45,602 research outputs found

    Fixed-Parameter Algorithms for Computing Kemeny Scores - Theory and Practice

    Full text link
    The central problem in this work is to compute a ranking of a set of elements which is "closest to" a given set of input rankings of the elements. We define "closest to" in an established way as having the minimum sum of Kendall-Tau distances to each input ranking. Unfortunately, the resulting problem Kemeny consensus is NP-hard for instances with n input rankings, n being an even integer greater than three. Nevertheless this problem plays a central role in many rank aggregation problems. It was shown that one can compute the corresponding Kemeny consensus list in f(k) + poly(n) time, being f(k) a computable function in one of the parameters "score of the consensus", "maximum distance between two input rankings", "number of candidates" and "average pairwise Kendall-Tau distance" and poly(n) a polynomial in the input size. This work will demonstrate the practical usefulness of the corresponding algorithms by applying them to randomly generated and several real-world data. Thus, we show that these fixed-parameter algorithms are not only of theoretical interest. In a more theoretical part of this work we will develop an improved fixed-parameter algorithm for the parameter "score of the consensus" having a better upper bound for the running time than previous algorithms.Comment: Studienarbei

    RankMerging: A supervised learning-to-rank framework to predict links in large social network

    Get PDF
    Uncovering unknown or missing links in social networks is a difficult task because of their sparsity and because links may represent different types of relationships, characterized by different structural patterns. In this paper, we define a simple yet efficient supervised learning-to-rank framework, called RankMerging, which aims at combining information provided by various unsupervised rankings. We illustrate our method on three different kinds of social networks and show that it substantially improves the performances of unsupervised metrics of ranking. We also compare it to other combination strategies based on standard methods. Finally, we explore various aspects of RankMerging, such as feature selection and parameter estimation and discuss its area of relevance: the prediction of an adjustable number of links on large networks.Comment: 43 pages, published in Machine Learning Journa
    corecore