5 research outputs found

    Frame Size Analysis of Optimum Dynamic Tree in RFID Systems

    Get PDF
    In RFID (Radio Frequency Identification) system, an anti-collision algorithm plays a prominent role in the tag identification process in order to reduce the tag identification delay and enhance the RFID system efficiency. In this work, we present a theoretical analysis of optimal frame size assignment for maximizing the system efficiency of a tree-based anti-collision algorithm, called optimum dynamic tree (ODT) algorithm, for RFID tag identification process. Our analysis indicates that the appropriate frame size for a given number of competing tags should not be set to the same value as the number of tags, which is commonly adopted in the literature. Instead, the frame size should be smaller roughly by a factor of 0.871 to maximize system efficiency. The closed-form for calculating system efficiency is derived and the derived simulation results are in a good agreement with the theoretical one. The exact appropriate frame sizes for the number of tags ranging from 2 to 100 are tabulated and compare the tag-identification time of conventional binary tree and ODT algorithms by using the international standard ISO 18000-6B

    A Reduced Complexity of Vahedi's Tag Estimation Method for DFSA

    Get PDF
    In order to calculate the number of tags in a radio frequency identification (RFID) system, several tag estimation methods have been investigated in literature and most of the available estimation methods need the overall knowledge of idle, success and collision slots of the previous frame to carry out the tag estimation process. In this article, we present three techniques to reduce the complexity of Vahedi’s tag estimation for tag collision resolution in RFID systems using dynamic frame slotted ALOHA. Our modified and useful approach considers the information about only the number of empty, successful or colliding slots in the previous frame for the tag estimation. Three decision rules were obtained by maximizing the likelihood of success, idle and collision which helps in the reduction of complexity substantially. However, the accuracy of estimation decreases for success-only and idle-only methods while the collision-only method gives a consistent and lower estimate error when the frame sizes and the number of tags increase

    A fast tag identification anti-collision algorithm for RFID systems

    Full text link
    © 2019 John Wiley & Sons, Ltd. In this work, we propose a highly efficient binary tree-based anti-collision algorithm for radio frequency identification (RFID) tag identification. The proposed binary splitting modified dynamic tree (BS-MDT) algorithm employs a binary splitting tree to achieve accurate tag estimation and a modified dynamic tree algorithm for rapid tag identification. We mathematically evaluate the performance of the BS-MDT algorithm in terms of the system efficiency and the time system efficiency based on the ISO/IEC 18000-6 Type B standard. The derived mathematical model is validated using computer simulations. Numerical results show that the proposed BS-MDT algorithm can provide the system efficiency of 46% and time system efficiency of 74%, outperforming all other well-performed algorithms

    Analysis and characterization of the backscatter-link frequency in passive UHF-RFID systems

    Full text link
    [ES] La tecnología de identificación por radiofrecuencia (RFID) es clave para la visualización de cada objeto en el marco de la Internet de las Cosas. Y más concretamente, la tecnología pasiva es la más extendida e implantada, ya que un lector puede identificar multitud de etiquetas en un corto periodo de tiempo. Cada etiqueta responde al lector a través de una subportadora denominada Frecuencia de Enlace por Retro-dispersión (Backscatter-Link Frequency, BLF). Con el objetivo de caracterizar este parámetro, en este artículo se emplea un conjunto de pruebas para evaluar la aleatoriedad de valores de BLF medidos y obtenidos de etiquetas comerciales. Los resultados muestran grandes variaciones de este parámetro respecto al primer valor esperado por el lector, así como durante el proceso de comunicación. Este comportamiento puede ser aprovechado como una característica diferenciadora de cada etiqueta y puede emplearse en los procesos de comunicación u otros fines. Consiguiendo, en definitiva, e[EN] Radio-frequency identification technology (RFID) is key for the  visualization of each object in the Internet of Things framework. Specifically, passive technology is the most widespread type of the worldwide implemented systems, due to a reader can identify multitude of tags in a short period of time. Each tag responds to the reader at a subcarrier called Backscatter-Link Frequency (BLF). In order to characterize this parameter, a set of tests has been used in this paper to assess the randomness of measured BLF values from commercial tags. The results show great variations of this parameter comparing with the first expected value in the reader, as well as during the communication process. This behavior can be used as a distinguishing feature of each tag, in communication processes or for other purposes. Ultimately, creating and providing more efficient passive tags.Ministerio de Educación, Cultura y Deporte, ayudas FPU13/01582 y EST15/00367Blanco, J.; García, A.; Cañas, V. (2020). Análisis y caracterización de la frecuencia de enlace por retro-dispersión en sistemas UHF-RFID pasivos. Revista Iberoamericana de Automática e Informática industrial. 17(1):76-83. https://doi.org/10.4995/riai.2019.11115OJS7683171Arjona, L., Simon, H., & Ruiz, A. 2018. Energy-Aware RFID Anti-Collision Protocol. Sensors, 18(6), 1904. https://doi.org/10.3390/s18061904Badru, A., & Ajayi, N. 2017. Adoption of RFID in large-scale organisation - A review of challenges and solutions. In 2017 IST-Africa Week Conference (IST-Africa) (pp. 1-10). IEEE. https://doi.org/10.23919/ISTAFRICA.2017.8102394Bagheri, N., Alenaby, P., & Safkhani, M. 2017. A new anti-collision protocol based on information of collided tags in RFID systems. International Journal of Communication Systems, 30(3), e2975. https://doi.org/10.1002/dac.2975Bratuz, I., Vodopivec, A., & Trost, A. 2014. Resolving Collision in EPCglobal Class-1 Gen-2 System by Utilizing the Preamble. IEEE Transactions on Wireless Communications, 13(10), 5330-5339. https://doi.org/10.1109/TWC.2014.2350975Chen, Y., Su, J., & Yi, W. 2017. An Efficient and Easy-to-Implement Tag Identification Algorithm for UHF RFID Systems. IEEE Communications Letters, 21(7), 1509-1512. https://doi.org/10.1109/LCOMM.2017.2649490Choi, H., Kim, H., & Choi, S. 2017. Capture-Aware Couple-Resolution Blocking Protocol in RFID Systems. Wireless Personal Communications, 93(4), 969-986. https://doi.org/10.1007/s11277-016-3940-2Dawei Shen, Woo, G., Reed, D. P., Lippman, A. B., & Junyu Wang. 2009. Separation of multiple passive RFID signals using Software Defined Radio. In 2009 IEEE International Conference on RFID (pp. 139-146). IEEE. https://doi.org/10.1109/RFID.2009.4911203Duan, L., Zhang, X., Wang, Z. J., & Duan, F. 2017. A Feasible Segment-by-Segment ALOHA Algorithm for RFID Systems. Wireless Personal Communications, 96(2), 2633-2649. https://doi.org/10.1007/s11277-017-4316-yGS1. (2016). EPC Information Services ( EPCIS ) Standard.GS1. (2018). EPC TM Radio-Frequency Identity Protocols Generation-2 UHF RFID Specification for RFID Air Interface. Version 2.1.Huang, K.-S., Hwang, C.-K., Lee, B.-K., & Chung, I.-H. 2017. An exact closed-form formula of collision probability in diverse multiple access communication systems with frame slotted aloha protocol. Journal of the Franklin Institute, 354(13), 5739-5752. https://doi.org/10.1016/j.jfranklin.2017.05.028Salah, H., Ahmed, H. A., Robert, J., & Heuberger, A. 2015. FFT Based Rate Estimation for UHF RFID Systems. In Smart SysTech 2015 : European Conference on Smart Objects, Systems, and Technologies (pp. 1-5). Aachen, Germany.Shoufeng, W., Dongchen, Z., Xiaoyan, X., Shumeng, S., & Tinglan, W. 2014. A novel anti-collision scheme for RFID systems. In 2014 IEEE World Forum on Internet of Things (WF-IoT) (pp. 458-461). IEEE. https://doi.org/10.1109/WF-IoT.2014.6803210Solic, P., Maras, J., Radic, J., & Blazevic, Z. 2017. Comparing theoretical and experimental results in Gen2 RFID throughput. IEEE Transactions on Automation Science and Engineering, 14(1), 349-357. https://doi.org/10.1109/TASE.2016.2532959Su, J., Sheng, Z., Hong, D., & Wen, G. 2016. An Effective Frame Breaking Policy for Dynamic Framed Slotted Aloha in RFID. IEEE Communications Letters, 20(4), 692-695. https://doi.org/10.1109/LCOMM.2016.2521839White, G., Nallur, V., & Clarke, S. 2017. Quality of service approaches in IoT: A systematic mapping. Journal of Systems and Software, 132, 186-203. https://doi.org/10.1016/j.jss.2017.05.125Wijayasekara, S. K., Robithoh, A., Sasithong, P., Vanichchanunt, P., Nakpeerayuth, S., & Wuttisittikulkij, L. 2017. A Reduced Complexity of Vahedi's Tag Estimation Method for DFSA. Engineering Journal, 21(6), 111-125. https://doi.org/10.4186/ej.2017.21.6.111Wu, H., Wang, Y., & Zeng, Y. 2018. Capture-aware Bayesian RFID tag estimate for large-scale identification. IEEE/CAA Journal of Automatica Sinica, 5(1), 119-127. https://doi.org/10.1109/JAS.2017.7510757Yong, W., Qing, L., Lei, W., & Hao, S. 2017. Research on Anti-Collision Algorithm in Radio Frequency Identification Technology. In 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) (pp. 239-244). IEEE. https://doi.org/10.1109/IHMSC.2017.167Zhang, T., Li, Q., Zhang, C.-S., Liang, H.-W., Li, P., Wang, T.-M., … Wu, C. 2017. Current trends in the development of intelligent unmanned autonomous systems. Frontiers of Information Technology & Electronic Engineering, 18(1), 68-85. https://doi.org/10.1631/FITEE.160165
    corecore