116,754 research outputs found

    Educational Technology as Seen Through the Eyes of the Readers

    Full text link
    In this paper, I present the evaluation of a novel knowledge domain visualization of educational technology. The interactive visualization is based on readership patterns in the online reference management system Mendeley. It comprises of 13 topic areas, spanning psychological, pedagogical, and methodological foundations, learning methods and technologies, and social and technological developments. The visualization was evaluated with (1) a qualitative comparison to knowledge domain visualizations based on citations, and (2) expert interviews. The results show that the co-readership visualization is a recent representation of pedagogical and psychological research in educational technology. Furthermore, the co-readership analysis covers more areas than comparable visualizations based on co-citation patterns. Areas related to computer science, however, are missing from the co-readership visualization and more research is needed to explore the interpretations of size and placement of research areas on the map.Comment: Forthcoming article in the International Journal of Technology Enhanced Learnin

    Issues of shaping the students’ professional and terminological competence in science area of expertise in the sustainable development era

    Get PDF
    The paper deals with the problem of future biology teachers’ vocational preparation process and shaping in them of those capacities that contribute to the conservation and enhancement of our planet’s biodiversity as a reflection of the leading sustainable development goals of society. Such personality traits are viewed through the prism of forming the future biology teachers’ professional and terminological competence. The main aspects and categories that characterize the professional and terminological competence of future biology teachers, including terminology, nomenclature, term, nomen and term element, have been explained. The criteria and stages of shaping the future biology teachers’ professional and terminological competence during the vocational training process have been fixed. Methods, techniques, technologies, guiding principles and forms of staged work on the forming of an active terminological dictionary of students have been described and specified. The content of the distant special course “Latin. Botanical Terminology”, which provides training for future teachers to study the professional subjects and to understand of international scientific terminology, has been presented. It is concluded that the proper level of formation of the future biology teachers’ professional and terminological competence will eventually ensure the qualitative preparation of pupils for life in a sustainable development era

    Learning to Use Visualizations (an example with elevation and temperature)

    Get PDF
    The purpose of this activity is to introduce students to visualizations as a tool for scientific problem-solving, using elevation and temperature as an example. Students color in visualizations of elevation and temperature so that important patterns in the data become evident. The relationship between the two quantities is studied by using them to compute the lapse rate, the rate at which temperature falls with increasing elevation. Intended outcomes are that students can identify and communicate important patterns in a dataset by drawing a visualization, can begin to interpret those patterns, and can analyze the correlation between two variables using visualization as a tool. Educational levels: Middle school, High school

    Data Visualization Tools for Science and Math

    Get PDF
    As the computers available in schools become more powerful, more and more exciting tools are available to science and math students and teachers. Visualization tools, such as image processing, geographic information systems, modeling, and simulation software, are a class of tools with particular promise. These tools are being used in schools across the country to integrate computer use with the curriculum and to bring more hands-on inquiry to the students. A primary goal of using these computer-based tools is to aid students in developing a deeper understanding of the science and math (not the computers) and to help make difficult concepts a little easier to grasp (and visualize). In particular, these tools allow students to collect, analyze, and manipulate data, a fundamental requirement of the Virginia Standards of Learning [1]. More importantly, these tools allow students with a variety of different learning styles, especially visual learners, to help make abstract concepts into concrete expressions. Teachers can use the computers as a laboratory to study phenomena they could never fit into their classroom (like remote sensing of Earth to study land use and geology from space). One of the challenges in bringing these tools to students is how to do the faculty development to bring the tools to teachers. In this session, we\u27ll explore the possibilities that these tools offer, examine the challenges, and try to understand how to prepare future teachers to use these and other tools in their classrooms
    • …
    corecore