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A TEMPORAL EXTENSION OF PROLOG 

TOMAS HRYCEJ 

D Temporal Prolog, a temporal logic extension of PROLOG, is presented. 
The primary criterion for the model selection has been its natural embed- 
ment into the logic programming paradigm. Under strong efficiency con- 
straints, a first-order “reified” logic has been taken as a basis for the 
implementation. Allen’s temporal constraint algorithm has been extended 
for treatment of retractable constraints. Their embedment into Temporal 
Prolog can be viewed as an instance of the Constraint Logic Programming 
paradigm. An example inspired by K. Forbus’s Qualitative Process Theory 
illustrates how qualitative simulation and related tasks can be formulated 
in Temporal Prolog in a transparent and declarative way. a 

1. INTRODUCTION 

Temporal aspects of world description are of crucial importance in AI areas that 
are concerned with representation and inferences about dynamically changing 
world, particularly planning (e.g., Allen and Koomen [5], Dean [ll], McDermott 
[37], and Vere [52], qualitative simulation (e.g., Forbus [16]), cognitive modeling 
(e.g., Allen [3]), natural language semantics (e.g., Allen [4]), or databases (e.g., 
Dean [ll] or Dean and McDermott [12]). 

This is the reason why much attention has been paid to temporal aspects of 
world description in recent years. These efforts resulted in the implementation of 
several working temporal logic systems. 

This paper presents Temporal Prolog, an extension of PROLOG capable of 
handling temporally referenced logical statements and temporal constraints. It is 
concerned with implementation aspects of both temporal constraints and temporal 
logic. 

Temporal Prolog can be viewed as a synthesis of temporal logic and of the 
Constraint Logic Programming paradigm, in which temporal constraints are formu- 
lated. 
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Rather than develop a novel theoretical temporal logic system, the primary goals 
underlying the Temporal Prolog project are: 

(1) 

(2) 

(3) 

(4) 

Selecting a temporal logic model based on an easily comprehensible and 
intuitively clear concept of temporal referencing. 
Embedding the model in a natural way into the logic programming paradigm 
and programming style. Logic programming is characterized by (i) a declara- 
tive formulation of statements (facts and rules) in predicate formalism and 
(ii) solving problems by posing declarative queries which are resolved auto- 
matically by an interpreter. Our temporal reasoner should be integrated into 
this model as seamlessly as possible. This objective is similar to that of the 
query system of temporal database of Dean and McDermott [12]. 
Formulating efficient inference algorithms. For a system incorporated into a 
common PROLOG interpreter, this requirement can be formulated more 
concretely as, “there should be no backtracking alternatives for a single 
temporal situation.” This requirement has a strong influence on the imple- 
mentation of temporal logic axioms (Sections 3 and 5). 
Making the model easy to implement on top of the PROLOG interpreters 
available at present. This goal may sound more “commercial” than is meant. 
The basic idea is that the temporal logic should be a relatively autonomous 
system that can be implemented on top of an available PROLOG inter- 
preter, so that the built-in PROLOG inference mechanism is left unmodi- 
fied. The advantage of this approach is that efficient and bug-free commer- 
cial interpreters can be used even if they are not available in source form. 

Since Temporal Prolog is a programming language level tool, efficiency issues 
are of crucial importance. Some of its features have been introduced from 
pragmatic viewpoints, rather than from viewpoints of logical purity and complete- 
ness. 

Primary objectives of Temporal Prolog development are listed in Section 2. In 
Section 3, several alternative approaches to temporal logic are overviewed and the 
logic of Temporal Prolog is developed. 

Language elements extending PROLOG are given in Section 4. 
The implementation of axioms of Section 3, in particular the constraining 

character of the rules and variable instantiation are the topics of Section 5. 
Section 6 describes the implementation of the temporal constraint propagation 

algorithm and its interface to the logic, which can be viewed as an instance of the 
Constraint Logic Programming paradigm. The emphasis of this description is on its 
nonstandard features, in particular retractability and efficiency. 

Section 7 briefly discusses applications of Temporal Prolog. 

2. PRIMARY OBJECTIVES 

3. LOGIC OF TEMPORAL PROLOG 

3.1. Existing Models 

As stated above, a criterion for the choice of temporal-logic model has been that it 
provide an easily comprehensible and intuitively clear concept of temporal refer- 
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encing. In this section, existing temporal models will be, without claiming com- 
pleteness, briefly reviewed. 

As stated by Turner [48], there are basically two alternative approaches to 
handling time by logic. 

(1) First-order logic can be directly used to formulate statements with some of 
the propositional symbols corresponding to time positions (points or inter- 
vals), for example, boiling(wuter, t) meaning “water is boiling at interval t.” 

(2) First-order logic can be extended, for example, by modal operators, for 
treatment of temporal modes. 

3.1.1. Modal Temporal Logics. The modal logic approach seems to be the one 
preferred by logicians. The classical temporal logic (e.g., Rescher and Urquhart 
[42]) uses four modal operators: 

FA meaning “A is true at some future time;” 

PA meaning “A was true at some past time;” 

GA meaning “A will be true at all future times;” and 

HA meaning “A has always been true in the past.” 

The semantics of the classical temporal logic is given by the function h: T X A -+ 
{LO) with T a nonempty set of ordered time points and A, the set of atomic 
sentences. The semantics of nonatomic sentences can be inferred by the following 
rules (see [481): 

h(t, A and B) = 1 iff h(t, A) and h(t, B); 

h(t, 7 A) = 1 iff h(t, A) = 0; 

h(t,FA) = 1 iff hEIt) (t <t’ and h(t’, A) = 1); 

h(t,PA) = 1 iff h(3t) (t > t’ and h(t’, A) = 1). 

Unfortunately, until now, no efficient theorem-proving algorithm has been 
found for arbitrary modal logics. However, there are algorithms for some restricted 
classes of temporal logics. 

One of them is the resolution procedure of Abadi and Manna [ll for the 
Propositional Temporal Logic (PTL) of Manna and Pnueli [35]. The procedure has 
been generalized by Abadi and Manna [2] for the First-Order Temporal Logic 
(FTIJ. 

PTL as well as FTL use the following modal operators: 

0 u meaning “u is true in the next state;” 

q z4 meaning “u is always true (from now on);” 

0 u meaning “u is eventually true;” 

uUV meaning “u is true until u is true;” and 

uA, meaning “u precedes u.” 

The resolution algorithm for FIL extends the resolution for PTL by skolemization 
and unification rules. While the PTL-resolution is shown to be complete, it is not 
the case for FI’L (for more details, see [l, 21). 
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PTL has been used for specification and synthesis of communicating processes 
(see Manna and Wolper [36J). Another operational system for parallel program 
modeling is the language TEMPURA of Hale and Moszkowski [181. 

3.1.2. Logics Using First-Order Predicate Calculus. The first of the approaches 
quoted at the beginning of this section uses first-order predicate calculus to 
capture temporal aspects. Logical statements are “indexed” by the time at which 
they are true. There are several different views of this model: 

l First, they can be viewed as first-order logics in which each n-ary predicate is 
extended to an (n + l)-ary prediate, the (n + 1)st argument being the time in 
which the predicate is supposed to be true. For example, boiling(water) 
would be extended to boiling(water, t) (see above). 

l The second view is that of “reified logics” (see Shoham [45] or Reichgelt 
[41]). This is expressed by the predicate HOLDS( P, t ) with P an “object-level” 
predicate formula and t a time point or interval in which P is true. 

l An interesting view is proposed by Reichgelt [41]. He sees the reified logics 
as a first-order formalization of the semantics of the modal temporal logic. 
This becomes clear if we compare the predicate HOLDS( P, t) (and Allen’s 
axioms of the next section) with the above definition of the semantic function 
hk PI. 

The reified view seems to be the most flexible and the most powerful one. Its 
semantics has been studied, e.g., by Reichgelt 1411 and Haugh [19]. 

The most important AI-oriented examples of this paradigm are the theoretical 
models of Allen [3,4], and McDermott [371. Since some parts of Allen’s model have 
been adopted by Temporal Prolog, it is described in more detail in Section 3.2. The 
differences between both are listed in Section 3.3. The way Allen’s temporal 
constraint propagation algorithm has been extended for Temporal Prolog is given 
in Section 6. 

The implementations of models in this group differ in the formalism for 
constraints between the time positions (points or intervals). While Allen’s model 
defines elementary relations directly on intervals, other systems of functionality 
comparable with that of Temporal Prolog (in particular the Temporal Database of 
Dean and McDermott [12] and Temporal Unification of PROMPT of Penberthy 
[40]) use relations between interval endpoints. Interval constraints are superior to 
endpoint constraints in expressiveness. For.example, the disjointness of two inter- 
vals (crucial for the negation definition in Temporal Prolog) cannot be expressed in 
the endpoint formalism. (For other aspects of comparison of Temporal Prolog and 
Temporal Database, see Section 5.3.) 

There have also been several attempts to formalize inferences on nonconvex 
intervals, i.e., intervals with “gaps,” like “every Monday,” etc. (see, Ladkin [32, 331 
or Leban et al. [34]). While such models seem to be useful if used with an extensive 
metric information, like calendar dates, their applicability to qualitative temporal 
relations is probably limited. 

For AI tools like Temporal Prolog, first-order-based models have the following 
advantages if compared with the modal logic models: 

(1) They can use efficient first-order theorem provers (Goal 3 of Section 2). 
(2) They can be implemented on top of PROLOG (Goal 2 of Section 2). 
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(3) For AI applications, knowledge representation is of crucial importance. For 
example, in planning domain, actions are typically represented by precondi- 
tions, which must be satisfied in some interval P, and influences, which are 
effective in one or more intervals Ij. The action itself takes place in an 
interval A. The durations of intervals P, Ij, and A are frequently unknown, 
and there are some constraints on relations between intervals P, Ij, and A, 
like that P must precede (or contain) A, etc. It is not obvious how such 
descriptions of actions can be translated to modal logics like PTL. 

Reichgelt [411 points out that modal logics are more expressive in some cases. In 
particular, they are capable of capturing “changing ontology,” that is, the fact that 
some objects may exist only at certain times. This problem can be solved by making 
explicit statements about the temporal extent of the existence of a particular 
object, like HOLDS(human(john), johwlifetime) saying that john exists during a 
certain interval, his lifetime. This is a certain analogy to DENOTES-clauses of 
Reichgelt’s model TR. The qualitative simulator of Section 7 makes extensive use 
of this representation. 

For these reasons, the first-order, nonmodal approach has been adopted for 
Temporal Prolog. 

3.2. Allen s Temporal Logic 

Allen 141 has formulated several axioms for an interval-based temporal logic 
(notation slightly modified, “IN&T)” meaning “S is a subinterval of T”): 

Axiom H.2: HOLDSCP, T) ++ (VS.IN(S, T) + (3R.IN(R, Sl & 
HOLDS(P, R))). 

Axiom H.3: HOLDS(P& Q, T) * HOLDSCP, T) & HOLDS(Q, T>. 

Axiom H.4: HOLDS( 7 P, T) f, (VS.IN(S, T) + 7 HOLDS(P, 91. 

For disjunction to have the property HOLDS(P V Q, T) c, HOLDS( 7 (1 P& 
7 Q), T), it is defined by 

Axiom H.7: HOLDS(P v Q,T) ++ 
(VS.IN(S, T) + (3R.IN(R, SMHOLDSCP, R) V HOLDS(Q, RI))). 

These axioms correspond to the following informal principles: 

l If A holds in an interval S, it also holds in any subinterval T of S. 

l If both A and B hold in T, their conjunction also holds in T. 

l Negation of A holds in T, if there is no subinterval of T in which A holds. 

l Disjunction is defined as a negation of conjunction of negations. 

Intervals are in temporal relationships with other intervals. These temporal rela- 
tions are formulated in the well-known formalism, which is only briefly summarized 
in this section. For more details on the underlying concepts, see [3]. 

There are 13 distinct elementary relations between two intervals: ((before),) 
(after), m (meets), mi (met by), o (overlaps), oi (overlapped by), d (during), di 
(contains), s (starts), sicstarted by), f (finishes), ji (finished by) and = (equals). 
These elementary relations ar exhaustive and exclusive, i.e., exactly one of them 
describes a fully specified qualitative relation between two intervals. 
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However, the information available about an interval relation may be incom- 
plete. So we may only know that the exact relation is an element of a set of 
elementary relations. For example, we know that the relation between the intervals 
I and J is “during” or “starts” or “finishes” or “equal” (not knowing which of these 
four elementary relations is actually valid), which circumscribes the commonsense 
expression “interval I is contained in interval J.” Such an ambiguous relationship 
can be represented by the set {d,s, f, =}, or generally by a subset of the set of 13 
elementary relations. Special cases are (1) an unrestricted relation, which would be 
represented by the whole set of all 13 elementary relations, and (2) a completely 
specified relation, which is represented by a set containing a single elementary 
relation. The exhaustiveness of the set of 13 elementary relations implies that an 
empty relation is a logical contradiction. 

Allen [3] proposes a constraint propagation algorithm which uses the “transitiv- 
ity table,” a set of 13’ = 169 inference rules of the type “if the relation between I 
and J is R and the relation between J and K is S, then the relation between I and K 
is constrained to T,” I, J and K being intervals, and R, S and T interval relations 
represented in the above formalism. If a relationship between two intervals is 
constrained, all consequences for relations between other intervals (i.e., a transitive 
closure) are calculated. 

The above temporal constraint model can be, after certain modifications (see 
Section 6), adopted by Temporal Prolog. Unfortunately, it is not the case for the 
above temporal axioms. While their underlying principles are intuitively clear, the 
above formalism brings about formidable implementation problems. The axiom for 
negation, and consequently, also the disjunction definition make use of quantifiers 
over intervals. Allen gives no details about implementation and reasoning or proof 
mechanisms in his logics. An implementation seems to make reasoning about 
intervals on an abstract, predicate level necessary, which is probably much more 
difficult to implement efficiently than a simple propositional model working only 
with concrete, instantiated intervals. 

This is the reason why an alternative axiom set will be searched for. 

3.3. The Temporal-Prolog Approach 

The goal of this section is to formulate a set of axioms with intervals as conceptual 
primitives. These axioms in their final form are given in Section 3.3.2. Since it is 
easier to formulate the intuitions behind these axioms in a time-point-oriented 
model, a simple logic based on time points (and intervals as sets of time points) will 
be first presented in Section 3.3.1. The results of the time-point analysis will be 
incorporated into the axioms of Section 3.3.2. Then, in the rest of this paper, time 
intervals will be considered as primitives. 

3.3.1. Time-Point Logic. As mentioned in Section 3.1, there are several alternative 
views of the first-order treatment of temporal informations. The notation of the 
“reified” view is probably the most natural and will be adopted throughout this 
paper. Let us assert holds(A, t) if formula A (or an “object level” predicate A) is 
true in the time point t. Let us first treat the formulas A of holds(A, t) as 
propositional formulas. The extension to predicates will be addressed in Section 
3.3.2. 
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The following axioms for logical connectives are introduced (the signs &, V and 
if appearing in the first argument of holds, are to be interpreted as functional 

s$bols-infix for & and V-rather than connectives): 

Axiom P.l: holds(A, t)& holds(B, t) = holds(A&B, 0. (1) 

Axiom P.2: holds(A, t) v holds(B, t) = holds(A V B, t). (2) 

Axiom P.3: -, holds(A, t) = holds( --J A, t). (3) 

If a formula A is true in each element t of a set of time points T, we can write 

& holds(A, t) (4) 
tcT 

The following relations can be easily inferred for expressions of the type (4). Since 
a&b + a, we can write 

From (1) and (2), a&b -+ a and a + a V b, we get 

(t$Tholds(A,t))&(I$Tholds(B,t)) + (tETholds(A&B,t)) 

(tFTholds(A,t)) v (rt&Tholds(B,t)) + (tfTholds(AV B,t)). 

(r$Rholds(A,r))&(sfsholds(B,s))+ (tEfn,holds(A&B,t)) 

(rfkholds(A,r))&(s$sholds(B,s))+ (tsR&VSholds(AVB,t)). 

From (3) and the relation a & 7 a -P false, we get 

(~$holds(A,r))&(~$~holds(~A,s))+Rn,S={ ]. (10) 

Relations (8) and (9) can be seen as constructive definitions of conjunction and 
disjunction, respectively, on expressions of type (4). Since the members of R n S 
and R u S are, for given sets R and S, the only time-points for which A&B, or 
A v B, respectively, can be inferred, these relations can be seen as complete 
definitions of conjunction and disjunction, respectively. The relation (101 is a 
(nonconstructive) definition of negation. For a complete construction definition of 
negation. It would be necessary to construct a set which is the complement of the 
union R(A) of all sets in which A holds: 

(~E~A,holds(A,r))&S(A) = {tit 4 R(A)} -+ (,,‘,)holds( l&t)). (11) 

To make a definition of intervals as sets of time points possible, the following 
properties of time points are postulated: 

(1) Time points are totally ordered. 
(2) Time points are discrete, with some sufficient density. (This property is 

motivated by some difficulties concerning interval endpoints if time points 
are dense-see Allen 131.1 

(3) The set of all time points is infinite. 

We can now define intervals in terms of time points. For reasons given in Section 
3.1, we consider only convex intervals. 
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Definition 3.1. An interval is a convex set of time points, i.e., if r,s E T, then for all 
t such that 

r <t < s, t ET, too. 
Since time points are totally ordered and only convex intervals are considered, 
we can define the endpoints of an interval T. 

Definition 3.2. The beginning of interval T is the time point b(T) E T such that 
b(T) I T for all t E T. 

Dejinition 3.3. The end of interval T is the time point e(T) E T such that e(T) 2 t 
for all t E T. 

The next step is to formulate relations defining logical connectives for expres- 
sions of the type (4), i.e., for statements holding for a whole interval. 

Since we are only concerned with qualitative temporal relations, i.e., information 
about partial ordering, overlapping or containment of intervals, we will never 
exactly know which time points are elements of which interval. This has an 
important implication: we will not be able to “compute” intersections or unions of 
intervals exactly. The only thing we can do is to impose some appropriate 
constraints on the relations between the intervals and to query these relations. So 
our approach will be that of minimal commitment: we shall try to construct a 
(symbolic) interval and make only as many commitments about its relations to 
other intervals as necessary to guarantee the inference (e.g., inferences like (5) to 
(10)). 

We shall now investigate how the logical connectives conjunction, disjunction 
and negation can be treated in such a minimal commitment manner. 

An important requirement on the axioms is efficient implementation (Goal 3, 
Section 2). It can be formulated more technically in the following way. For a given 
set of intervals and temporal relations, the proofs should be possible without 
additional backtracking, i.e., only one PROLOG clause should match (if only one 
would match for the nontemporal part of the problem). Otherwise, a combinatorial 
explosion caused by temporal axioms would take place even in those cases in which 
the problem itself is of linear complexity (see the discussion of conjunction 
treatment below). 

CONJUNCTION. There are two candidates for the treatment of conjunction: 

(1) the relation (8) and 
(2) the relation 

( & holds(A,r))&( & holds(B,s))&TcR&TcS 
rER SES 

+ (&holds(A&B, t) ) (12) 

which results from (5) and (6). 

The advantage of the first formulation is that it constructively describes the 
complete interval in which the conjunction A&B holds, i.e., the intersection of R 
and S. 

If the ordering of intervals, i.e., the ordering of their endpoints, is fully specified, 
the intersection can be easily computed. Since the endpoints of interval T = R fl S 
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TABLE 1. Alternative orderings for conjunction. 

Relation Relation Relation b(T) 
b(R) : b(S) e(R) : e(S) R:S equal to 

e(T) 
equal to 

Relation 
T:R 

Relation 
T:S 

I 2 (di, si, fi, =} b(S) e(S) @,s,f, =I I=) 
5 < Io,d b(S) e(R) Is, =I IO 
> t hi, fl b(R) e(S) K =) 
> < (d) b(R) e(R) (=I 

result from the endpoints of R and S by the relations 

b(T) = m=(b(R),b(S)) e(T) = min(e(R),e(S)), 

the intersection is defined by the relations T: R and T: S of Table 1. 

(13) 

Unfortunately, if the ordering of R and S is not fully specified, backtracking over 
some or all of the four alternatives of Table 1 would be necessary. For example, if 
the relation between R and S were R-{o, oi) + S (R overlaps S or is overlapped by 
S), we would have to split the case into two subcases: (1) R-_(o) + S with 
constraints T-{f} + R and T--_(s) + S; and (2) R-{oi} + S with constraints 
T-_(f) -+ S and T-M + R. 

The definition by (12) does not suffer from this problem. For any relation 
between R and S that does not exclude any kind of overlapping, an interval T such 
that it is subinterval of both R and S can be defined in a single clause by 
constraining both relations to (d, s, f, = 1. Keeping in mind that (12) can be inferred 
from (6) and (51, it is (6) which has been adopted as a conjunction axiom. 

DISJUNCHON. Like for conjunction, there are two candidates for the treatment 
of disjunction: 

(1) the relation (9) and 
(2) the relation (7). 

A more constructive circumscription of (7) is 

+ (&holds(A v B, t)). (14) 

So the second formulation would obviously make backtracking over T = R V T = S 
necessary. However, even a nontemporal disjunction A V B causes backtracking in 
PROLOG. 

Paradoxically, the first formulation is, at first glance, a nonbacktracking one 
(although there is always backtracking for a nontemporal disjunction). However, 
backtracking may arise within the interval union definition for ambiguous interval 
relations (like R-_(o,oi} + S above). 

Like for conjunction, the endpoints of interval T = R U S result from the 
endpoints of R and S by the relations 

b(T) = min(b(R),b(S)) e(T) = max(e(R),e(S)). (15) 

The cases corresponding to different orderings of endpoints of R and S are listed 
in Table 2. 
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TABLE 2. Alternative orderings for disjunction. 

Relation Relation Relation b(T) 
b(R) : b(S) e(R) : e(S) R:S equal to 

e(T) Relation 
equal to T:R 

Relation 
T:S 

2 (di, si, fi, =) b(S) e(S) {=I {di, si, fi, = } 
< lo, s) b(S) e(R) W Ifi, =I 
2 (oi, 0 b(R) e(S) 03 {si, =) 
< (d) b(R) e(R) Id0 I=) 

So backtracking over one to four alternatives may occur (while the disjunction 
definition according to (14) would always backtrack over exactly two alternatives). 

The superiority of the first formulation is obvious from Figure 1. Suppose A 
holds in AT, B holds in BT and C holds in CT with AT overlapping BT, AT 
overlapping CT and CT overlapping BT. The expression (A V B)&C should intu- 
itively hold in CT. This cannot be inferred using the second formulation. 

So the first formulation will be used as disjunction axiom. On the other side, 
there are some problems concerning variable instantiation (see Section 5.2). This is 
why the first formulation may still be useful in some cases. 

NEGATION. The relation (10) is sufficient for the treatment of negation in the 
following sense. If an interval S is constructed and it is asserted to be disjoint (i.e., 
to have an empty intersection) with all intervals in which A holds, then it is 
guaranteed that the negation of A holds in S. 

There is a serious problem concerning completeness. The set of points in which 
a negation holds is generally nonconvex. Even if A holds in a single convex interval 
R, the negation of A holds (1) in the convex set of points before R and (2) the 
convex set of points after R. If A holds in multiple convex intervals Ri, there are 
correspondingly more convex intervals for the negation. Their number depends not 
only on the number of intervals Ri but also on their relations, i.e., on their 
overlapping. The nonconvex set S(A) of (11) can be written as a union 

S(A) = U Si (16) 

with Sj convex intervals such that there is no convex interval U in which 7A holds 
such that Sj is a proper subset of U. 

This situation is illustrated on Figure 2. If A holds in convex intervals R,, R, 
and R,, 7A holds in convex intervals S,, S, and S,. 

The best solution seems to be to define a symbolic interval S which is not 
committed to any of the convex intervals Sj, but can be further constrained to be 
equal to one of them. 

I I AT 

I I BT FIGURE 1. Overlapping intervals 
for the expression (A v B)&C. 

I I CT 
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FIGURE 2. Intervals in 
i which A or not A holds. 

S, 

not A A 

The assertion for intervals R and S to be disjoint can be decomposed into two 
cases: 

b(R) 2 e(S), i.e., R-{ > ,mi} --) S 

and 

b(S) 2 e(R), i.e., R-{ < ,m} + S. (I’) 

Equalities are covering the case in which S fills a gap one of whose boundaries is 
defined by an endpoint of R, like S, of Figure 2 filling a gap, whose left boundary is 
defined by R,. 

Since the ordering may be incompletely specified, the disjointness is expressed 
by constraining the relation between R and S to { < , > , m,mi). This solution is 
unproblematic from the backtracking viewpoint. 

NOTE. Because of discreteness of time points, the relation “R meets S”, i.e., 
R-{m) + S, means that the latest point of R is the immediate neighbor of the 
earliest point of S. 

3.3.2. Interval-Based Axioms of Temporal Prolog. Let us now formulate the axioms 
for time intervals. The predicate HOLDS(P,T) (written in capitals to distinguish it 
from its time-point counterpart) means “the statement (e.g., a Prolog clause) P 
holds (i.e., is true) in interval T.” Since temporally unlimited statements coexist 
with those with temporal scope in Temporal Prolog, they are denoted by HOLDS(P), 
meaning P holds “universally,” without limitation to a temporal interval. 

Axiom I. 1: HOLDS(A, S)& subinter-val(T, S) -+ HOLDS(A, TI. If A holds in an 
interval S, it also holds in any subinterval T of S. 

Axiom 1.2: HOLDS(A) + (VT) HOLDS(A,T). If A holds without temporal 
limitation, it also holds in any time interval. 

Axiom 1.3: HOLDS(A,T)&HOLDS(B,T) + HOLDS(A&B,T). If both A and B 
hold in T, their conjunction also holds in T. 

Axiom 1.4: HOLDS(A, U) & HOLDSCB, V) & union(U, V, T) + HOLDSCA V 

B,T). A weaker alternative to Axiom I.4 (see Section 3.3.1) is the following 
Axiom 1.4a. 

Axiom 1.4a: HOLDS(A, T) V HOLDS(B, T) + HOLDSCA V B, T). If at least one 
of A and B holds in T, their disjunction also holds in T. 

Axiom 1.5: HOLDS(A, S)& HOLDS( -, A, T) -+ disjoint@, T). If A holds in S and 
(not A) holds in T, then S and T are disjoint intervals. 
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In the interval algebra, the relation subinterval(R,S) is expressed by R-(d,s,f, =) 
+ S and the disjointness of R and S by R-_( < , > , m, mi} + S. Interval union is 
constructed as a disjunction of the four alternatives of Table 2. 

Axiom I.5 is related to Dean and McDermott’s contradiction handling (Section 
4.2 of 1121). The advantage of the present, interval-oriented approach is that 
disjointness of two intervals can be simply asserted (by { < , > , m, mi} 
relation)-even in case there is no ordering between the intervals or their 
endpoints-while the point-oriented approach of [12] requires a commitment to a 
certain ordering. Comparing the above axioms with those of Allen (Section 3.2), we 
can observe that Axioms I.1 and I.3 have direct counterparts in Allen’s system. On 
the other side, there are the following differences: 

(1) Negation is defined in terms of disjoint intervals, i.e., intervals in which A 
and negation of A hold are disjoint. 

(2) Disjunction is defined “symmetrically” to conjunction. 
(3) All axioms have the form of implications rather than equivalences, so that 

their transformation into the Horn-clause form is more straightforward. For 
example, the validity of a conjunction can be inferred from the validity of its 
arguments, but not inversely. The latter inference is never needed since the 
Horn-clause form does not permit assertions of the form A&B-they would 
be partitioned into two clauses A and B, but then the proof of the latter 
inference would be trivial. 

With the present axiom set, the objective formulated in Section 3.2-avoiding 
quantifiers over intervals-has been achieved. 

COMPLETENESS. In a first-order formulation of temporal logic, completeness is 
given by the completeness of the resolution algorithm (or its PROLOG implemen- 
tation). 

However, we have to keep in mind that this completeness concept is relative to 
the first-order formulations of (1) temporal logic axioms and (2) temporal con- 
straint propagation. For example, if the axioms fail to define the interval for a 
conjunction of two formulas soundly and completely (e.g., with regard to the above 
time-point model), a correct resolution will certainly not be able to make up for 
this. So, some concept of completeness with regard to temporal logic axioms and 
temporal constraints must be defined. 

The most straightforward completeness definition would be by relations (81, (9) 
and (11). This criterion would guarantee constructing maximal intervals for all 
logical connectives. Unfortunately, our committment to convex intervals and to an 
efficient implementation has led to axioms which do not satisfy this strong defini- 
tion. However, a slightly weaker completeness criterion is satisfied. This criterion is 
given by the following definition. 

Definition 3.4. An axiom set is a complete least-commitment definition of logical 
connectives, if for each set CL of clauses HOLDS(A,S) and HOLDS(A) and a 
query HOLDS(B,TV) with B-a formula consisting of propositional symbols 
and connectives &, V and -J, and TV-an interval variable TV can be 
consistently instantiated to a (constructed) convex interval T with the following 
properties: 

(1) HOLDS(B,T) is sound in the sense of time-point axioms (1) through (3) and 
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(2) relations of T to other intervals are, for each complete interval endpoint 
ordering, supersets of the relations given by complete definitions, i.e., by 
intersection for conjunction (8), union for disjuntion (9) and complement 
(11) decomposed into maximal convex intervals by (16) for negation. 

This definition substitutes the formualtion of maximal intervals (given, e.g., by the 
intersection of R and S in (8)) by the requirements of soundness and “potential 
maximality,” i.e., interval relations which can be, for each total ordering of interval 
endpoints, further constrained so that the interval is maximal. For example, for the 
first case of Table 3.1, the relation of T to both R and S are (d,s,f, =} (by Axioms 
I.1 and 1.3) while the maximal interval T would have the relation (d,s, f, = 1 to R 
and { =} to S. The relation potentially allows T to be smaller than maximal, but the 
maximal case, 1 = 1, is contained in Id, s, f, = 1. 

We can make the following, more formal statement about the above set of 
Axioms I.1 to 1.5. 

Proposition 3.1. Axioms 1.1 to 1.5 are a complete least-commitment dejinition of 
logical connectives. 

PROOF. Axiom I.2 can be viewed as a transformation of predicate HOLDS(A) into 
predicate HOLDS(A,Inf), Znf being an “infinite” interval such that each other 
interval is a subinterval of Znf. So we will consider only predicate HOLDS(A,T). 
0 

For each formula B such that HOLDS(B,T) (or HOLDS(B)) is directly con- 
tained in the set CL of Definition 3.4, the completeness is immediately proved. 

CONJUNCTION. For each formula B = C&D, we get, by Axioms I.1 and I.3 

HOLDS( C, R) & HOLDS( D, S) & 

&subinterval(T, R) &subinterval(T, S) -+ HOLDS(C&D, T). (18) 

Since the newly constructed interval T is a subinterval of both R and S, both C and 
D hold in T. HOLDS(C&D,T), and thus also the soundness for conjunction, can 
then be proved by (6). 

As can be seen from Table 1, for all total orderings of endpoints of R and S and 
corresponding relatons of T with R and S, the relation {d, s, f, = } is a superset of all 
these relatons. So the axioms are a complete least-commitment definition of 
conjunction. 

DISJUNCTION. The proof is trivial since the interval union of Axiom I.4 is a 
direct reformulation of the complete disjunction definition (9). 

NEGATION. The soundness follows immediately from (10). 
For each formula B = 7 C, the interval T is such that it is disjoint with any 

interval Ri in which C holds. “Set complement” of all intervals in which C holds 
can be, according to (16), expressed as a union of convex intervals Tj. For a given 
endpoint ordering, each such interval Tj is related to each interval Si by exactly one 
of the relations < , > ,m,mi. T of Axiom I.5 stands for any of the intervals Tj. 
Axiom I.5 guarantees the disjointness of T with any of the intervals Si, by 
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constraining this relation to { < , > , m, mi}, which is a superset of each of the above 
relations. So Axiom I.5 is a complete least-commitment definition of negation. 
0 

If Axiom 1.4a were substituted for Axiom 1.4, the axiom set would not be a 
complete least-commitment definition. However, the “potentially maximal” inter- 
val T would be decomposed into multiple subintervals, generated by backtracking. 
The union of these parts would be the interval T itself. 

The second aspect of temporal completeness, the completeness of temporal-con- 
straint propagation, is addressed in Section 6.1. 

TREATMENT OF PREDICATES. So far, we have investigated how logical connec- 
tives &, v and 7 can be correctly treated. The extension to predicates is 
straightforward. Formulas A of HOLDS(A,T) are allowed to contain uninstanti- 
ated variables and Skolem functions, and the correct resolution is performed by the 
unification procedure of PROLOG in exactly the same way as for “timeless” 
predicates. This will be clear from the implementation of Axioms I.1 to 1.5, given in 
Section 5.2. Some nontrivial questions concerning variable unification are also 
discussed in Section 5.2. 

On the other side, the first argument of HOLDS must be instantiated. In other 
words, no quantification over predicate formulas A is allowed. The case of 
universal quantification over T, i.e., HOLDS(A,T) with T uninstantiated, corre- 
sponds to HOLDS(A). 

4. LANGUAGE EXTENSION 

There are two types of language elements in addition to those of standard 
PROLOG: (1) temporal references and (2) temporal constraints. 

TEMPORAL REFERENCES. If a statement S (a fact or a rule) holds exactly during 
the time interval T, S in T (T being instantiated to a symbolic interval identifier) is 
asserted. 

For queries, predicates P dur T and P mkdur T are used. (For exact definitions, 
see Section 5.) Their semantics is “can it be inferred that predicate P holds in 
interval T?” In contrast to the predicate P in T, these queries encompass also the 
cases in which P holds in a superinterval of T or even without temporal limitation. 

All three predicates correspond to the predicate HOLDS of previous sections: P 
in T for assertions, P dur T and P mkdur T for queries. 

TEMPORAL CONSTRAINTS Temporal constraints are formulated directly in Allen’s 
interval formalism (see Section 3.2). 

A temporal constraint is asserted by the backtrackable built-in predicate COIZ- 
struin_rel(T, S, R). (The details of the backtrackable algorithm are given in Section 
6.) By this predicate, the relation between intervals T and S is constrained to R 
(the set R is expressed in the PROLOG list notation, all three parameters must be 
fully instantiated). On backtracking, this constraint, including all its consequences, 
is retracted. The predicate fails if contradiction (an empty relation between some 
two intervals) results. 



A TEMPORAL EXTENSION OF PROLOG 127 

Actual interval relations can be queried by the predicate get_ref(T, S, R). It 
instantiates the variable R to the relation between (instantiated) intervals T and S. 

NOTE. If necessary, qualitative relations could be extended by additional quantita- 
tive relations without modification of the logic rules given below. Such an extension 
is, e.g., the Extended Temporal Prolog of Hrycej [271. 

5. IMPLEMENTATION OF AXIOMS 

This section presents the implementation of the axioms of Section 3.3.2 in PRO- 
LOG. Before this, it is useful to explain the concept of constraining and noncon- 
straining rules. 

5.1. Constraining Rules 

As stated in the previous section, there are two query predicates: P dur T and P 
mkdur T. They represent two different query “philosophies:” nonconstraining and 
constraining queries. The exact semantics of P dur T is “Can it be inferred, given the 
existing temporal relations, that P holds during T?” while that of P mkdur T is “Can 
the existing temporal relations be consistently constrained so that P holds during T?” 

Although the first definition seems to better match the theorem-proving charac- 
ter of 

(1) 

(2) 

(3) 

(4) 

PROLOG, it suffers from some deficiencies: 

It makes frequently too strong requirements on the existing relations if some 
statement is to be proved. In particular, a negation of a statement holds only 
in an interval which happens to have been explicitly asserted to be disjoint 
with the interval in which the statement holds-a rather uncommon case in 
practice. 
Answering a query, it is often necessary to construct a new interval and 
assert some constraints on its relations to other intervals. For example, if a 
conjunction (A,B) mkdur T is to be proved, an internal T is constructed 
which is set to appropriate relations to intervals R and S in which A and B 
hold, respectively. It is difficult to define the relations between R and T on 
the one side and S and T on the other side such that the relation between R 
and S remains untouched after constraint propagation. 
With the nonconstraining approach, what is not provable is not proved to be 
false (even under closed-world assumption) because a relation between two 
symbolic intervals is allowed to be a set (not a single element) of several of 
13 elementary relations. The consequence of this is that, e.g., if A holds in T 
and the relation between S and T is unspecified (i.e., any elementary relation 
is possible). A cannot be proven either to hold in S or not to hold in S. 
Since ambiguities in temporal relations (i.e., relations consisting of a set of 
multiple elementary relations) often represent underconstrained situations 
rather than real ambiguities, we are frequently interested in possible rela- 
tions, rather than provable ones. For example, we may be in search for 
additional time constraints to reach some goal. This is obviously the case in 
planning. Constructing a plan, it is important to know whether an action is 
consistent with other actions. In other cases, we may wish to generate 
potentially possible situations, e.g., for qualitative simulation. We get such 
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possible situations by constraining off some of elementary time relations. 
The constraining query formulation may then better match our intentions. 

We can argue in the following way that even the constraining approach is conform 
with the theorem-proving character of PROLOG. We can consider a statement as 
provable if existing time relations can be constrained to their own subsets so that 
the statement can be proved. These subsets are, in fact, instantiations of a more 
general (or less determined) time relation. For example, relation {d, s, f} could be 
instantiated to {d, s], Id, f], {s, f], (d], Is}, {f]. Such a procedure would correspond to 
the way solutions are generated when interpreting a logic program: querying 
human(X), we may get the answer “yes” with instantiation X = john (while the 
answer may be “no” if X had to remain uninstantiated). 

Since a relation can contain up to 13 elementary relations, it is obviously 
computationally nonsensical to generate blindly all such subsets. A good alterna- 
tive is to generate only some of them in a goal-driven manner. For example, if we 
wish to prove a conjunction of A and B (A in S, B in T), we can try to constrain the 
relation between S and T to make the construction of a common subinterval i&T) 
of both intervals possible. If this additional constraint does not lead to a contradic- 
tion, “A&B in the interval i(S,TY’ is proved. 

Although both the nonconstraining and the constraining approaches have been 
implemented in Temporal Prolog (by predicates dur and mkdur, respectively), only 
the latter is described in this paper. For implementation details of nonconstraining 
rules, see Hrycej [25]. 

5.2. Implementation 

Because of the implementary character of this paper, logical rules will be stated 
directly in PROLOG notation. Variables are denoted by uppercase, constants and 
functors by lowercase. Temporal predicates in, dur and mkdur are defined as infix 
operators. 

CONJUN~XON. A conjunction of A and B holds in interval W (with identifier 
instantiated to i(U,V)) if W is a subinterval of both intervals U and V in which A 
and B, respectively, hold (Axiom 1.3). This is ensured by the predicate 
constrain-to-intersect below, or more precisely, by its last clause. The first three 
clauses are treating trivial subcases of this. The first clauses refers to the case of 
equality between U and V, while the second and the third clauses apply to the case 
of U being a subinterval of V, or vice versa. The predicate subset(R, S) is true if 
the list R represents a subset of the list S. 

(A, B) mkdur W:-A mkdur U, B mkdur V, constrain_to_intersect(U,V, W>. 

constrain_to_intersect(U, U, U). 
constrain-to-intersect@, V, U>:-U\ = V, get_rel(U, V, R), 

subset(R, [d, s, f, =I). 
constrain-to-intersect&I, V, V>:-U\ = V, get_rel(U, V, R), R\ = [ = I, 

subset(R, [di, si, fi, = I). 
constrain_to_intersect(U, V, W):- 

u\=v, 
get_reNU, V, R), 
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not subset(R, [d, s, f, = 11, 
not subset(R, [di, si, Ii, = I), 
W = i(U, V), 
constrain_rel(W, U, [d, s, f, = I), 
constrain_rel(W, V, [d, s, f, = I). 

Example 5.1. Suppose the following clauses are given: 

a in r. 
bins. 

Then, the query (a, b) mkdur T makes T instantiate to i(r, s) with relations 
i(r, s)-{d, s, f, =) -+ r and i(r, s)-{d, s, f, =) -+ s. By constraint propagation, the 
relation between r and s is constrained to r---IO, oi, d, di, s, si, f, fi, = ] -+ s, which is 
the most general formulation of overlapping in the Allen’s interval formalism. 

If the relation between s and t were a priori constrained to disjointness, i.e., to r 
-_( < , > , m, mi} + s, (a, b) mkdur T would fail. 

If the above clauses were modified to 

a in r. 
b. 

i.e., if b were “timeless,” T would be instantiated simply to r. 

DISJUNCHON. To implement Axiom 1.4, a union interval of U and V denoted by 
u(U,V) has to be constructed. The clauses of constrain-to-overlap correspond to 
the different cases of overlapping (see Section 3.3.1 and Table 2). 

(A, B) mkdur W:-A mkdur U, B mkdur V, constrain_to_overlap(U, V, W). 

constrain_to_overlap(U, U, U). 
constrain_to_overlap(U, V, II):-U \ = V, constrain_rel(U, V, [di, si, fi, = 1). 
constrain_to_overlapKJ, V, V):-U \ = V, constrain_rel(U, V, [d]). 
constrain_to_overlapOJ, V, W>:- 

u\=v, 
w = u(U, V), 
constrain_rel(U, V, [o, s]), 
constrain_rel(W, U, [si]), 
constrain_rel(W, V, [fi, =I). 

constrain_to_overlapO_J, V, W):- 
u\=v, 
w = u(U, V), 
constrain_rel(U, V, [oi, fl), 
constrain_rel(W, U, [fi]), 
constrain_rel(W, V, [si, =]>. 

Example 5.2. Suppose the following clauses are given: 

a(x) in r. 

b(x) in s. 

b(y) in t. 
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Suppose further the relation between r and s is a priori constrained to, say, 
overlapping (r-_(o) + s). Then, in the query (a(X); b(X)) mkdur T, the third 
clause of constrain-to-overlap will match and variable T will be instantiated to the 
constructed interval u(r, s). 

If the relation between r and s were not constrained at all before the query, the 
four last clauses of constrain-to-overlap would match, and four corresponding 
solutions would be generated. 

Example 5.2 illustrates an important point concerning variable instantiation. For 
Axiom I.4 to be applicable, a common instantiation for both disjunction arguments 
must be found. This would not be satisfied, e.g., by a(x) and b(y). However, the 
disjunction may also refer to different instantiations. The above query (a(X); b(X)) 
mkdur T would then have to be encoded in the “pure” clausal form, i.e., by an 
additional predicate 

c(X):-a(X). 

c(X):-b(X). 

The query c(X) mkdur T would then result in two different instantiations: X = x 
and X=y. 

So the disjunction by a set of clauses on the one side and by the operator “;” in 
the clause body on the other side, have different semantics if uninstantiated 
variables are present. 

A less complete (in the sense of Section 3.3.2) but substantially simpler solution 
is to implement Axiom 1.4a by the following two clauses. 

(A; B) mkdur T:-A mkdur T. 

(A; B) mkdur T:-B mkdur T. 

NEGATION. To ensure that the nonconstructive statement formulated by Axiom 
I.5 is always satisfied, the constructed interval T in which (not A) holds is asserted 
to be disjoint with all intervals S in which A holds. 

This is trivial as long as all variables of A are instantiated. The case of one or 
more uninstantiated variables in A is more difficult. Since 

(Vx) 1 a(x) = l(( gx)a(x)) , (19) 

the interval T must be disjoint with all intervals in which any instantiation of A 
holds. However, the variables of A must remain uninstantiated after the negation 
call, as can be seen from 

(Vx)( la(x)&b(x)) = 1((3x)a(x))&(Vx)b(x), 

quantifier inversion takes place only for negative conjuncts. 

(20) 

The easiest way to implement this is by widespread built-in predicate 
JinduNX, Y, Z) which finds all instantiations of variable X (here the interval S) in 
predicate call Y (here A mkdur S) and instantiates Z with the list of .a11 such 
instantiations, X remains uninstantiated after the call of findull, which is consistent 
with our requirements. Unfortunately, findull is not backtrackable. So, the con- 
straints caused by the constraining query A mkdur S would not be retracted if 
backtracking occurred. This makes the use of the predicate bucktruck_point neces- 
sary, which retracts all constraints asserted after it if backtracking takes place. 
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(not A) mkdur T:- 
T = n(NL), 
backtrack-point, 
findall(S, A mkdur S, NL), 
make_disjoint(NL, T>. 

make_disjoint([SILl, T):- constrain_rel(S, T, [ < , > , m, mill, make_disjoint(L, T). 
make_disjoint([ 1, J. 

Exumple 5.3. Suppose the following clauses are given: 

a(x) in r. 

a(y) in s. 

Then, the query (not a(X)> mkdur T makes T instantiate to n(]r, sl>, with relations 
n([r, s])-_( < , > , m, mi} + r and n([r, sl>-_( < , > , m, mi) + s. 

The sequential unification algorithm of PROLOG imposes a constraint on the 
formulation of clauses. Suppose the query (not a(X), b(X)) mkdur T is to be 
evaluated. If b(X) with uninstantiated X holds in some interval, this can be written 
as (52.2). If b(X) holds only with X instantiated to say k, the query corresponds 
directly to 

(21) 
and not to 

+)+))&b(k), (22) 

which would be the case when evaluating the query (not u(X), b(X)) mkdur T by 
the above implementation of Axiom 1.5. 

This makes clear that the (not A) has to be evaluated with variable instantia- 
tions consistent with those of other conjuncts. Since PROLOG interpreters instan- 
tiate sequentially, in the left-to-right order, a (not fully instantiated) expression of 
the type (not A) must be placed after (i.e., to the right of) all conjuncts which may 
bind some of its variables. So the above query has to be reformulated as (b(X), not 
u(X)> mkdur T. 

NOTE. Like PROLOG, Temporal Prolog admits only positive predicates, i.e., (nor 
A) cannot be explicitly asserted. Instead of being directly asserted, the validity of a 
negative statement is inferred. The negation of Temporal Prolog is a logical 
extrapolation of PROLOG negation. While the latter is defined (in most commer- 
cial PROLOG systems) as (not A) is true if A cannot be proved (“negation by 
failure,” which is a form of closed-world assumption-see Hogger [21]), (not A) in 
Temporal Prolog is true when A cannot be proved (i.e., at the time in which A 
cannot be proved). 

RESOLUTION. In addition to the treatment of logical connectives, we have to 
define how resolution is to be performed for temporal statements. Substituting a 
Horn clause H + B for C and its body B for D in (181, we get 

HOLDS(H+B,R)&HOLDS(B,S)& 

&subinterval(T, R) &subinterval(T, S) + HOLDS(H,T). (23) 
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This relation can also be viewed as a “temporal modus ponens.” 
So the resolution of a predicate call is reduced to the resolution of the body of a 

clause matching the call. 
The predicate clause-mkdur retrieves clauses in the above form H + B. Its four 

clauses perform this, respectively, for (1) built-in predicates (which must be 
declared by the predicate built_in); (2) “timeless” predicates of the type HOLDS(A), 
using the widespread built-in predicate clause which instantiates H to the head and 
B to the body of a clause; (3) temporal facts (i.e., bodyless clauses); and (4) general 
temporal clauses. 

true mkdur T. 
X mkdur W:-clause_mkdur(X, Body, U), Body mkdur V, 
constrain_to_intersect(U, V, W). 

clause_mkduriH, true, T):-built-in(H), call(H). 
clause_mkdur(H, B, Tl:-clause(H, B). 
clause_mkdur(H, true, T):-H in T. 
clause_mkdur(H, B, T):-(H:-B) in T. 

Example 5.4. Suppose the following clauses are given: 

(h(X):-b(X)) in r. 

b(x) in s. 

Then, the query h(X) mkdur T would result in the following instantiations: X = x 
and T = i(r, s). 

5.3. Comparison with the Temporal Database of Dean and McDermott 

The temporal database system TMM of Dean and McDermott [12] uses an 
ingenious system of protections and reason maintenance for modeling persistence. 
A statement valid in interval [B,E] is considered as “true throughout an interval 
[BEG, END]” if (1) the upper bound of B is before BEG and (2) the upper bound 
of E is after END (while the lower bound of E may be before END). In other 
words, the beginning point of the interval has to be guaranteed while its end point 
has merely to be admissible (i.e., not inconsistent). The reason for this asymmetry 
seems to be in the planning domain for which the tool is intended. Typically, 
actions planned have effects whose beginning is known to be immediately after the 
action or simultaneous with the actions’ beginning, while their termination (i.e., 
persistence) cannot be assessed. So the effects persist “until something changes.” 
The constraining rules of this section make such an asymmetry obsolete: interval 
relations are constrained to meet query conditions and are immediately tested for 
contradiction. This is true for both beginnings and ends of intervals (a differenti- 
ated treatment of beginnings and ends would be difficult since intervals are 
conceptual primitives). So, for example, an action may be implicitly “shifted” (by 
constraining its relation to other time tokens) if it is necessary to resolve a 
contradiction or to satisfy a further constraint. 

Additionally, imposing constraints simultaneously with the proofs of queries 
makes reason maintenance of persistances also obsolete. If a query can be 
answered positively by introducing the constraint-terminating persistence of a 
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statement (i.e., constraining the endpoint of the corresponding interval), this 
constraint is definitely asserted. Should this persistence constraint later cause a 
contradiction, the whole problem-solving branch is retracted, including the con- 
straints caused by the query. So the overall consistence is simply ensured by the 
backtracking mechanism of PROLOG. 

The same effect is obtained in TMM by asserting a protection (instead of a 
constraint) for assumed persistence and management of protections by a reason- 
maintenance system. This complicated system seems to be useful for planning 
applications-it makes “patching” the plan possible if contradictions appear after 
an action has already been accepted. In planning, there are two levels of con- 
straints: (1) those resulting from some planning decisions and (2) those resulting 
from the physical situation of the world. It is clear that the first group of 
constraints has, in a sense, a “lower priority” than the second-it can be manipu- 
lated by revising the decision, while the second cannot. However, outside the 
planning domain, there is no apparent reason to maintain such a two-level 
treatment. For example, in qualitative simulations (see Section 7), all constraints 
are one-level-a contradiction corresponds to a nonphysical solution, and it is 
backtracking (and not patching) which is the appropriate reaction to it. One more 
reason for adopting the simpler (and more robust) constraining approach in 
Temporal Prolog is that the programmer would have to be made responsible for 
distinction and appropriate treatment of both levels. 

6. TEMPORALXONSTRAINT PROPAGATION 

The interval algebra of J. Allen [3] can be formulated in logic (see 1481) by 
predicates of the type 

Meets( il , i2) & During( i2, i3) --+ (Overlaps( il, i3) 

V During( il, i3) V Meets( il, i3)). 

There are two reasons why such a formulation is difficult to implement directly. 

(1) The rules of the above type are not Horn clauses. 
(2) The backward-chaining character of PROLOG would make the computation 

of transitive closure (a forward-chaining procedure) very inefficient. 

Since the most natural formulation of the interval algebra is by constraints, a 
promising possibility is an implementation in the paradigm Constraint Logic 
Programming (CLP-see Jaffar, Lassez and Maher [28]). 

Constraint Logic Programming is a natural extrapolation of the fact that 
PROLOG unification can be seen as a constraint expressing equality between two 
predicate variables. This principles can be extended in a straightforward way to 
equality theories between numeric variables (see Goguen and Meseguer 1171, 
Jaffar, Lassez and Maher [28], or van Emden and Yukawa [501). Several systems 
have been developed for handling certain classes of constraints, like real-value 
linear constraints, in the CLP(R) system of Jaffar and Michaylov [29] or PROLOG 
III of Colmerauer [9], integer constraints, e.g., in the forward-checking procedure 
of van Hentenryck and Dincbas [51] or in the quantifier elimination of the 
TRILOGY language of Voda [55]. 
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Temporal constraints of Temporal Prolog represent another such constraint 
class. The temporal constraint propagation algorithm is conceptually embedded 
into PROLOG in a similar way as how linear algebraic constraints are embedded 
in CLP language (see, Jaffar and Michaylov [29]) but, in contrast to CLP, it 
requires no modification of the PROLOG inference machine- it is implemented 
on top of PROLOG (Goal 4, Section 2) and communications via predicate 
consfruin_rel (see Section 4) with a constraint module implementing the procedural 
formulation of Allen’s algorithm [3]. For more about this interface, see Section 6.3. 

The implementation of an efficient and backtrackable temporal-constraint prop- 
agation algorithm is the topic of this section. 

6.1. Basic Algorithm 

The basic algorithm for a complete constraint network is due to Allen [3]. In a 
slightly modified notation, it consists of the following procedures: 

Algorithm 6.1. 

constrain_rel( i, j, NewRel) 

update_rel( i, j, NewRel) ; 

process_queue( constraint, constraint-propagation) ; 

with 

update_rel( rl, r2, NewRel) 

H + NewRel; 

if not H = R( rl, r2) then add_to_queue( constraintyl, r2); 

R( rl, ‘2) + H; 

constraint_propagation( i , j ) 

For each k such that triungle( i, j, k) do 

begin 

update_rel(k,j,trunsitions(R(k,i),R(i,j))); 

update_rel(i,k,trunsitions(R(i,j),R(j,k))); 

end 

Auxiliary functions are defined as follows: 

l The function trunsitions(R1, R2) corresponds to Allen’s constraints(R1, R2) 
-it is an implementation of the transitivity table. 

- The function process_queue(queue_id, queue-proc) calls for each item (i, j) 
in the queue queue-id the procedure queue-pro&, j). 

l The functionality of add-to-queue is obvious. 

NOTE. For extensive applications, space and computing time requirements growing 
with the square of the number of intervals may be unacceptable (quadratic growth 
for storage, cubic for computing time). Fortunately, the relation network contains 
redundant relations which can be easily reconstructed using transitivity of certain 
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elementary relations, for example precedence ( < , m-relations) or containment 
(d-, s-, f-relations). For extensive discussion of transitivity in temporal relation, see 
Hrycej [22, 23, 241. 

COMPLETENESS OF CONSTRAINT PROPAGATION. As stated by Vilain and Kautz 
[54], Allen’s polynomial time-constraint propagation algorithm is incomplete while 
the complete algorithm is NP-hard. The most dangerous possible consequence is 
that some contradiction will not be discovered, i.e., that there is no solution 
satisfying all temporal constraints. So, for example, an inconsistent plan can be 
generated. 

Valdes-Perez [49] has proposed a complete algorithm based on intelligent 
backtracking. Its worst-case complexity is exponential, but, according to Valdes- 
Perez, substantial efficiency gain can be expected in typical cases. 

However, even this algorithm is too slow for tools like Temporal Prolog which 
are intended to process up to hundreds of intervals and constraints. Even worse, 
the algorithm for Temporal Prolog must be made backtrackable (see the next 
section), which is an additional computational burden. Under such conditions, 
Allen’s polynomial time algorithm is “slow enough.” 

If completeness is an important requirement for a given application (although 
dropping this requirement is one of the pragmatic proposals made by both Vilain 
and Kautz and Valdes-Perez and has been accepted in probably the most current 
applications of interval algebra), a possible solution is to constrain the relation 
language to some subset such that the polynomial-time algorithm is complete. 

The broadest of such subsets described until now is the one corresponding to a 
time-point algebra, whose completeness has been shown by Vilain and Kautz [54]. 
The time-point algebra is an analogy of the interval algebra except for its primitive 
being a time point and the 13 elementary interval relations being substituted by 
three point relations: ( < , > , =). Like in the interval algebra, the relation between 
two points is a nonempty subset of this set. There are eight such subsets: 1 < ), 1 > ], 
1 = ], 1 < , = 1, ( > , =), { < , > 1, ( < , > , =). (A class of relations closely related to 
this are the “generalized windows” of Rit [43].) The interval algebra constrained to 
interval relations that can be circumscribed by a conjunction of such point relations 
between interval endpoints is complete since its transitivity operations correspond 
exactly to the point-based transitivity operations of Vilain and Kautz. 

An example of such a relation is the relation A-(d, s, f, = ) + B which can be 
expressed as 

begin(A)-{ > , =} + begin(B) &end(A)-{ < , =} + end(B). 

On the other side, the relation A-_(m,s) + B does not belong to this class-its 
endpoint circumscription is disjunctive: 

end(A)-{ =} -+ begin(B) 

V(begin(A)--( =} +begirz(B)&end(A)--( <} -end(B)). 

Let us denote the class of interval relations that can be circumscribed by a 
conjunction of endpoint relations as “endpoint-conjunctive.” 

Temporal Prolog axioms (see Section 5) make use of the following relations: 
Id, s, f, = ), expressing the subinterval relation, (s, = ) and (f, = 1, defining an inter- 
val union, and 1 < , > ,m,mi], expressing interval disjointness. Except for disjoint- 
ness, all these relations are endpoint-conjunctive. For a broad class of applications 



136 TOMAS HRYCEJ 

(like the qualitative simulation of Section 7), the class consisting of endpoint-con- 
junctive relations and disjointness is sufficient. On the other hand, omitting 
disjointness would be a substantial constraint, in particular, it would not be 
possible to express 

l the negation according to Axiom 1.5; 

l the disjointness of intervals for contradictory facts; 

l limited resources (like a single machine for performing multiple operations), 
etc. 

The goal conflict between expressiveness, completeness and efficiency can be 
hardly be resolved. The only thing to be done is to point out that using negation 
and endpoint-disjunctive relations in Temporal Prolog may potentially lead to 
inconsistent solutions (while confining ourselves to endpoint-conjunctive relations 
would guarantee completeness). 

However, it must be said that inconsistencies caused by disjointness alone (i.e., 
without other endpoint-disjunctive relations) are very scarce. The reason for this is 
that pairs of disjointness relations do not combine to any further constraint, i.e., A 
-_(<,>,m,mi}-,B&B-{<,>,m,mi) + C implies no constraint on the rela- 
tion between A and C via the transitivity table. A four-node network of Figure 3 
has been tested for all combinations of endpoint-disjunctive relations Rl, R2, R3 
and R4. Out of 160,000 possible combinations, a single one with Rl = R2 = R3 = 
R4 = lo, oi, d, di, s, si, f, fi, =} has led to an (undetected) inconsistency. So for most 
real applications, the inconsistency risk is acceptable. 

The reward for accepting reduced expressiveness or potential incompleteness 
are acceptable computing times (see Section 6.4). If the completeness has very high 
priority for some application, the algorithm of Valdes-Perez can be substituted for 
Allen’s. 

6.2. Nonmonotonic Extension of the Algorithm 

The above temporal constraint algorithm is monotonic-it does not allow retrac- 
tion of asserted constraints. Therefore, the predicate constraint-rel of Section 4 
using this algorithm would not be backtrackable. A straightforward technique for 
solving this problem in a PROLOG implementation is to keep the whole network 
of temporal relations as an additional argument in all predicates (or, if the network 
is modified within the predicate, two arguments: an input network and an output 

FIGURE 3. An 
interval pairs. 

interval network with tW0 disjoint 
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network). However, this solution is extremely stack-intensive: in a toy example with 
only 10 intervals the 2 MByte stack overflowed! Thus, it is necessary to formulate 
an efficient nonmonotonic algorithm, which is the objective of this section. 

Another common way to implement retractability of inferences is to label data 
in some way with their antecedents [15] or external assumptions [131 from which 
they have been inferred. To introduce nonmonotonicity into our temporal con- 
straint system, we have to identify (1) elementary pieces of data and (2) justifica- 
tions. 

The way gone by Vilain [53] was to regard the whole transitivity table inference 
as elementary, so that potentially multiple (old and new) inferences for a single 
pair of intervals have to be stored. So in Vilain’s model, whole transitivity-table- 
based inferences are explicitly stored for truth-maintenance operations. Such an 
representation is uneconomical in the sense that the number of such stored 
inferences per interval pair monotonically increases. The inference database grows 
at the same pace as the total number of constraints. 

In this section, a more concise representation of dependencies is presented. 

JUSTIFICATION STRUCTURE OF INTERVAL RELATIONS. In our system, an alterna- 
tive view of elementary datum is implemented. For each of the 13 elementary 
relations and each interval pair, the list of intervals, the “exclusion list,” is stored, 
by way of which the elementary relation is excluded. For example, R(Z, Z> = id, 0) 
&R(J, K) = {mi} constrains the relations between Z and K to {d, di, ji, 01, i.e., it 
justifies the exclusion of < , > ,oi,m,mi,s, si,f, = . So K is inserted into the 
exclusion list of each of the given elementary relations. The elementary relation 
with an empty exclusion list is regarded as possible. If a constraint is externally 
justified, the external constraint identifier enters the list instead of an interval 
identifier. 

The elementary piece of data can be formulated as “exclusion of a single 
elementary relation between intervals I and J.” For example, the semantics of 
I-_[ < , m] + J is “between the intervals I and J, the relation before or the relation 
meets are possible.” In other words, “the relations before and meets are not 
excluded while all other relations are excluded.” There may be several justifications 
for this elementary piece of data; if there are none, the relation is “possible.” 

Justifications are provided by the transitivity table, or better said by transitions. 
For example, I-[d, o] + J-[mi] + K results in I-[d, di, fi, o] + K, i.e., it justifies 
the exclusion of I < , > ,m,mi,s, si,f, =}. In terms of our elementary pieces of data, 
the conjunctive exclusion of { < , > , di, oi, m, mi, s, si, f, Ii, =) between I and J and of 
{ < , > , d, di, o, oi, m, s, si, f, fi, = ) between J and K justifies the exclusion of all 
elementary relations between I and K from { < , > ,oi,m,mi,s, si,f, =}. This is the 
conjunctive form of justifications, typical for most truth-maintenance systems. 

However, for external assumptions to be retractable, it is sufficient to store the 
interval identifier that justifies an exclusion. For example, if excluded relations 
between A and B and those between B and C exclude A before C, B is stored as a 
justification for the exclusion of before between A and C. This justification is 
revised after every modification of the relation between A and B. An elementary 
relation, the justification set of which is empty, is believed to be “possible.” 

THE ALGORITHM. The basic algorithm of Section 6.1 has now only to be 
modified for handling exclusion lists. There are two basic system functions: con- 
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straint insertion and constraint retraction. Since the constraint propagation part of 
the algorithm is similar for both functions, an additional two-valued argument Op 
(with values ins and de0 is introduced. For an external assumption (a set of one or 
more constraints) to be retractable, it must be given a unique identifier, which 
serves as an external justification (Just). Algorithm 6.1 undergoes the following 
modifications. 

Algorithm 6.2, 

update_rel(ins,rl,r2, NewRel, Just) 

J(rl,r2) +modify_justi@ation(J(rl,r2),NewRel,Just); 

H +possibZe_rels( J( rl, r2)); 

if not H = R( rl, r2) then add_to_queue( constraint, rl, r2); 

R(rl,r2) +H; 

update_rel( del, rl, r2, NewRel, Just) 

J( r 1, r 2) + modifi_justification( J( r 1, r 2) , NewRef , Just) ; 

H + possible_rels ( J( r 1, r 2)) ; 

if not H=R(rl,r2) thenadd_to_queue(constraint,rl;r2); 

R( rl, r2) +-H; 

Additional auxiliary functions: 

l The function modi&_justification( JustiJications, NewCon, IdJust) returns Jus- 
tifications modified by the additional constraint NewCon. The exclusions of 
all elementary relations not contained in NewCon are additionally justified 
by the event identifier Idlust. If some justifications by this identifier are 
already present, they are substituted for the new ones. 

l The function possible_rels(Just) returns the set of basic relations which are 
not excluded by Just, i.e., those with empty justification set. 

SIMPLIFIED ALGORITHM FOR CHRONOLOGICAL BACKTRACKING. If we confine 
ourselves to chronological backtracking, the algorithm may be substantially simpli- 
fied. Instead of an exclusion list for each elementary relation, it is sufficient to keep 
the identifier of the first external assumption that led to the exclusion of this 
elementary relation. For example, if the relation between I and J is ( < , m) and it 
has been constrained to { <} after the introduction of external assumption Ald, 
identifer Ald is stored as a justification for exclusion of “m.” This enables us to 
keep the whole information about interval relations for N intervals in a three-di- 
mensional N *N * 13-array, whose element m(i, j, r) contains the chronologically 
first external assumption identifier which excludes the elementary relation r 
between intervals i and j. To retract an assumption, all matrix elements containing 
its identifier are zeroed. Chronological backtracking guarantees that assumptions 
are retracted in an order reverse to their assertion. 

The space complexity of the algorithms of this section is 0(N2), i.e., it is 
completely independent from the number of constraints. This is a substantial 
improvement over Vilain’s algorithm whose complexity is proportional to the 
number of constraints. 
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6.3. Interface between Temporal Logic and Temporal Constraints 

The communication between PROLOG and the constraint propagation system is 
materialized by two predicates: constrain_rel(Z, J, R, A) and retract_rel(Z, J, R, A) 
with I, J intervals, R the temporal relation between them and A a constraint 
identifier. The former predicate asserts a constraint and performs subsequent 
constraint propagation. The latter retracts a constraint including its formerly 
propagated consequences. 

However, not the above pair of predicates, but a single backtrackable predicate 
is needed. This is done by the following clause (gen_irzteger(Znt) generates succes- 
sive integers): 

constrain_rel(I, J, R):-gen_integer(A), (constrain_rel(J, J, R, A); 

retract_rel( I, J, R, A), fail). 

During its first call, this clause generates the constraint identifier A and asserts the 
constraint. On backtracking, the clause is called the second time. The assumption 
identified by A is retracted and the whole clause fails. 

An important advantage of this idea is its easy integrability into any PROLOG 
interpreter (Goal 4, Section 2). The expense for it is that no cut may be used. 
Otherwise, the second, retracting call of constrain_rel could not be guaranteed. In 
fact, a weaker condition is sufficient: if a cut has been used, no constrain_rei may 
be called between the neck symbol “:-” of the clause and the cut. 

6.4. Actual Implementation 

For efficiency reasons, the chronological backtracking algorithm of Section 6.2 has 
been implemented in C and linked into a commercially available PROLOG 
interpreter. Using an array representation instead of a relation database, the 
computing times have improved more than 1,000 times compared to the original 
implementation in PROLOG. 

Although no systematic complexity investigation has been made so far, a feeling 
of the order of magnitude of computing times can be obtained from running the 
qualitative simulation example of Section 7 which imposes 64 constraints on 23 
distinct intervals. On a PCS Cadmus 9900 UNIX-Workstation, using InterFace 
Prolog System, the complete simulation took 15.38 sec. Out of this time, 6.48 set 
were spent by temporal constraint propagation, so computing the transitive closure 
for an additional constraint took 0.101 set on average. 

To show (in a very simplified manner) how the computing time may develop for 
larger problems, the intervals and temporal constraints of the qualitative simula- 
tion example have simply been duplicated, i.e., for each interval, a new interval 
(distinct from the original one) has been defined and all constraints have been 
imposed on the set of such new intervals. This procedure is at least partially 
realistic since the transitive closure is then computed over the set of both original 
and duplicated intervals, and it has the advantage that the constraint sets are 
directly comparable. By repeated duplication, examples of different sizes have been 
generated. The results are given in Table 3. 
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TABLE 3. Computing times of temporal-constraint propagation. 

Number of Number of 
Intervals Constraints 

Computing Time for 
all Constraints (in seconds) 

Computing Time per 
Constraint (in seconds) 

23 64 6.48 0.101 
46 128 18.34 0.143 
92 256 59.52 0.233 

184 512 227.80 0.445 

7. APPLICATIONS 

As stated in Section 1, the key applications of Temporal Prolog are problems 
concerning description of dynamic situations. 

One such application is qualitative simulation, or “qualitative physics.” Qualita- 
tive physics has its origin in the efforts to overcome the inability of present expert 
systems to reason about structure and function of technical devices, or, more 
exactly, to infer their behavior from their structure. Temporal relations cover some 
crucial aspects of qualitative reasoning: 

l Causal relations incorporate the sequentiality of cause and effect. 

l Complex preconditions for certain activities, like physical processes. Presume 
simultaneous occurrence of multiple elementary conditions. 

l Persistence of object properties is constrained to the period of the object’s 
existence, etc. 

There have been several attempts to formulate general theoretical frameworks and 
working systems for qualitative reasoning about physical systems (see Davis [lo], 
deKleer and Brown [14], Forbus [161, Kuipers [30, 311, Voss [561, Weld [57l and 
Williams [58, 591. 

There is also a tradition of formulating qualitative descriptions in the logic 
programming paradigm, e.g., by Barrow [61, Clocksin [7], Heintze, Michaylov, and 
Stuckey [20], and Pashtan [39]. 

However, although all of these models are concerned with modeling behavior 
along a time line, few of them consider time explicitly. 

This is exactly the advantage of using Temporal Prolog for problems of qualita- 
tive physics. As a demonstration of its capabilities, a simple qualitative simulator 
has been implemented. It has been inspired by the Qualitative Process Theory 
(QPT) of Forbus [16]. The most salient difference from the QPT is that temporal 
relations have been made explicit. Behavior is described by temporal relations 
between the states of individual physical quantities instead of by a sequence of 
global states. The conceptual units of behavior in this model are physical processes. 
For example, suppose four generic processes are defined: (1) heat flow from a heat 
source to a destination; (2) boiling if a fluid has reached its boiling temperature; (3) 
growing pressure if the amount of a gas in a closed can is growing; and (4) 
explosion after the pressure necessary for a closed can to burst has been attained. 
A generic process is described by the predicate process, e.g., 

process(heat_flow(D,S)):- 
(obj(S),heat_source(S),obj(D),D\ = S,at (D,S), 

less(temp, [D], temp_s(S))) mkdur T, 
assert_infl(inc(temp, [D], +) ,T). 
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the expression of the second line expressing the precondition under which the 
process is launched and the third line performing an assertion of process influ- 
ences, i.e., increasing the temperature of the heat-flow destination object. 
Domain-specific concepts and relations are described by clauses like 

at(F,T):-obj(C), can(C), fluid(F) , inside( F, C), under( T, C) . 

The initial state is given by 

l object definitions (together with intervals in which objects exist, or “changing 
ontologies”-see Section 3.11, like 

obj(water) in ow. 

l object properties; 

l initial values of physical quantities and their increments, like 

val(temp, [water], between( t-melt, t-boil)) in tw. 

inc( temp, [water], =) in itw. 

l initial temporal constraints, etc. 

The simulation is performed by alternating two steps: (1) initializing as many 
processes as possible and (2) performing qualitative state changes, and it termi- 
nates if no qualitative state change can be made. 

Suppose the initial state consists of the following objects: water in a closed can 
and a flame under the can. In the can, there is already a certain amount of steam, 
but the pressure has not yet reached the bursting point of the can. The tempera- 
ture of the water is lower than the temperature of the flame, so that heat flow can 
take place. 

With this initial state, the simulation results in process ordering according to 
Figure 4. The existence of the object “can” persists during the processes heat&w, 
boiling, growing-pressure, and it is terminated by the process explosion. Information 
of this type can be acquired by the query predicate get_rel(I, J, R), I and J being 
intervals in which some processes are asserted to be active. We can also construct 
complete histories of parameter values by finding all clauses of the type ual(Quan- 
tity,Objects, Value) in T and querying their order or their temporal relations to 
other histories. 

FIGURE 4. Ordering of processes. 
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A complete account of the qualitative simulator is given in [26]. For another 
application of Temporal Prolog for reasoning about processes, see Noekel 1381. A 
further class of problems with a strong temporal aspect is planning. While early 
planners like WARPLAN of Warren (described in [S]) required a commitment to a 
certain linear ordering, more recent systems, like NOAH (Sacerdoti [44]), NON- 
LIN (Tate [46]), and O-PLAN (Tate [47]), DEVISER (Vere [52]), introduced partial 
ordering-some pairs of actions are ordered, others are not. Temporal Prolog (in a 
manner similar to the planner of Allen and Koomen [5]) allows even more general 
temporal relations, e.g., explicit disjointness, without further commitment to a 
certain ordering. So less backtracking is necessary, and planning becomes more 
efficient. 

8. CONCLUSION 

Temporal Prolog, a temporal extension of PROLOG, is a pragmatic implementa- 
tion of a reified temporal logic. It provides natural and easily comprehensible 
means for constraining validity of general predicates, i.e., logical facts and rules, to 
a certain time interval. It conforms to logic programming concepts and program- 
ming style. Both its temporal logic inference engine and its temporal constraint 
propagator are reasonably efficient without substantial lost of expressive power in 
comparison, e.g., with Allen’s theoretical model. 

Two alternatives for implementing logic axioms are incorporated into Temporal 
Prolog: constraining rules and nonconstraining rules. Constraining queries are a 
simple and robust alternative to the TMM model of Dean and McDermott which is 
based on a planning-specific concept of protection and which makes reason 
maintenance necessary to ensure consistency. Both are obsolete in Temporal 
Prolog-consistency is ensured by the backtracking mechanism of PROLOG. The 
whole system can be easily implemented in any commercially available PROLOG 
interpreter. If an interface to a procedural language is available (which is the case 
for most commercial products), efficiency of temporal-constraint propagation can 
be substantially improved. 

Key potential applications of Temporal Prolog seem to be in planning, qualita- 
tive physics and other applications characterized by temporally limited facts and 
explicit qualitative temporal constraints. Problems from these domains can be 
formulated in Temporal Prolog in a transparent and declarative way. Various 
temporal constraints, like nonoverlapping of contradictory states or persistence of 
process influences, can be directly represented. So Temporal Prolog provides an 
appropriate environment for the development of tools for planning and qualitative 
reasoning. 
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