368 research outputs found

    Learning-Based Approaches for Graph Problems: A Survey

    Full text link
    Over the years, many graph problems specifically those in NP-complete are studied by a wide range of researchers. Some famous examples include graph colouring, travelling salesman problem and subgraph isomorphism. Most of these problems are typically addressed by exact algorithms, approximate algorithms and heuristics. There are however some drawback for each of these methods. Recent studies have employed learning-based frameworks such as machine learning techniques in solving these problems, given that they are useful in discovering new patterns in structured data that can be represented using graphs. This research direction has successfully attracted a considerable amount of attention. In this survey, we provide a systematic review mainly on classic graph problems in which learning-based approaches have been proposed in addressing the problems. We discuss the overview of each framework, and provide analyses based on the design and performance of the framework. Some potential research questions are also suggested. Ultimately, this survey gives a clearer insight and can be used as a stepping stone to the research community in studying problems in this field.Comment: v1: 41 pages; v2: 40 page

    Efficient Fuel Consumption Minimization for Green Vehicle Routing Problems using a Hybrid Neural Network-Optimization Algorithm

    Get PDF
    Efficient routing optimization yields benefits that extend beyond mere financial gains. In this thesis, we present a methodology that utilizes a graph convolutional neural network to facilitate the development of energy-efficient waste collection routes. Our approach focuses on a Waste company in Tromsø, Remiks, and uses real-life datasets, ensuring practicability and ease of implementation. In particular, we extend the dpdp algorithm introduced by Kool et al. (2021) [1] to minimize fuel consumption and devise routes that account for the impact of elevation and real road distance traveled. Our findings shed light on the potential advantages and enhancements these optimized routes can offer Remiks, including improved effectiveness and cost savings. Additionally, we identify key areas for future research and development

    A Novel Differentiable Loss Function for Unsupervised Graph Neural Networks in Graph Partitioning

    Full text link
    In this paper, we explore the graph partitioning problem, a pivotal combina-torial optimization challenge with extensive applications in various fields such as science, technology, and business. Recognized as an NP-hard prob-lem, graph partitioning lacks polynomial-time algorithms for its resolution. Recently, there has been a burgeoning interest in leveraging machine learn-ing, particularly approaches like supervised, unsupervised, and reinforce-ment learning, to tackle such NP-hard problems. However, these methods face significant hurdles: supervised learning is constrained by the necessity of labeled solution instances, which are often computationally impractical to obtain; reinforcement learning grapples with instability in the learning pro-cess; and unsupervised learning contends with the absence of a differentia-ble loss function, a consequence of the discrete nature of most combinatorial optimization problems. Addressing these challenges, our research introduces a novel pipeline employing an unsupervised graph neural network to solve the graph partitioning problem. The core innovation of this study is the for-mulation of a differentiable loss function tailored for this purpose. We rigor-ously evaluate our methodology against contemporary state-of-the-art tech-niques, focusing on metrics: cuts and balance, and our findings reveal that our is competitive with these leading methods.Comment: 2 Tables, 2 Figure
    corecore