2 research outputs found

    Biometric Cryptosystems : Authentication, Encryption and Signature for Biometric Identities

    Get PDF
    Biometrics have been used for secure identification and authentication for more than two decades since biometric data is unique, non-transferable, unforgettable, and always with us. Recently, biometrics has pervaded other aspects of security applications that can be listed under the topic of ``Biometric Cryptosystems''. Although the security of some of these systems is questionable when they are utilized alone, integration with other technologies such as digital signatures or Identity Based Encryption (IBE) schemes results in cryptographically secure applications of biometrics. It is exactly this field of biometric cryptosystems that we focused in this thesis. In particular, our goal is to design cryptographic protocols for biometrics in the framework of a realistic security model with a security reduction. Our protocols are designed for biometric based encryption, signature and remote authentication. We first analyze the recently introduced biometric remote authentication schemes designed according to the security model of Bringer et al.. In this model, we show that one can improve the database storage cost significantly by designing a new architecture, which is a two-factor authentication protocol. This construction is also secure against the new attacks we present, which disprove the claimed security of remote authentication schemes, in particular the ones requiring a secure sketch. Thus, we introduce a new notion called ``Weak-identity Privacy'' and propose a new construction by combining cancelable biometrics and distributed remote authentication in order to obtain a highly secure biometric authentication system. We continue our research on biometric remote authentication by analyzing the security issues of multi-factor biometric authentication (MFBA). We formally describe the security model for MFBA that captures simultaneous attacks against these systems and define the notion of user privacy, where the goal of the adversary is to impersonate a client to the server. We design a new protocol by combining bipartite biotokens, homomorphic encryption and zero-knowledge proofs and provide a security reduction to achieve user privacy. The main difference of this MFBA protocol is that the server-side computations are performed in the encrypted domain but without requiring a decryption key for the authentication decision of the server. Thus, leakage of the secret key of any system component does not affect the security of the scheme as opposed to the current biometric systems involving cryptographic techniques. We also show that there is a tradeoff between the security level the scheme achieves and the requirement for making the authentication decision without using any secret key. In the second part of the thesis, we delve into biometric-based signature and encryption schemes. We start by designing a new biometric IBS system that is based on the currently most efficient pairing based signature scheme in the literature. We prove the security of our new scheme in the framework of a stronger model compared to existing adversarial models for fuzzy IBS, which basically simulates the leakage of partial secret key components of the challenge identity. In accordance with the novel features of this scheme, we describe a new biometric IBE system called as BIO-IBE. BIO-IBE differs from the current fuzzy systems with its key generation method that not only allows for a larger set of encryption systems to function for biometric identities, but also provides a better accuracy/identification of the users in the system. In this context, BIO-IBE is the first scheme that allows for the use of multi-modal biometrics to avoid collision attacks. Finally, BIO-IBE outperforms the current schemes and for small-universe of attributes, it is secure in the standard model with a better efficiency compared to its counterpart. Another contribution of this thesis is the design of biometric IBE systems without using pairings. In fact, current fuzzy IBE schemes are secure under (stronger) bilinear assumptions and the decryption of each message requires pairing computations almost equal to the number of attributes defining the user. Thus, fuzzy IBE makes error-tolerant encryption possible at the expense of efficiency and security. Hence, we design a completely new construction for biometric IBE based on error-correcting codes, generic conversion schemes and weakly secure anonymous IBE schemes that encrypt a message bit by bit. The resulting scheme is anonymous, highly secure and more efficient compared to pairing-based biometric IBE, especially for the decryption phase. The security of our generic construction is reduced to the security of the anonymous IBE scheme, which is based on the Quadratic Residuosity assumption. The binding of biometric features to the user's identity is achieved similar to BIO-IBE, thus, preserving the advantages of its key generation procedure

    End-to-End Encrypted Group Messaging with Insider Security

    Get PDF
    Our society has become heavily dependent on electronic communication, and preserving the integrity of this communication has never been more important. Cryptography is a tool that can help to protect the security and privacy of these communications. Secure messaging protocols like OTR and Signal typically employ end-to-end encryption technology to mitigate some of the most egregious adversarial attacks, such as mass surveillance. However, the secure messaging protocols deployed today suffer from two major omissions: they do not natively support group conversations with three or more participants, and they do not fully defend against participants that behave maliciously. Secure messaging tools typically implement group conversations by establishing pairwise instances of a two-party secure messaging protocol, which limits their scalability and makes them vulnerable to insider attacks by malicious members of the group. Insiders can often perform attacks such as rendering the group permanently unusable, causing the state of the group to diverge for the other participants, or covertly remaining in the group after appearing to leave. It is increasingly important to prevent these insider attacks as group conversations become larger, because there are more potentially malicious participants. This dissertation introduces several new protocols that can be used to build modern communication tools with strong security and privacy properties, including resistance to insider attacks. Firstly, the dissertation addresses a weakness in current two-party secure messaging tools: malicious participants can leak portions of a conversation alongside cryptographic proof of authorship, undermining confidentiality. The dissertation introduces two new authenticated key exchange protocols, DAKEZ and XZDH, with deniability properties that can prevent this type of attack when integrated into a secure messaging protocol. DAKEZ provides strong deniability in interactive settings such as instant messaging, while XZDH provides deniability for non-interactive settings such as mobile messaging. These protocols are accompanied by composable security proofs. Secondly, the dissertation introduces Safehouse, a new protocol that can be used to implement secure group messaging tools for a wide range of applications. Safehouse solves the difficult cryptographic problems at the core of secure group messaging protocol design: it securely establishes and manages a shared encryption key for the group and ephemeral signing keys for the participants. These keys can be used to build chat rooms, team communication servers, video conferencing tools, and more. Safehouse enables a server to detect and reject protocol deviations, while still providing end-to-end encryption. This allows an honest server to completely prevent insider attacks launched by malicious participants. A malicious server can still perform a denial-of-service attack that renders the group unavailable or "forks" the group into subgroups that can never communicate again, but other attacks are prevented, even if the server colludes with a malicious participant. In particular, an adversary controlling the server and one or more participants cannot cause honest participants' group states to diverge (even in subtle ways) without also permanently preventing them from communicating, nor can the adversary arrange to covertly remain in the group after all of the malicious participants under its control are removed from the group. Safehouse supports non-interactive communication, dynamic group membership, mass membership changes, an invitation system, and secure property storage, while offering a variety of configurable security properties including forward secrecy, post-compromise security, long-term identity authentication, strong deniability, and anonymity preservation. The dissertation includes a complete proof-of-concept implementation of Safehouse and a sample application with a graphical client. Two sub-protocols of independent interest are also introduced: a new cryptographic primitive that can encrypt multiple private keys to several sets of recipients in a publicly verifiable and repeatable manner, and a round-efficient interactive group key exchange protocol that can instantiate multiple shared key pairs with a configurable knowledge relationship
    corecore