152 research outputs found

    Competitive two - island cooperative co - evolution for training feedforward neural networks for pattern classification problems

    Get PDF
    In the application of cooperative coevolution for neuro-evolution, problem decomposition methods rely on architectural properties of the neural network to divide it into subcomponents. During every stage of the evolutionary process, different problem decomposition methods yield unique characteristics that may be useful in an environment that enables solution sharing. In this paper, we implement a two-island competition environment in cooperative coevolution based neuro-evolution for feedforward neural networks for pattern classification problems. In particular the combinations of three problem decomposition methods that are based on the architectural properties that refers to neural level, network level and layer level decomposition. The experimental results show that the performance of the competition method is better than that of the standalone problem decomposition cooperative neuro-evolution methods

    Memetic cooperative coevolution of Elman recurrent neural networks

    Get PDF
    Cooperative coevolution decomposes an optimi- sation problem into subcomponents and collectively solves them using evolutionary algorithms. Memetic algorithms provides enhancement to evolutionary algorithms with local search. Recently, the incorporation of local search into a memetic cooperative coevolution method has shown to be efficient for training feedforward networks on pattern classification problems. This paper applies the memetic cooperative coevolution method for training recurrent neural networks on grammatical inference problems. The results show that the proposed method achieves better performance in terms of optimisation time and robustness

    Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time - series prediction

    Get PDF
    Collaboration enables weak species to survive in an environment where different species compete for limited resources. Cooperative coevolution (CC) is a nature-inspired optimization method that divides a problem into subcomponents and evolves them while genetically isolating them. Problem decomposition is an important aspect in using CC for neuroevolution. CC employs different problem decomposition methods to decompose the neural network training problem into subcomponents. Different problem decomposition methods have features that are helpful at different stages in the evolutionary process. Adaptation, collaboration, and competition are needed for CC, as multiple subpopulations are used to represent the problem. It is important to add collaboration and competition in CC. This paper presents a competitive CC method for training recurrent neural networks for chaotic time-series prediction. Two different instances of the competitive method are proposed that employs different problem decomposition methods to enforce island-based competition. The results show improvement in the performance of the proposed methods in most cases when compared with standalone CC and other methods from the literature

    Cooperative co-evolution for feature selection in big data with random feature grouping

    Get PDF
    © 2020, The Author(s). A massive amount of data is generated with the evolution of modern technologies. This high-throughput data generation results in Big Data, which consist of many features (attributes). However, irrelevant features may degrade the classification performance of machine learning (ML) algorithms. Feature selection (FS) is a technique used to select a subset of relevant features that represent the dataset. Evolutionary algorithms (EAs) are widely used search strategies in this domain. A variant of EAs, called cooperative co-evolution (CC), which uses a divide-and-conquer approach, is a good choice for optimization problems. The existing solutions have poor performance because of some limitations, such as not considering feature interactions, dealing with only an even number of features, and decomposing the dataset statically. In this paper, a novel random feature grouping (RFG) has been introduced with its three variants to dynamically decompose Big Data datasets and to ensure the probability of grouping interacting features into the same subcomponent. RFG can be used in CC-based FS processes, hence called Cooperative Co-Evolutionary-Based Feature Selection with Random Feature Grouping (CCFSRFG). Experiment analysis was performed using six widely used ML classifiers on seven different datasets from the UCI ML repository and Princeton University Genomics repository with and without FS. The experimental results indicate that in most cases [i.e., with naïve Bayes (NB), support vector machine (SVM), k-Nearest Neighbor (k-NN), J48, and random forest (RF)] the proposed CCFSRFG-1 outperforms an existing solution (a CC-based FS, called CCEAFS) and CCFSRFG-2, and also when using all features in terms of accuracy, sensitivity, and specificity

    Large-scale optimization : combining co-operative coevolution and fitness inheritance

    Get PDF
    Large-scale optimization, here referring mainly to problems with many design parameters remains a serious challenge for optimization algorithms. When the problem at hand does not succumb to analytical treatment (an overwhelmingly common place situation), the engineering and adaptation of stochastic black box optimization methods tends to be a favoured approach, particularly the use of Evolutionary Algorithms (EAs). In this context, many approaches are currently under investigation for accelerating performance on large-scale problems, and we focus on two of those in this research. The first is co-operative co-evolution (CC), where the strategy is to successively optimize only subsets of the design parameters at a time, keeping the remainder fixed, with an organized approach to managing and reconciling these subspace optimization. The second is fitness inheritance (FI), which is essentially a very simple surrogate model strategy, in which, with some probability, the fitness of a solution is simply guessed to be a simple function of the finesses of that solution’s parents. Both CC and FI have been found successful on nontrivial and multiple test cases, and they use fundamentally distinct strategies. In this thesis, we explored the extent to which both of these strategies can be used to provide additional benefits. In addition to combining CC and FI, this thesis also introduces a new FI scheme which further improves the performance of CC-FI. We show that the new algorithm CC-FI is highly effective for solving problems, especially when the new FI scheme is used. In the thesis, we also explored two basic adaptive parameter setting strategies for the FI component. We found that engineering FI (and CC, where it was otherwise not present) into these algorithms led to good performance and results

    Problem Decomposition and Adaptation in Cooperative Neuro-Evolution

    No full text
    One way to train neural networks is to use evolutionary algorithms such as cooperative coevolution - a method that decomposes the network's learnable parameters into subsets, called subcomponents. Cooperative coevolution gains advantage over other methods by evolving particular subcomponents independently from the rest of the network. Its success depends strongly on how the problem decomposition is carried out. This thesis suggests new forms of problem decomposition, based on a novel and intuitive choice of modularity, and examines in detail at what stage and to what extent the different decomposition methods should be used. The new methods are evaluated by training feedforward networks to solve pattern classification tasks, and by training recurrent networks to solve grammatical inference problems. Efficient problem decomposition methods group interacting variables into the same subcomponents. We examine the methods from the literature and provide an analysis of the nature of the neural network optimization problem in terms of interacting variables. We then present a novel problem decomposition method that groups interacting variables and that can be generalized to neural networks with more than a single hidden layer. We then incorporate local search into cooperative neuro-evolution. We present a memetic cooperative coevolution method that takes into account the cost of employing local search across several sub-populations. The optimisation process changes during evolution in terms of diversity and interacting variables. To address this, we examine the adaptation of the problem decomposition method during the evolutionary process. The results in this thesis show that the proposed methods improve performance in terms of optimization time, scalability and robustness. As a further test, we apply the problem decomposition and adaptive cooperative coevolution methods for training recurrent neural networks on chaotic time series problems. The proposed methods show better performance in terms of accuracy and robustness

    Autonomous virulence adaptation improves coevolutionary optimization

    Get PDF
    corecore