2,154 research outputs found

    High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows

    Full text link
    In this article we present the first better than second order accurate unstructured Lagrangian-type one-step WENO finite volume scheme for the solution of hyperbolic partial differential equations with non-conservative products. The method achieves high order of accuracy in space together with essentially non-oscillatory behavior using a nonlinear WENO reconstruction operator on unstructured triangular meshes. High order accuracy in time is obtained via a local Lagrangian space-time Galerkin predictor method that evolves the spatial reconstruction polynomials in time within each element. The final one-step finite volume scheme is derived by integration over a moving space-time control volume, where the non-conservative products are treated by a path-conservative approach that defines the jump terms on the element boundaries. The entire method is formulated as an Arbitrary-Lagrangian-Eulerian (ALE) method, where the mesh velocity can be chosen independently of the fluid velocity. The new scheme is applied to the full seven-equation Baer-Nunziato model of compressible multi-phase flows in two space dimensions. The use of a Lagrangian approach allows an excellent resolution of the solid contact and the resolution of jumps in the volume fraction. The high order of accuracy of the scheme in space and time is confirmed via a numerical convergence study. Finally, the proposed method is also applied to a reduced version of the compressible Baer-Nunziato model for the simulation of free surface water waves in moving domains. In particular, the phenomenon of sloshing is studied in a moving water tank and comparisons with experimental data are provided

    Unstructured un-split geometrical Volume-of-Fluid methods -- A review

    Full text link
    Geometrical Volume-of-Fluid (VoF) methods mainly support structured meshes, and only a small number of contributions in the scientific literature report results with unstructured meshes and three spatial dimensions. Unstructured meshes are traditionally used for handling geometrically complex solution domains that are prevalent when simulating problems of industrial relevance. However, three-dimensional geometrical operations are significantly more complex than their two-dimensional counterparts, which is confirmed by the ratio of publications with three-dimensional results on unstructured meshes to publications with two-dimensional results or support for structured meshes. Additionally, unstructured meshes present challenges in serial and parallel computational efficiency, accuracy, implementation complexity, and robustness. Ongoing research is still very active, focusing on different issues: interface positioning in general polyhedra, estimation of interface normal vectors, advection accuracy, and parallel and serial computational efficiency. This survey tries to give a complete and critical overview of classical, as well as contemporary geometrical VOF methods with concise explanations of the underlying ideas and sub-algorithms, focusing primarily on unstructured meshes and three dimensional calculations. Reviewed methods are listed in historical order and compared in terms of accuracy and computational efficiency

    The Cauchy-Lagrangian method for numerical analysis of Euler flow

    Full text link
    A novel semi-Lagrangian method is introduced to solve numerically the Euler equation for ideal incompressible flow in arbitrary space dimension. It exploits the time-analyticity of fluid particle trajectories and requires, in principle, only limited spatial smoothness of the initial data. Efficient generation of high-order time-Taylor coefficients is made possible by a recurrence relation that follows from the Cauchy invariants formulation of the Euler equation (Zheligovsky & Frisch, J. Fluid Mech. 2014, 749, 404-430). Truncated time-Taylor series of very high order allow the use of time steps vastly exceeding the Courant-Friedrichs-Lewy limit, without compromising the accuracy of the solution. Tests performed on the two-dimensional Euler equation indicate that the Cauchy-Lagrangian method is more - and occasionally much more - efficient and less prone to instability than Eulerian Runge-Kutta methods, and less prone to rapid growth of rounding errors than the high-order Eulerian time-Taylor algorithm. We also develop tools of analysis adapted to the Cauchy-Lagrangian method, such as the monitoring of the radius of convergence of the time-Taylor series. Certain other fluid equations can be handled similarly.Comment: 30 pp., 13 figures, 45 references. Minor revision. In press in Journal of Scientific Computin
    • …
    corecore