6,717 research outputs found

    A Linearithmic Time Algorithm for a Shortest Vector Problem in Compute-and-Forward Design

    Full text link
    We propose an algorithm with expected complexity of \bigO(n\log n) arithmetic operations to solve a special shortest vector problem arising in computer-and-forward design, where nn is the dimension of the channel vector. This algorithm is more efficient than the best known algorithms with proved complexity.Comment: It has been submitted to ISIT 201

    Bayesian Active Edge Evaluation on Expensive Graphs

    Full text link
    Robots operate in environments with varying implicit structure. For instance, a helicopter flying over terrain encounters a very different arrangement of obstacles than a robotic arm manipulating objects on a cluttered table top. State-of-the-art motion planning systems do not exploit this structure, thereby expending valuable planning effort searching for implausible solutions. We are interested in planning algorithms that actively infer the underlying structure of the valid configuration space during planning in order to find solutions with minimal effort. Consider the problem of evaluating edges on a graph to quickly discover collision-free paths. Evaluating edges is expensive, both for robots with complex geometries like robot arms, and for robots with limited onboard computation like UAVs. Until now, this challenge has been addressed via laziness i.e. deferring edge evaluation until absolutely necessary, with the hope that edges turn out to be valid. However, all edges are not alike in value - some have a lot of potentially good paths flowing through them, and some others encode the likelihood of neighbouring edges being valid. This leads to our key insight - instead of passive laziness, we can actively choose edges that reduce the uncertainty about the validity of paths. We show that this is equivalent to the Bayesian active learning paradigm of decision region determination (DRD). However, the DRD problem is not only combinatorially hard, but also requires explicit enumeration of all possible worlds. We propose a novel framework that combines two DRD algorithms, DIRECT and BISECT, to overcome both issues. We show that our approach outperforms several state-of-the-art algorithms on a spectrum of planning problems for mobile robots, manipulators and autonomous helicopters

    Lex-Partitioning: A New Option for BDD Search

    Full text link
    For the exploration of large state spaces, symbolic search using binary decision diagrams (BDDs) can save huge amounts of memory and computation time. State sets are represented and modified by accessing and manipulating their characteristic functions. BDD partitioning is used to compute the image as the disjunction of smaller subimages. In this paper, we propose a novel BDD partitioning option. The partitioning is lexicographical in the binary representation of the states contained in the set that is represented by a BDD and uniform with respect to the number of states represented. The motivation of controlling the state set sizes in the partitioning is to eventually bridge the gap between explicit and symbolic search. Let n be the size of the binary state vector. We propose an O(n) ranking and unranking scheme that supports negated edges and operates on top of precomputed satcount values. For the uniform split of a BDD, we then use unranking to provide paths along which we partition the BDDs. In a shared BDD representation the efforts are O(n). The algorithms are fully integrated in the CUDD library and evaluated in strongly solving general game playing benchmarks.Comment: In Proceedings GRAPHITE 2012, arXiv:1210.611

    Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models

    Full text link
    We present a method for solving the transshipment problem - also known as uncapacitated minimum cost flow - up to a multiplicative error of 1+Δ1 + \varepsilon in undirected graphs with non-negative edge weights using a tailored gradient descent algorithm. Using O~(⋅)\tilde{O}(\cdot) to hide polylogarithmic factors in nn (the number of nodes in the graph), our gradient descent algorithm takes O~(Δ−2)\tilde O(\varepsilon^{-2}) iterations, and in each iteration it solves an instance of the transshipment problem up to a multiplicative error of polylog⁥n\operatorname{polylog} n. In particular, this allows us to perform a single iteration by computing a solution on a sparse spanner of logarithmic stretch. Using a randomized rounding scheme, we can further extend the method to finding approximate solutions for the single-source shortest paths (SSSP) problem. As a consequence, we improve upon prior work by obtaining the following results: (1) Broadcast CONGEST model: (1+Δ)(1 + \varepsilon)-approximate SSSP using O~((n+D)Δ−3)\tilde{O}((\sqrt{n} + D)\varepsilon^{-3}) rounds, where D D is the (hop) diameter of the network. (2) Broadcast congested clique model: (1+Δ)(1 + \varepsilon)-approximate transshipment and SSSP using O~(Δ−2)\tilde{O}(\varepsilon^{-2}) rounds. (3) Multipass streaming model: (1+Δ)(1 + \varepsilon)-approximate transshipment and SSSP using O~(n)\tilde{O}(n) space and O~(Δ−2)\tilde{O}(\varepsilon^{-2}) passes. The previously fastest SSSP algorithms for these models leverage sparse hop sets. We bypass the hop set construction; computing a spanner is sufficient with our method. The above bounds assume non-negative edge weights that are polynomially bounded in nn; for general non-negative weights, running times scale with the logarithm of the maximum ratio between non-zero weights.Comment: Accepted to SIAM Journal on Computing. Preliminary version in DISC 2017. Abstract shortened to fit arXiv's limitation to 1920 character
    • 

    corecore