59,633 research outputs found

    Open-World Probabilistic Databaseṡ

    Get PDF
    Abstract Large-scale probabilistic knowledge bases are becoming increasingly important in academia and industry alike. They are constantly extended with new data, powered by modern information extraction tools that associate probabilities with database tuples. In this paper, we revisit the semantics underlying such systems. In particular, the closed-world assumption of probabilistic databases, that facts not in the database have probability zero, clearly conflicts with their everyday use. To address this discrepancy, we propose an open-world probabilistic database semantics, which relaxes the probabilities of open facts to intervals. While still assuming a finite domain, this semantics can provide meaningful answers when some probabilities are not precisely known. For this openworld setting, we propose an efficient evaluation algorithm for unions of conjunctive queries. Our open-world algorithm incurs no overhead compared to closed-world reasoning and runs in time linear in the size of the database for tractable queries. All other queries are #P-hard, implying a data complexity dichotomy between linear time and #P. For queries involving negation, however, open-world reasoning can become NP-, or even NP PP -hard. Finally, we discuss additional knowledge-representation layers that can further strengthen open-world reasoning about big uncertain data

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Non-constructive interval simulation of dynamic systems

    Get PDF
    Publisher PD

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    Expressive Stream Reasoning with Laser

    Full text link
    An increasing number of use cases require a timely extraction of non-trivial knowledge from semantically annotated data streams, especially on the Web and for the Internet of Things (IoT). Often, this extraction requires expressive reasoning, which is challenging to compute on large streams. We propose Laser, a new reasoner that supports a pragmatic, non-trivial fragment of the logic LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser implements a novel evaluation procedure which annotates formulae to avoid the re-computation of duplicates at multiple time points. This procedure, combined with a judicious implementation of the LARS operators, is responsible for significantly better runtimes than the ones of other state-of-the-art systems like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP solver Clingo. This enables the application of expressive logic-based reasoning to large streams and opens the door to a wider range of stream reasoning use cases.Comment: 19 pages, 5 figures. Extended version of accepted paper at ISWC 201
    corecore