letter, we propose a novel manifold-based algorithm to solve the constant envelope (CE) precoding problem with interference exploitation. For a given power budget, we design the precoded symbols subject to the CE constraints, such that the constructive effect of the multiuser interference is maximized. While the objective function for the original problem is not complex differentiable, we consider the smooth approximation of its real representation, and map it onto a Riemannian manifold. By using the Riemmanian conjugate gradient algorithm, a local minimizer can be efficiently found. The complexity of the algorithm is analytically derived in terms of floating-points operations (flops) per iteration. Simulations show that the proposed algorithm outperforms the conventional methods on both symbol error rate and computational complexity

    Low-Complexity PAPR Minimization for Symbol Level Precoded Multi-User MISO-OFDM System

    Get PDF
    This paper proposes a method exploiting constructive interference (CI) to reduce the transmit signal’s peak-to-average power ratio (PAPR), while keeping the total transmission power as low as possible. An optimization problem that jointly performs power minimization and PAPR reduction is formulated, which is however difficult to solve directly due to the non-convex PAPR constraint. To obtain a feasible solution in low complexity, by using the vectorization method and introducing a regularization factor, we relax the PAPR constraint. The original optimization problem is transformed into a convex problem that can be solved with an improved fast iterative shrinkage-thresholding algorithm (FISTA). Numerical results are presented to show 1dB savings in terms of transmission power and 52% savings in terms of PAPR compared with state-of-the-art PAPR minimization techniques

    Towards Dual-functional Radar-Communication Systems: Optimal Waveform Design

    Get PDF
    We focus on a dual-functional multi-input-multi-output (MIMO) radar-communication (RadCom) system, where a single transmitter communicates with downlink cellular users and detects radar targets simultaneously. Several design criteria are considered for minimizing the downlink multi-user interference. First, we consider both the omnidirectional and directional beampattern design problems, where the closed-form globally optimal solutions are obtained. Based on these waveforms, we further consider a weighted optimization to enable a flexible trade-off between radar and communications performance and introduce a low-complexity algorithm. The computational costs of the above three designs are shown to be similar to the conventional zero-forcing (ZF) precoding. Moreover, to address the more practical constant modulus waveform design problem, we propose a branch-and-bound algorithm that obtains a globally optimal solution and derive its worst-case complexity as a function of the maximum iteration number. Finally, we assess the effectiveness of the proposed waveform design approaches by numerical results.Comment: 13 pages, 10 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Near-Optimal Interference Exploitation 1-Bit Massive MIMO Precoding via Partial Branch-and-Bound

    Get PDF
    In this paper, we focus on 1-bit precoding for large-scale antenna systems in the downlink based on the concept of constructive interference (CI). By formulating the optimization problem that aims to maximize the CI effect subject to the 1-bit constraint on the transmit signals, we mathematically prove that, when relaxing the 1-bit constraint, the majority of the obtained transmit signals already satisfy the 1-bit constraint. Based on this important observation, we propose a 1-bit precoding method via a partial branch-and-bound (P-BB) approach, where the BB procedure is only performed for the entries that do not comply with the 1-bit constraint. The proposed P-BB enables the use of the BB framework in large-scale antenna scenarios, which was not applicable due to its prohibitive complexity. Numerical results demonstrate a near-optimal error rate performance for the proposed 1-bit precoding algorithm.Comment: accepted by IEEE ICASSP202

    Quantized Constant Envelope Precoding with PSK and QAM Signaling

    Full text link
    Coarsely quantized massive Multiple-Input Multiple-Output (MIMO) systems are gaining more interest due to their power efficiency. We present a new precoding technique to mitigate the Multi-User Interference (MUI) and the quantization distortions in a downlink Multi-User (MU) MIMO system with coarsely Quantized Constant Envelope (QCE) signals at the transmitter. The transmit signal vector is optimized for every desired received vector taking into account the QCE constraint. The optimization is based on maximizing the safety margin to the decision thresholds of the receiver constellation modulation. Simulation results show a significant gain in terms of the uncoded Bit Error Ratio (BER) compared to the existing linear precoding techniques

    Intelligent Reflecting Surface based Passive Information Transmission: A Symbol-Level Precoding Approach

    Full text link
    Intelligent reflecting surfaces (IRS) have been proposed as a revolutionary technology owing to its capability of adaptively reconfiguring the propagation environment in a cost-effective and hardware-efficient fashion. While the application of IRS as a passive reflector to enhance the performance of wireless communications has been widely investigated in the literature, using IRS as a passive transmitter recently is emerging as a new concept and attracting steadily growing interest. In this paper, we propose two novel IRS-based passive information transmission systems using advanced symbol-level precoding. One is a standalone passive information transmission system, where the IRS operates as a passive transmitter serving multiple receivers by adjusting its elements to reflect unmodulated carrier signals. The other is a joint passive reflection and information transmission system, where the IRS not only enhances transmissions for multiple primary information receivers (PIRs) by passive reflection, but also simultaneously delivers additional information to a secondary information receiver (SIR) by embedding its information into the primary signals at the symbol level. Two typical optimization problems, i.e., power minimization and quality-of-service (QoS) balancing, are investigated for the proposed IRS-based passive information transmission systems. Simulation results demonstrate the feasibility of IRS-based passive information transmission and the effectiveness of our proposed algorithms, as compared to other benchmark schemes.Comment: 14 pages, 11 figures, major revisio
    corecore