2 research outputs found

    Aplicació de mètriques fuzzy en la millora computacional d'algorismes de filtratge d'imatges en color

    Full text link
    El filtrado de imágenes es una tarea fundamental para la mayoría de los sistemas de visión por computador cuando las imágenes se usan para análisis automático o, incluso, para inspección humana. De hecho, la presencia de ruido en una imagen puede ser un grave impedimento para las sucesivas tareas de procesamiento de imágenes como, por ejemplo, la detección de bordes o el reconocimiento de patrones u objetos y, por lo tanto, el ruido debe ser reducido. Del mismo modo, el aumento de la resolución y el tamaño de las imágenes nos conduce a requerimientos computacionales más altos, los cuales hemos de intentar rebajar sobre todo para aplicaciones en tiempo real o similares. En los últimos años el interés por utilizar imágenes en color se ha visto incrementado de forma significativa en una gran variedad de aplicaciones. Es por esto que el filtrado de imágenes en color se ha convertido en un área de investigación interesante. Se ha observado ampliamente que las imágenes en color deben ser procesadas teniendo en cuenta la correlación existente entre los distintos canales de color de la imagen. En este sentido, la solución probablemente más conocida y estudiada es el enfoque vectorial. Las primeras soluciones que proponen técnicas de filtrado vectorial, son las conocidas técnicas del filtro de mediana vectorial (VMF) o el filtro direccional vectorial (VDF). Desafortunadamente, estas técnicas no se adaptan a las características locales de la imagen, lo que implica que habitualmente los bordes y detalles de las imágenes se emborronan y pierden calidad. A fin de solventar este problema, se han propuesto recientemente varios filtros vectoriales adaptativos, entre los que destacan las técnicas de peer group. En los últimos años ha aparecido la teoría de los denominados conjuntos fuzzy, borrosos o difusos (lógica, métricas y topologías), que se ha demostrado es una herramienta adecuada para el filtrado de imágenes. En la presente Tesis Doctoral las metas principales son: (i) el esCamarena Estruch, JG. (2009). Aplicació de mètriques fuzzy en la millora computacional d'algorismes de filtratge d'imatges en color [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/4339Palanci

    Localised rank-ordered differences vector filter for suppression of high-density impulse noise in colour images

    Full text link
    This research presents a complete study of a new alternating vector filter for the removal of impulsive noise in colour images. The method is based on an impulsive noise detector for greyscale images that has been adapted in a localised manner using geometric information for processing colour images. Based on this statistic, a filtering scheme alternating between the identity and a non-linear vector filter is proposed. A geometric and experimental study was performed to obtain the optimal filter design. Experimental studies show that the proposed technique is simple, easy to implement, robust to noise, and outperforms the classic vector filters, as well as more recent filters.Roig, B.; Estruch, V. (2016). Localised rank-ordered differences vector filter for suppression of high-density impulse noise in colour images. IET Image Processing. 10(1):24-33. doi:10.1049/iet-ipr.2014.0838S2433101Astola, J., Haavisto, P., & Neuvo, Y. (1990). Vector median filters. Proceedings of the IEEE, 78(4), 678-689. doi:10.1109/5.54807Lukac, R., & Plataniotis, K. N. (2006). A Taxonomy of Color Image Filtering and Enhancement Solutions. Advances in Imaging and Electron Physics, 187-264. doi:10.1016/s1076-5670(05)40004-xAllende, H., & Galbiati, J. (2004). A non-parametric filter for digital image restoration, using cluster analysis. Pattern Recognition Letters, 25(8), 841-847. doi:10.1016/j.patrec.2004.01.009Alajlan, N., Kamel, M., & Jernigan, E. (2004). Detail preserving impulsive noise removal. Signal Processing: Image Communication, 19(10), 993-1003. doi:10.1016/j.image.2004.08.003Pei-Eng Ng, & Kai-Kuang Ma. (2006). A switching median filter with boundary discriminative noise detection for extremely corrupted images. IEEE Transactions on Image Processing, 15(6), 1506-1516. doi:10.1109/tip.2005.871129Jin, L., & Li, D. (2007). An Efficient Color-Impulse Detector and its Application to Color Images. IEEE Signal Processing Letters, 14(6), 397-400. doi:10.1109/lsp.2006.887840Lin, T.-C., & Yu, P.-T. (2004). Partition fuzzy median filter based on fuzzy rules for image restoration. Fuzzy Sets and Systems, 147(1), 75-97. doi:10.1016/s0165-0114(03)00209-4Schulte, S., De Witte, V., Nachtegael, M., Van der Weken, D., & Kerre, E. E. (2007). Fuzzy random impulse noise reduction method. Fuzzy Sets and Systems, 158(3), 270-283. doi:10.1016/j.fss.2006.10.010Lukac, R., Plataniotis, K. N., Venetsanopoulos, A. N., & Smolka, B. (2005). A Statistically-Switched Adaptive Vector Median Filter. Journal of Intelligent and Robotic Systems, 42(4), 361-391. doi:10.1007/s10846-005-1730-2Srinivasan, K. S., & Ebenezer, D. (2007). A New Fast and Efficient Decision-Based Algorithm for Removal of High-Density Impulse Noises. IEEE Signal Processing Letters, 14(3), 189-192. doi:10.1109/lsp.2006.884018Chan, R. H., Chung-Wa, & Nikolova, M. (2005). Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on Image Processing, 14(10), 1479-1485. doi:10.1109/tip.2005.852196Gallegos-Funes, F. J., & Ponomaryov, V. I. (2004). Real-time image filtering scheme based on robust estimators in presence of impulsive noise. Real-Time Imaging, 10(2), 69-80. doi:10.1016/j.rti.2004.02.002Lukac, R. (2004). Adaptive Color Image Filtering Based on Center-Weighted Vector Directional Filters. Multidimensional Systems and Signal Processing, 15(2), 169-196. doi:10.1023/b:mult.0000017024.66297.a0Morillas, S., Gregori, V., Peris-Fajarnés, G., & Latorre, P. (2005). A fast impulsive noise color image filter using fuzzy metrics. Real-Time Imaging, 11(5-6), 417-428. doi:10.1016/j.rti.2005.06.007Smolka, B., Lukac, R., Chydzinski, A., Plataniotis, K. N., & Wojciechowski, W. (2003). Fast adaptive similarity based impulsive noise reduction filter. Real-Time Imaging, 9(4), 261-276. doi:10.1016/j.rti.2003.09.015Smolka, B., & Chydzinski, A. (2005). Fast detection and impulsive noise removal in color images. Real-Time Imaging, 11(5-6), 389-402. doi:10.1016/j.rti.2005.07.003Dong, Y., & Xu, S. (2007). A New Directional Weighted Median Filter for Removal of Random-Valued Impulse Noise. IEEE Signal Processing Letters, 14(3), 193-196. doi:10.1109/lsp.2006.884014Jin, L., & Li, D. (2007). A switching vector median filter based on the CIELAB color space for color image restoration. Signal Processing, 87(6), 1345-1354. doi:10.1016/j.sigpro.2006.11.008Yuan, S.-Q., & Tan, Y.-H. (2006). Impulse noise removal by a global–local noise detector and adaptive median filter. Signal Processing, 86(8), 2123-2128. doi:10.1016/j.sigpro.2006.01.009Garnett, R., Huegerich, T., Chui, C., & Wenjie He. (2005). A universal noise removal algorithm with an impulse detector. IEEE Transactions on Image Processing, 14(11), 1747-1754. doi:10.1109/tip.2005.857261Yuzhong Shen, & Barner, K. E. (2006). Fast adaptive optimization of weighted vector median filters. IEEE Transactions on Signal Processing, 54(7), 2497-2510. doi:10.1109/tsp.2006.874028Yao Nie, & Barner, K. E. (2006). The fuzzy transformation and its applications in image processing. IEEE Transactions on Image Processing, 15(4), 910-927. doi:10.1109/tip.2005.863111Yuksel, M. E. (2006). A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise. IEEE Transactions on Image Processing, 15(4), 928-936. doi:10.1109/tip.2005.863941Hanji, G., & Latte, M. (2012). Detail Preserving Fast Median Based Filter. Journal of Advanced Computer Science & Technology, 1(4). doi:10.14419/jacst.v1i4.248Ibrahim, H., Pik Kong, N., & Ng, T. (2008). Simple adaptive median filter for the removal of impulse noise from highly corrupted images. IEEE Transactions on Consumer Electronics, 54(4), 1920-1927. doi:10.1109/tce.2008.4711254Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629-639. doi:10.1109/34.56205Weickert, J. (1999). International Journal of Computer Vision, 31(2/3), 111-127. doi:10.1023/a:100800971413
    corecore