21 research outputs found

    Adaptive trust and reputation system as a security service in group communications

    Get PDF
    Group communications has been facilitating many emerging applications which require packet delivery from one or more sender(s) to multiple receivers. Owing to the multicasting and broadcasting nature, group communications are susceptible to various kinds of attacks. Though a number of proposals have been reported to secure group communications, provisioning security in group communications remains a critical and challenging issue. This work first presents a survey on recent advances in security requirements and services in group communications in wireless and wired networks, and discusses challenges in designing secure group communications in these networks. Effective security services to secure group communications are then proposed. This dissertation also introduces the taxonomy of security services, which can be applied to secure group communications, and evaluates existing secure group communications schemes. This dissertation work analyzes a number of vulnerabilities against trust and reputation systems, and proposes a threat model to predict attack behaviors. This work also considers scenarios in which multiple attacking agents actively and collaboratively attack the whole network as well as a specific individual node. The behaviors may be related to both performance issues and security issues. Finally, this work extensively examines and substantiates the security of the proposed trust and reputation system. This work next discusses the proposed trust and reputation system for an anonymous network, referred to as the Adaptive Trust-based Anonymous Network (ATAN). The distributed and decentralized network management in ATAN does not require a central authority so that ATAN alleviates the problem of a single point of failure. In ATAN, the trust and reputation system aims to enhance anonymity by establishing a trust and reputation relationship between the source and the forwarding members. The trust and reputation relationship of any two nodes is adaptive to new information learned by these two nodes or recommended from other trust nodes. Therefore, packets are anonymously routed from the \u27trusted\u27 source to the destination through \u27trusted\u27 intermediate nodes, thereby improving anonymity of communications. In the performance analysis, the ratio of the ATAN header and data payload is around 0.1, which is relatively small. This dissertation offers analysis on security services on group communications. It illustrates that these security services are needed to incorporate with each other such that group communications can be secure. Furthermore, the adaptive trust and reputation system is proposed to integrate the concept of trust and reputation into communications. Although deploying the trust and reputation system incurs some overheads in terms of storage spaces, bandwidth and computation cycles, it shows a very promising performance that enhance users\u27 confidence in using group communications, and concludes that the trust and reputation system should be deployed as another layer of security services to protect group communications against malicious adversaries and attacks

    Group Key Rekeying Technique with Secure Data Encryption in MANETs

    Get PDF
    A Mobile Ad hoc Network (MANET) is a collection of autonomous nodes or mobile devices that can arrange themselves in various ways and operate without strict network administration. Ensuring security in mobile ad hoc network is a challenging issue and most of the applications in mobile ad hoc networks involve group-oriented communication. In Mobile ad-hoc network, each node treated as a terminal and also acts as an intermediate router. In this scenario, multi-hop occurs for communication in mobile ad hoc network. There may be a possibility of threats and malicious nodes in between source and destination. Providing the security in MANET is entirely different from the traditional wired network. In the present scenario, various applications of the mobile ad hoc network have been proposed and issues are solved by using the cryptographic techniques. Mostly cryptographic techniques are used to provide the security to MANETs. Cryptographic techniques will not be efficient security mechanism if the key management is weak. The purpose of key management is to provide secure procedures for handling keys in the cryptographic technique. The responsibilities of key management include key generation, key distribution, and key maintenance. Several key management schemes have been introduced for MANETs. The Group key management scheme is an efficient method for key management in MANET. In group key management scheme, rekeying is used whenever a new node joins or existing node leaves from the group. In this paper, we propose a periodic rekeying method (PRK) and analyze the performance of LKH rekeying techniques in a group key management schemes. The symmetric encryption techniques are analyzed with different parameters, such as Throughput and Energy consumption. Security and performance of rekeying protocols are analyzed through detailed study and simulation

    A Secure Group Communication Architecture for a Swarm of Autonomous Unmanned Aerial Vehicles

    Get PDF
    This thesis investigates the application of a secure group communication architecture to a swarm of autonomous unmanned aerial vehicles (UAVs). A multicast secure group communication architecture for the low earth orbit (LEO) satellite environment is evaluated to determine if it can be effectively adapted to a swarm of UAVs and provide secure, scalable, and efficient communications. The performance of the proposed security architecture is evaluated with two other commonly used architectures using a discrete event computer simulation developed using MatLab. Performance is evaluated in terms of the scalability and efficiency of the group key distribution and management scheme when the swarm size, swarm mobility, multicast group join and departure rates are varied. The metrics include the total keys distributed over the simulation period, the average number of times an individual UAV must rekey, the average bandwidth used to rekey the swarm, and the average percentage of battery consumed by a UAV to rekey over the simulation period. The proposed security architecture can successfully be applied to a swarm of autonomous UAVs using current technology. The proposed architecture is more efficient and scalable than the other tested and commonly-used architectures. Over all the tested configurations, the proposed architecture distributes 55.2 – 94.8% fewer keys, rekeys 59.0 - 94.9% less often per UAV, uses 55.2 - 87.9% less bandwidth to rekey, and reduces the battery consumption by 16.9 – 85.4%

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Managing and Complementing Public Key Infrastructure for Securing Vehicular Ad Hoc Networks

    Get PDF
    Recently, vehicular ad-hoc network (VANET) has emerged as an excellent candidate to change the life style of the traveling passengers along the roads and highways in terms of improving the safety levels and providing a wide range of comfort applications. Due to the foreseen impact of VANETs on our lives, extensive attentions in industry and academia are directed towards bringing VANETs into real life and standardizing its network operation. Unfortunately, the open medium nature of wireless communications and the high-speed mobility of a large number of vehicles in VANETs pose many challenges that should be solved before deploying VANETs. It is evident that any malicious behavior of a user, such as injecting false information, modifying and replaying the disseminated messages, could be fatal to other legal users. In addition, users show prime interest in protecting their privacy. The privacy of users must be guaranteed in the sense that the privacy-related information of a vehicle should be protected to prevent an observer from revealing the real identities of the users, tracking their locations, and inferring sensitive data. From the aforementioned discussion, it is clear that security and privacy preservation are among the critical challenges for the deployment of VANETs. Public Key Infrastructure (PKI) is a well-recognized solution to secure VANETs. However, the traditional management of PKI cannot meet the security requirements of VANETs. In addition, some security services such as location privacy and fast authentication cannot be provided by the traditional PKI. Consequently, to satisfy the security and privacy requirements, it is prerequisite to elaborately design an efficient management of PKI and complementary mechanisms for PKI to achieve security and privacy preservation for practical VANETs. In this thesis, we focus on developing an efficient certificate management in PKI and designing PKI complementary mechanisms to provide security and privacy for VANETs. The accomplishments of this thesis can be briefly summarized as follows. Firstly, we propose an efficient Distributed Certificate Service (DCS) scheme for vehicular networks. The proposed scheme offers a flexible interoperability for certificate service in heterogeneous administrative authorities, and an efficient way for any On-Board Units (OBUs) to update its certificate from the available infrastructure Road-Side Units (RSUs) in a timely manner. In addition, the DCS scheme introduces an aggregate batch verification technique for authenticating certificate-based signatures, which significantly decreases the verification overhead. Secondly, we propose an Efficient Decentralized Revocation (EDR) protocol based on a novel pairing-based threshold scheme and a probabilistic key distribution technique. Because of the decentralized nature of the EDR protocol, it enables a group of legitimate vehicles to perform fast revocation of a nearby misbehaving vehicle. Consequently, the EDR protocol improves the safety levels in VANETs as it diminishes the revocation vulnerability window existing in the conventional Certificate Revocation Lists (CRLs). Finally, we propose complementing PKI with group communication to achieve location privacy and expedite message authentication. In specific, the proposed complemented PKI features the following. First, it employs a probabilistic key distribution to establish a shared secret group key between non-revoked OBUs. Second, it uses the shared secret group key to perform expedite message authentication (EMAP) which replaces the time-consuming CRL checking process by an efficient revocation checking process. Third, it uses the shared secret group key to provide novel location privacy preservation through random encryption periods (REP) which ensures that the requirements to track a vehicle are always violated. Moreover, in case of revocation an OBU can calculate the new group key and update its compromised keys even if the OBU missed previous rekeying process. For each of the aforementioned accomplishments, we conduct security analysis and performance evaluation to demonstrate the reliable security and efficiency of the proposed schemes

    Key Management in Wireless Sensor Networks, IP-Based Sensor Networks, Content Centric Networks

    Get PDF
    Cryptographic keys and their management in network communication is considered the main building block of security over which other security primitives are based. These cryptographic keys ensure the privacy, authentication, integrity and non-repudiation of messages. However, the use of these cryptographic keys and their management in dealing with the resource constrained devices (i.e. Sensor nodes) is a challenging task. A number of key management schemes have been introduced by researchers all over the world for such resource constrained networks. For example, light weight PKI and elliptic curve cryptography schemes are computationally expensive for these resource constrained devices. So far the symmetric key approach is considered best for these constrained networks and different variants of it been developed for these networks (i.e. probabilistic key distribution approach). The probabilistic key distribution approach consumes less memory than the standard symmetric key approach but it suffers from the connectivity issues (i.e. the connectivity depends on the common shared keys between the nodes). Most of those schemes were proposed by considering static sensor networks (e.g. Industrial process monitoring, Environmental monitoring, movement detection in military applications, forests etc.). However, the use of these existing key management schemes for mobile wireless sensor networks applications introduces more challenges in terms of network connectivity, energy consumption, memory cost, communication overhead and protection of key materials against some well known attacks. Keeping these challenges in mind, previous research has proposed some key management schemes considering the mobility scenarios in ad hoc networks and wireless sensor networks (e.g. vehicular networks, health monitoring systems).However these schemes consume more resource because of a much higher communication packet exchange during the handover phase for the authentication of joining and leaving nodes than the static networks where there is no extra communication for the handover and authentication. The motivation of this research work is to investigate and propose new algorithms not only to improve the efficiency of these existing authentication and key management schemes in terms of connectivity, memory and security by considering the mobility scenario in wireless sensor networks, but also to develop new algorithms that suit these constrained networks than the existing schemes. First, we choose the existing key pool approach for authentication and key management and improve its network connectivity and resilience against some well known attacks (e.g. node capturing attacks) while reduce the memory cost by storing those key pools in each sensor node. In the proposed solution, we have divided the main key pool into two virtual mutually exclusive key pools. This division and constructing a key from two chosen keys, one from each key pool, helps to reduce the memory cost of each node by assigning fewer keys for the same level of network connectivity as the existing key pool frameworks. Although, the proposed key pool approach increases the network resilience against node compromission attacks because of the smaller number of keys assigned to each node, however it does not completely nullify the effect of the attacks. Hence we proposed an online mutual authentication and key establishment and management scheme for sensor networks that provides almost 100\% network connectivity and also nullifies the effect of node compromission attacks. In the proposed online key generation approach, the secret key is dependent on both communicating parties. Once the two communicating parties authenticate each other, they would successfully establish a secret communication key, otherwise they stop communication and inform the network manager about the intruder detection and activity. The last part of the thesis considers the integration of two different technologies (i.e. wireless sensor networks and IP networks). This is a very interesting and demanding research area because of its numerous applications, such as smart energy, smart city etc.. However the security requirements of these two kind of networks (resource constrained and resourceful) make key management a challenging task. Hence we use an online key generation approach using elliptic curve cryptography which gives the same security level as the standard PKI approach used in IP networks with smaller key length and is suited for the sensor network packet size limitations. It also uses a less computationally expensive approach than PKI and hence makes ECC suitable to be adopted in wireless sensor networks. In the key management scheme for IP based sensor networks, we generate the public private key pair based on ECC for each individual sensor node. However the public key is not only dependent on the node's parameter but also the parameters of the network to which it belongs. This increases the security of the proposed solution and avoids intruders pretending to be authentic members of the network(s) by spreading their own public keys. In the last part of the thesis we consider Content Centric Networking (CCN) which is a new routing architecture for the internet of the future. Building on the observation that today's communications are more oriented towards content retrieval (web, P2P, etc.) than point-to-point communications (VoIP, IM, etc.), CCN proposes a radical revision of the Internet architecture switching from named hosts (TCP/IP protocols) to named data to best match its current usage. In a nutshell, content is addressable, routable, self-sufficient and authenticated, while locations no longer matter. Data is seen and identified directly by a routable name instead of a location (the address of the server). Consequently, data is directly requested at the network level not from its holder, hence there is no need for the DNS). To improve content diffusion, CCN relies on data distribution and duplication, because storage is cheaper than bandwidth: every content - particularly popular one - can be replicated and stored on any CCN node, even untrustworthy. People looking for particular content can securely retrieve it in a P2P-way from the best locations available. So far, there has been little investigation of the security of CCNs and there is no specific key management scheme for that. We propose an authentication and key establishment scheme for CCNs in which the contents are authenticated by the content generating node, using pre-distributed shares of encryption keys. The content requesting node can get those shares from any node in the network, even from malicious and intruder ones, in accordance with a key concept of CCNs. In our work we also provide means to protect the distributed shares from modification by these malicious/intruder nodes. The proposed scheme is again an online key generation approach but including a relation between the content and its encryption key. This dependency prevents the attackers from modifying the packet or the key share
    corecore