1,575 research outputs found

    Modal mu-calculi

    Get PDF

    Global Numerical Constraints on Trees

    Full text link
    We introduce a logical foundation to reason on tree structures with constraints on the number of node occurrences. Related formalisms are limited to express occurrence constraints on particular tree regions, as for instance the children of a given node. By contrast, the logic introduced in the present work can concisely express numerical bounds on any region, descendants or ancestors for instance. We prove that the logic is decidable in single exponential time even if the numerical constraints are in binary form. We also illustrate the usage of the logic in the description of numerical constraints on multi-directional path queries on XML documents. Furthermore, numerical restrictions on regular languages (XML schemas) can also be concisely described by the logic. This implies a characterization of decidable counting extensions of XPath queries and XML schemas. Moreover, as the logic is closed under negation, it can thus be used as an optimal reasoning framework for testing emptiness, containment and equivalence

    An expressive completeness theorem for coalgebraic modal mu-calculi

    Get PDF
    Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of the monadic second-order language for a given functor. Using automatatheoretic techniques and building on recent results by the third author, we show that in order to provide such a characterization result it suffices to find what we call an adequate uniform construction for the coalgebraic type functor. As direct applications of this result we obtain a partly new proof of the Janin-Walukiewicz Theorem for the modal mu-calculus, avoiding the use of syntactic normal forms, and bisimulation invariance results for the bag functor (graded modal logic) and all exponential polynomial functors (including the "game functor"). As a more involved application, involving additional non-trivial ideas, we also derive a characterization theorem for the monotone modal mu-calculus, with respect to a natural monadic second-order language for monotone neighborhood models.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0721

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Disjunctive bases: normal forms and model theory for modal logics

    Get PDF
    We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it more thoroughly in its own right. We show that the presence of a disjunctive basis at the "one-step" level entails a number of good properties for a coalgebraic mu-calculus, in particular, a simulation theorem showing that every alternating automaton can be transformed into an equivalent nondeterministic one. Based on this, we prove a Lyndon theorem for the full fixpoint logic, its fixpoint-free fragment and its one-step fragment, a Uniform Interpolation result, for both the full mu-calculus and its fixpoint-free fragment, and a Janin-Walukiewicz-style characterization theorem for the mu-calculus under slightly stronger assumptions. We also raise the questions, when a disjunctive basis exists, and how disjunctive bases are related to Moss' coalgebraic "nabla" modalities. Nabla formulas provide disjunctive bases for many coalgebraic modal logics, but there are cases where disjunctive bases give useful normal forms even when nabla formulas fail to do so, our prime example being graded modal logic. We also show that disjunctive bases are preserved by forming sums, products and compositions of coalgebraic modal logics, providing tools for modular construction of modal logics admitting disjunctive bases. Finally, we consider the problem of giving a category-theoretic formulation of disjunctive bases, and provide a partial solution

    The \mu-Calculus Alternation Hierarchy Collapses over Structures with Restricted Connectivity

    Full text link
    It is known that the alternation hierarchy of least and greatest fixpoint operators in the mu-calculus is strict. However, the strictness of the alternation hierarchy does not necessarily carry over when considering restricted classes of structures. A prominent instance is the class of infinite words over which the alternation-free fragment is already as expressive as the full mu-calculus. Our current understanding of when and why the mu-calculus alternation hierarchy is not strict is limited. This paper makes progress in answering these questions by showing that the alternation hierarchy of the mu-calculus collapses to the alternation-free fragment over some classes of structures, including infinite nested words and finite graphs with feedback vertex sets of a bounded size. Common to these classes is that the connectivity between the components in a structure from such a class is restricted in the sense that the removal of certain vertices from the structure's graph decomposes it into graphs in which all paths are of finite length. Our collapse results are obtained in an automata-theoretic setting. They subsume, generalize, and strengthen several prior results on the expressivity of the mu-calculus over restricted classes of structures.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    Using automata to characterise fixed point temporal logics

    Get PDF
    This work examines propositional fixed point temporal and modal logics called mu-calculi and their relationship to automata on infinite strings and trees. We use correspondences between formulae and automata to explore definability in mu-calculi and their fragments, to provide normal forms for formulae, and to prove completeness of axiomatisations. The study of such methods for describing infinitary languages is of fundamental importance to the areas of computer science dealing with non-terminating computations, in particular to the specification and verification of concurrent and reactive systems. To emphasise the close relationship between formulae of mu-calculi and alternating automata, we introduce a new first recurrence acceptance condition for automata, checking intuitively whether the first infinitely often occurring state in a run is accepting. Alternating first recurrence automata can be identified with mu-calculus formulae, and ordinary, non-alternating first recurrence automata with formulae in a particular normal form, the strongly aconjunctive form. Automata with more traditional Büchi and Rabin acceptance conditions can be easily unwound to first recurrence automata, i.e. to mu-calculus formulae. In the other direction, we describe a powerset operation for automata that corresponds to fixpoints, allowing us to translate formulae inductively to ordinary Büchi and Rabin-automata. These translations give easy proofs of the facts that Rabin-automata, the full mu-calculus, its strongly aconjunctive fragment and the monadic second-order calculus of n successors SnS are all equiexpressive, that Büchi-automata, the fixpoint alternation class Pi_2 and the strongly aconjunctive fragment of Pi_2 are similarly related, and that the weak SnS and the fixpoint-alternation-free fragment of mu-calculus also coincide. As corollaries we obtain Rabin's complementation lemma and the powerful decidability result of SnS. We then describe a direct tableau decision method for modal and linear-time mu-calculi, based on the notion of definition trees. The tableaux can be interpreted as first recurrence automata, so the construction can also be viewed as a transformation to the strongly aconjunctive normal form. Finally, we present solutions to two open axiomatisation problems, for the linear-time mu-calculus and its extension with path quantifiers. Both completeness proofs are based on transforming formulae to normal forms inspired by automata. In extending the completeness result of the linear-time mu-calculus to the version with path quantifiers, the essential problem is capturing the limit closure property of paths in an axiomatisation. To this purpose, we introduce a new \exists\nu-induction inference rule
    corecore