12,452 research outputs found

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Enabling Flexibility in Process-Aware Information Systems: Challenges, Methods, Technologies

    Get PDF
    In today’s dynamic business world, the success of a company increasingly depends on its ability to react to changes in its environment in a quick and flexible way. Companies have therefore identified process agility as a competitive advantage to address business trends like increasing product and service variability or faster time to market, and to ensure business IT alignment. Along this trend, a new generation of information systems has emerged—so-called process-aware information systems (PAIS), like workflow management systems, case handling tools, and service orchestration engines. With this book, Reichert and Weber address these flexibility needs and provide an overview of PAIS with a strong focus on methods and technologies fostering flexibility for all phases of the process lifecycle (i.e., modeling, configuration, execution and evolution). Their presentation is divided into six parts. Part I starts with an introduction of fundamental PAIS concepts and establishes the context of process flexibility in the light of practical scenarios. Part II focuses on flexibility support for pre-specified processes, the currently predominant paradigm in the field of business process management (BPM). Part III details flexibility support for loosely specified processes, which only partially specify the process model at build-time, while decisions regarding the exact specification of certain model parts are deferred to the run-time. Part IV deals with user- and data-driven processes, which aim at a tight integration of processes and data, and hence enable an increased flexibility compared to traditional PAIS. Part V introduces existing technologies and systems for the realization of a flexible PAIS. Finally, Part VI summarizes the main ideas of this book and gives an outlook on advanced flexibility issues. The attached pdf file gives a preview on Chapter 3 of the book which explains the book's overall structure

    Size Matters: Microservices Research and Applications

    Full text link
    In this chapter we offer an overview of microservices providing the introductory information that a reader should know before continuing reading this book. We introduce the idea of microservices and we discuss some of the current research challenges and real-life software applications where the microservice paradigm play a key role. We have identified a set of areas where both researcher and developer can propose new ideas and technical solutions.Comment: arXiv admin note: text overlap with arXiv:1706.0735

    A novel workflow management system for handling dynamic process adaptation and compliance

    Get PDF
    Modern enterprise organisations rely on dynamic processes. Generally these processes cannot be modelled once and executed repeatedly without change. Enterprise processes may evolve unpredictably according to situations that cannot always be prescribed. However, no mechanism exists to ensure an updated process does not violate any compliance requirements. Typical workflow processes may follow a process definition and execute several thousand instances using a workflow engine without any changes. This is suitable for routine business processes. However, when business processes need flexibility, adaptive features are needed. Updating processes may violate compliance requirements so automatic verification of compliance checking is necessary. The research work presented in this Thesis investigates the problem of current workflow technology in defining, managing and ensuring the specification and execution of business processes that are dynamic in nature, combined with policy standards throughout the process lifycle. The findings from the literature review and the system requirements are used to design the proposed system architecture. Since a two-tier reference process model is not sufficient as a basis for the reference model for an adaptive and compliance workflow management system, a three-tier process model is proposed. The major components of the architecture consist of process models, business rules and plugin modules. This architecture exhibits the concept of user adaptation with structural checks and dynamic adaptation with data-driven checks. A research prototype - Adaptive and Compliance Workflow Management System (ACWfMS) - was developed based on the proposed system architecture to implement core services of the system for testing and evaluation purposes. The ACWfMS enables the development of a workflow management tool to create or update the process models. It automatically validates compliance requirements and, in the case of violations, visual feedback is presented to the user. In addition, the architecture facilitates process migration to manage specific instances with modified definitions. A case study based on the postgraduate research process domain is discussed

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    Change Support in Cross-Organizational Dynamic Process-Aware Software Architecture – A Pattern-Based Analysis

    Get PDF
    Process-aware information systems (PAIS) offer promising perspectives in this respect and are increasingly employed for operationally supporting business processes. In this paper, we describe the emergence of different process support paradigms and the lack of methods for comparing existing change approaches have made it difficult for process-aware software architecture (PASA) engineers to choose the adequate technology. A pattern-based analysis combines self-adapting and self-evolution theory in PAIS, we adopt a set of changes patterns and change support features to put forwards four kinds of model of PASA according to the situation of the needs business processer facing and changeable environment. Based on these change patterns and features, we provide a detailed mechanism analysis and case study evaluation in the healthcare industry of the relationship between cross-organizational dynamic process-aware software architecture (CD-PASA) and change patterns of business processes. In summary, we identified change patterns and change support features facilitate the comparison of change support frameworks, and consequently will support PASA engineers in selecting the right technology for realizing flexible PASA. In addition, this work can be used as a reference for implementing more flexible PASA

    High-Performance Cloud Computing: A View of Scientific Applications

    Full text link
    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure supports multiple programming paradigms that make Aneka address a variety of different scenarios: from finance applications to computational science. As examples of scientific computing in the Cloud, we present a preliminary case study on using Aneka for the classification of gene expression data and the execution of fMRI brain imaging workflow.Comment: 13 pages, 9 figures, conference pape
    • 

    corecore