7,572 research outputs found

    Multi-Touch Attribution Based Budget Allocation in Online Advertising

    Full text link
    Budget allocation in online advertising deals with distributing the campaign (insertion order) level budgets to different sub-campaigns which employ different targeting criteria and may perform differently in terms of return-on-investment (ROI). In this paper, we present the efforts at Turn on how to best allocate campaign budget so that the advertiser or campaign-level ROI is maximized. To do this, it is crucial to be able to correctly determine the performance of sub-campaigns. This determination is highly related to the action-attribution problem, i.e. to be able to find out the set of ads, and hence the sub-campaigns that provided them to a user, that an action should be attributed to. For this purpose, we employ both last-touch (last ad gets all credit) and multi-touch (many ads share the credit) attribution methodologies. We present the algorithms deployed at Turn for the attribution problem, as well as their parallel implementation on the large advertiser performance datasets. We conclude the paper with our empirical comparison of last-touch and multi-touch attribution-based budget allocation in a real online advertising setting.Comment: This paper has been published in ADKDD 2014, August 24, New York City, New York, U.S.

    An Integrated Framework for Competitive Multi-channel Marketing of Multi-featured Products

    Full text link
    For any company, multiple channels are available for reaching a population in order to market its products. Some of the most well-known channels are (a) mass media advertisement, (b) recommendations using social advertisement, and (c) viral marketing using social networks. The company would want to maximize its reach while also accounting for simultaneous marketing of competing products, where the product marketings may not be independent. In this direction, we propose and analyze a multi-featured generalization of the classical linear threshold model. We hence develop a framework for integrating the considered marketing channels into the social network, and an approach for allocating budget among these channels

    Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization

    Full text link
    Creating impact in real-world settings requires artificial intelligence techniques to span the full pipeline from data, to predictive models, to decisions. These components are typically approached separately: a machine learning model is first trained via a measure of predictive accuracy, and then its predictions are used as input into an optimization algorithm which produces a decision. However, the loss function used to train the model may easily be misaligned with the end goal, which is to make the best decisions possible. Hand-tuning the loss function to align with optimization is a difficult and error-prone process (which is often skipped entirely). We focus on combinatorial optimization problems and introduce a general framework for decision-focused learning, where the machine learning model is directly trained in conjunction with the optimization algorithm to produce high-quality decisions. Technically, our contribution is a means of integrating common classes of discrete optimization problems into deep learning or other predictive models, which are typically trained via gradient descent. The main idea is to use a continuous relaxation of the discrete problem to propagate gradients through the optimization procedure. We instantiate this framework for two broad classes of combinatorial problems: linear programs and submodular maximization. Experimental results across a variety of domains show that decision-focused learning often leads to improved optimization performance compared to traditional methods. We find that standard measures of accuracy are not a reliable proxy for a predictive model's utility in optimization, and our method's ability to specify the true goal as the model's training objective yields substantial dividends across a range of decision problems.Comment: Full version of paper accepted at AAAI 201

    Pilot Clustering in Asymmetric Massive MIMO Networks

    Full text link
    We consider the uplink of a cellular massive MIMO network. Since the spectral efficiency of these networks is limited by pilot contamination, the pilot allocation across cells is of paramount importance. However, finding efficient pilot reuse patterns is non-trivial especially in practical asymmetric base station deployments. In this paper, we approach this problem using coalitional game theory. Each cell has its own unique pilots and can form coalitions with other cells to gain access to more pilots. We develop a low-complexity distributed algorithm and prove convergence to an individually stable coalition structure. Simulations reveal fast algorithmic convergence and substantial performance gains over one-cell coalitions and full pilot reuse.Comment: Published in Proc. of IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC '15), 5 pages, 1 tables, 5 figure
    corecore