3,377 research outputs found

    Probabilistic ToF and Stereo Data Fusion Based on Mixed Pixel Measurement Models

    Get PDF
    This paper proposes a method for fusing data acquired by a ToF camera and a stereo pair based on a model for depth measurement by ToF cameras which accounts also for depth discontinuity artifacts due to the mixed pixel effect. Such model is exploited within both a ML and a MAP-MRF frameworks for ToF and stereo data fusion. The proposed MAP-MRF framework is characterized by site-dependent range values, a rather important feature since it can be used both to improve the accuracy and to decrease the computational complexity of standard MAP-MRF approaches. This paper, in order to optimize the site dependent global cost function characteristic of the proposed MAP-MRF approach, also introduces an extension to Loopy Belief Propagation which can be used in other contexts. Experimental data validate the proposed ToF measurements model and the effectiveness of the proposed fusion techniques

    Scalable Full Flow with Learned Binary Descriptors

    Full text link
    We propose a method for large displacement optical flow in which local matching costs are learned by a convolutional neural network (CNN) and a smoothness prior is imposed by a conditional random field (CRF). We tackle the computation- and memory-intensive operations on the 4D cost volume by a min-projection which reduces memory complexity from quadratic to linear and binary descriptors for efficient matching. This enables evaluation of the cost on the fly and allows to perform learning and CRF inference on high resolution images without ever storing the 4D cost volume. To address the problem of learning binary descriptors we propose a new hybrid learning scheme. In contrast to current state of the art approaches for learning binary CNNs we can compute the exact non-zero gradient within our model. We compare several methods for training binary descriptors and show results on public available benchmarks.Comment: GCPR 201

    ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems

    Full text link
    In this paper we present ActiveStereoNet, the first deep learning solution for active stereo systems. Due to the lack of ground truth, our method is fully self-supervised, yet it produces precise depth with a subpixel precision of 1/30th1/30th of a pixel; it does not suffer from the common over-smoothing issues; it preserves the edges; and it explicitly handles occlusions. We introduce a novel reconstruction loss that is more robust to noise and texture-less patches, and is invariant to illumination changes. The proposed loss is optimized using a window-based cost aggregation with an adaptive support weight scheme. This cost aggregation is edge-preserving and smooths the loss function, which is key to allow the network to reach compelling results. Finally we show how the task of predicting invalid regions, such as occlusions, can be trained end-to-end without ground-truth. This component is crucial to reduce blur and particularly improves predictions along depth discontinuities. Extensive quantitatively and qualitatively evaluations on real and synthetic data demonstrate state of the art results in many challenging scenes.Comment: Accepted by ECCV2018, Oral Presentation, Main paper + Supplementary Material

    NOVEL DENSE STEREO ALGORITHMS FOR HIGH-QUALITY DEPTH ESTIMATION FROM IMAGES

    Get PDF
    This dissertation addresses the problem of inferring scene depth information from a collection of calibrated images taken from different viewpoints via stereo matching. Although it has been heavily investigated for decades, depth from stereo remains a long-standing challenge and popular research topic for several reasons. First of all, in order to be of practical use for many real-time applications such as autonomous driving, accurate depth estimation in real-time is of great importance and one of the core challenges in stereo. Second, for applications such as 3D reconstruction and view synthesis, high-quality depth estimation is crucial to achieve photo realistic results. However, due to the matching ambiguities, accurate dense depth estimates are difficult to achieve. Last but not least, most stereo algorithms rely on identification of corresponding points among images and only work effectively when scenes are Lambertian. For non-Lambertian surfaces, the brightness constancy assumption is no longer valid. This dissertation contributes three novel stereo algorithms that are motivated by the specific requirements and limitations imposed by different applications. In addressing high speed depth estimation from images, we present a stereo algorithm that achieves high quality results while maintaining real-time performance. We introduce an adaptive aggregation step in a dynamic-programming framework. Matching costs are aggregated in the vertical direction using a computationally expensive weighting scheme based on color and distance proximity. We utilize the vector processing capability and parallelism in commodity graphics hardware to speed up this process over two orders of magnitude. In addressing high accuracy depth estimation, we present a stereo model that makes use of constraints from points with known depths - the Ground Control Points (GCPs) as referred to in stereo literature. Our formulation explicitly models the influences of GCPs in a Markov Random Field. A novel regularization prior is naturally integrated into a global inference framework in a principled way using the Bayes rule. Our probabilistic framework allows GCPs to be obtained from various modalities and provides a natural way to integrate information from various sensors. In addressing non-Lambertian reflectance, we introduce a new invariant for stereo correspondence which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions - BRDFs). This invariant can be used to formulate a rank constraint on stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies

    Multi Cost Function Fuzzy Stereo Matching Algorithm for Object Detection and Robot Motion Control

    Get PDF
    Stereo matching algorithms work with multiple images of a scene, taken from two viewpoints, to generate depth information. Authors usually use a single matching function to generate similarity between corresponding regions in the images. In the present research, the authors have considered a combination of multiple data costs for disparity generation. Disparity maps generated from stereo images tend to have noisy sections. The presented research work is related to a methodology to refine such disparity maps such that they can be further processed to detect obstacle regions.  A novel entropy based selective refinement (ESR) technique is proposed to refine the initial disparity map. The information from both the left disparity and right disparity maps are used for this refinement technique. For every disparity map, block wise entropy is calculated. The average entropy values of the corresponding positions in the disparity maps are compared. If the variation between these entropy values exceeds a threshold, then the corresponding disparity value is replaced with the mean disparity of the block with lower entropy. The results of this refinement are compared with similar methods and was observed to be better. Furthermore, in this research work, the v-disparity values are used to highlight the road surface in the disparity map. The regions belonging to the sky are removed through HSV based segmentation. The remaining regions which are our ROIs, are refined through a u-disparity area-based technique.  Based on this, the closest obstacles are detected through the use of k-means segmentation.  The segmented regions are further refined through a u-disparity image information-based technique and used as masks to highlight obstacle regions in the disparity maps. This information is used in conjunction with a kalman filter based path planning algorithm to guide a mobile robot from a source location to a destination location while also avoiding any obstacle detected in its path. A stereo camera setup was built and the performance of the algorithm on local real-life images, captured through the cameras, was observed. The evaluation of the proposed methodologies was carried out using real life out door images obtained from KITTI dataset and images with radiometric variations from Middlebury stereo dataset

    DeepMatching: Hierarchical Deformable Dense Matching

    Get PDF
    We introduce a novel matching algorithm, called DeepMatching, to compute dense correspondences between images. DeepMatching relies on a hierarchical, multi-layer, correlational architecture designed for matching images and was inspired by deep convolutional approaches. The proposed matching algorithm can handle non-rigid deformations and repetitive textures and efficiently determines dense correspondences in the presence of significant changes between images. We evaluate the performance of DeepMatching, in comparison with state-of-the-art matching algorithms, on the Mikolajczyk (Mikolajczyk et al 2005), the MPI-Sintel (Butler et al 2012) and the Kitti (Geiger et al 2013) datasets. DeepMatching outperforms the state-of-the-art algorithms and shows excellent results in particular for repetitive textures.We also propose a method for estimating optical flow, called DeepFlow, by integrating DeepMatching in the large displacement optical flow (LDOF) approach of Brox and Malik (2011). Compared to existing matching algorithms, additional robustness to large displacements and complex motion is obtained thanks to our matching approach. DeepFlow obtains competitive performance on public benchmarks for optical flow estimation

    Structured light assisted real-time stereo photogrammetry for robotics and automation. Novel implementation of stereo matching

    Get PDF
    In this Master’s thesis project a novel implementation of a stereo matching based method is proposed. Moreover, an exhaustive analysis of the state-of-the-art algorithms in that field is outlined. Specifically, both standard and deep learning based methods have been extensively investigated, thus to provide useful insights for the designed implementation. Regarding the developed work, it is basically structured in the following manner. At first a research phase has been carried out, hence to simply and rapidly test the thought strategy. Subsequently, a first implementation of the algorithm has been designed and tested using data available from the Middlebury 2014 dataset, which is one of the most exploited dataset in the computer vision area. At this stage, numerous tests have been completed and consequently various changes to the algorithm pipeline have been made, in order to improve the final result. Finally, after that exhaustive researching phase the actual method has been designed and tested using real environment images obtained from the stereo device developed by the company, in which this work has been produced. Fundamental element of the project is indeed that stereo device. As a matter of fact, the designed algorithm in based on the data produced by the cameras that constitute it. Specifically, the main function of the system designed by LaDiMo is to make the built stereo matching based procedure simultaneously faster and accurate. As a matter of fact one of the main prerogative of the project was to create an algorithm that has to prove potential real-time results. This has been in fact, achieved by applying one of the two methods created. Specifically, it is a lightweight implementation, which strongly exploits the information coming from the LaDiMo device, thus to provide accurate results, keeping the computational time short. At the end of this Master’s thesis images showing the main outcomes obtained are proposed. Moreover, a discussion regarding the further improvements that are going to be added to the project is stated. In fact, the method implemented, being not optimized only demonstrate a potential real-time implementation, which would be certainly achieved through an efficient refactoring of the main pipeline
    corecore