8,341 research outputs found

    Statistical mechanics of lossy data compression using a non-monotonic perceptron

    Full text link
    The performance of a lossy data compression scheme for uniformly biased Boolean messages is investigated via methods of statistical mechanics. Inspired by a formal similarity to the storage capacity problem in the research of neural networks, we utilize a perceptron of which the transfer function is appropriately designed in order to compress and decode the messages. Employing the replica method, we analytically show that our scheme can achieve the optimal performance known in the framework of lossy compression in most cases when the code length becomes infinity. The validity of the obtained results is numerically confirmed.Comment: 9 pages, 5 figures, Physical Review

    Schumacher's quantum data compression as a quantum computation

    Full text link
    An explicit algorithm for performing Schumacher's noiseless compression of quantum bits is given. This algorithm is based on a combinatorial expression for a particular bijection among binary strings. The algorithm, which adheres to the rules of reversible programming, is expressed in a high-level pseudocode language. It is implemented using O(n3)O(n^3) two- and three-bit primitive reversible operations, where nn is the length of the qubit strings to be compressed. Also, the algorithm makes use of O(n)O(n) auxiliary qubits; however, space-saving techniques based on those proposed by Bennett are developed which reduce this workspace to O(n)O(\sqrt{n}) while increasing the running time by less than a factor of two.Comment: 37 pages, no figure

    Online Learning of k-CNF Boolean Functions

    Full text link
    This paper revisits the problem of learning a k-CNF Boolean function from examples in the context of online learning under the logarithmic loss. In doing so, we give a Bayesian interpretation to one of Valiant's celebrated PAC learning algorithms, which we then build upon to derive two efficient, online, probabilistic, supervised learning algorithms for predicting the output of an unknown k-CNF Boolean function. We analyze the loss of our methods, and show that the cumulative log-loss can be upper bounded, ignoring logarithmic factors, by a polynomial function of the size of each example.Comment: 20 LaTeX pages. 2 Algorithms. Some Theorem

    Algorithms for Provisioning Queries and Analytics

    Get PDF
    Provisioning is a technique for avoiding repeated expensive computations in what-if analysis. Given a query, an analyst formulates kk hypotheticals, each retaining some of the tuples of a database instance, possibly overlapping, and she wishes to answer the query under scenarios, where a scenario is defined by a subset of the hypotheticals that are "turned on". We say that a query admits compact provisioning if given any database instance and any kk hypotheticals, one can create a poly-size (in kk) sketch that can then be used to answer the query under any of the 2k2^{k} possible scenarios without accessing the original instance. In this paper, we focus on provisioning complex queries that combine relational algebra (the logical component), grouping, and statistics/analytics (the numerical component). We first show that queries that compute quantiles or linear regression (as well as simpler queries that compute count and sum/average of positive values) can be compactly provisioned to provide (multiplicative) approximate answers to an arbitrary precision. In contrast, exact provisioning for each of these statistics requires the sketch size to be exponential in kk. We then establish that for any complex query whose logical component is a positive relational algebra query, as long as the numerical component can be compactly provisioned, the complex query itself can be compactly provisioned. On the other hand, introducing negation or recursion in the logical component again requires the sketch size to be exponential in kk. While our positive results use algorithms that do not access the original instance after a scenario is known, we prove our lower bounds even for the case when, knowing the scenario, limited access to the instance is allowed

    Chain Reduction for Binary and Zero-Suppressed Decision Diagrams

    Full text link
    Chain reduction enables reduced ordered binary decision diagrams (BDDs) and zero-suppressed binary decision diagrams (ZDDs) to each take advantage of the others' ability to symbolically represent Boolean functions in compact form. For any Boolean function, its chain-reduced ZDD (CZDD) representation will be no larger than its ZDD representation, and at most twice the size of its BDD representation. The chain-reduced BDD (CBDD) of a function will be no larger than its BDD representation, and at most three times the size of its CZDD representation. Extensions to the standard algorithms for operating on BDDs and ZDDs enable them to operate on the chain-reduced versions. Experimental evaluations on representative benchmarks for encoding word lists, solving combinatorial problems, and operating on digital circuits indicate that chain reduction can provide significant benefits in terms of both memory and execution time
    • …
    corecore