9,496 research outputs found

    Computing the Region Areas of Euler Diagrams Drawn with Three Ellipses

    Get PDF
    Ellipses generate accurate area-proportional Euler diagrams for more data than is possible with circles. However, computing the region areas is difficult as ellipses have various degrees of freedom. Numerical methods could be used, but approximation errors are introduced. Current analytic methods are limited to computing the area of only two overlapping ellipses, but area-proportional Euler diagrams in diverse application areas often have three curves. This paper provides an overview of different methods that could be used to compute the region areas of Euler diagrams drawn with ellipses. We also detail two novel analytic algorithms to instantaneously compute the exact region areas of three general overlapping ellipses. One of the algorithms decomposes the region of interest into ellipse segments, while the other uses integral calculus. Both methods perform equally well with respect to accuracy and time

    Elliptical slice sampling

    Get PDF
    Many probabilistic models introduce strong dependencies between variables using a latent multivariate Gaussian distribution or a Gaussian process. We present a new Markov chain Monte Carlo algorithm for performing inference in models with multivariate Gaussian priors. Its key properties are: 1) it has simple, generic code applicable to many models, 2) it has no free parameters, 3) it works well for a variety of Gaussian process based models. These properties make our method ideal for use while model building, removing the need to spend time deriving and tuning updates for more complex algorithms.Comment: 8 pages, 6 figures, appearing in AISTATS 2010 (JMLR: W&CP volume 6). Differences from first submission: some minor edits in response to feedback

    Detecting Weakly Simple Polygons

    Full text link
    A closed curve in the plane is weakly simple if it is the limit (in the Fr\'echet metric) of a sequence of simple closed curves. We describe an algorithm to determine whether a closed walk of length n in a simple plane graph is weakly simple in O(n log n) time, improving an earlier O(n^3)-time algorithm of Cortese et al. [Discrete Math. 2009]. As an immediate corollary, we obtain the first efficient algorithm to determine whether an arbitrary n-vertex polygon is weakly simple; our algorithm runs in O(n^2 log n) time. We also describe algorithms that detect weak simplicity in O(n log n) time for two interesting classes of polygons. Finally, we discuss subtle errors in several previously published definitions of weak simplicity.Comment: 25 pages and 13 figures, submitted to SODA 201

    A General Bayesian Framework for Ellipse-based and Hyperbola-based Damage Localisation in Anisotropic Composite Plates

    Get PDF
    This paper focuses on Bayesian Lamb wave-based damage localization in structural health monitoring of anisotropic composite materials. A Bayesian framework is applied to take account for uncertainties from experimental time-of-flight measurements and angular dependent group velocity within the composite material. An original parametric analytical expression of the direction dependence of group velocity is proposed and validated numerically and experimentally for anisotropic composite and sandwich plates. This expression is incorporated into time-of-arrival (ToA: ellipse-based) and time-difference-of-arrival (TDoA: hyperbola-based) Bayesian damage localization algorithms. This way, the damage location as well as the group velocity profile are estimated jointly and a priori information taken into consideration. The proposed algorithm is general as it allows to take into account for uncertainties within a Bayesian framework, and to model effects of anisotropy on group velocity. Numerical and experimental results obtained with different damage sizes or locations and for different degrees of anisotropy validate the ability of the proposed algorithm to estimate both the damage location and the group velocity profile as well as the associated confidence intervals. Results highlight the need to consider for anisotropy in order to increase localization accuracy, and to use Bayesian analysis to quantify uncertainties in damage localization.Projet CORALI
    • …
    corecore