3,885 research outputs found

    An average-case depth hierarchy theorem for Boolean circuits

    Full text link
    We prove an average-case depth hierarchy theorem for Boolean circuits over the standard basis of AND\mathsf{AND}, OR\mathsf{OR}, and NOT\mathsf{NOT} gates. Our hierarchy theorem says that for every d2d \geq 2, there is an explicit nn-variable Boolean function ff, computed by a linear-size depth-dd formula, which is such that any depth-(d1)(d-1) circuit that agrees with ff on (1/2+on(1))(1/2 + o_n(1)) fraction of all inputs must have size exp(nΩ(1/d)).\exp({n^{\Omega(1/d)}}). This answers an open question posed by H{\aa}stad in his Ph.D. thesis. Our average-case depth hierarchy theorem implies that the polynomial hierarchy is infinite relative to a random oracle with probability 1, confirming a conjecture of H{\aa}stad, Cai, and Babai. We also use our result to show that there is no "approximate converse" to the results of Linial, Mansour, Nisan and Boppana on the total influence of small-depth circuits, thus answering a question posed by O'Donnell, Kalai, and Hatami. A key ingredient in our proof is a notion of \emph{random projections} which generalize random restrictions

    Average-case complexity of detecting cliques

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 79-83).The computational problem of testing whether a graph contains a complete subgraph of size k is among the most fundamental problems studied in theoretical computer science. This thesis is concerned with proving lower bounds for k-CLIQUE, as this problem is known. Our results show that, in certain models of computation, solving k-CLIQUE in the average case requires Q(nk/4) resources (moreover, k/4 is tight). Here the models of computation are bounded-depth Boolean circuits and unbounded-depth monotone circuits, the complexity measure is the number of gates, and the input distributions are random graphs with an appropriate density of edges. Such random graphs (the well-studied Erdos-Renyi random graphs) are widely believed to be a source of computationally hard instances for clique problems (as Karp suggested in 1976). Our results are the first unconditional lower bounds supporting this hypothesis. For bounded-depth Boolean circuits, our average-case hardness result significantly improves the previous worst-case lower bounds of Q(nk/Poly(d)) for depth-d circuits. In particular, our lower bound of Q(nk/ 4 ) has no noticeable dependence on d for circuits of depth d ; k- log n/log log n, thus bypassing the previous "size-depth tradeoffs". As a consequence, we obtain a novel Size Hierarchy Theorem for uniform AC0 . A related application answers a longstanding open question in finite model theory (raised by Immerman in 1982): we show that the hierarchy of bounded-variable fragments of first-order logic is strict on finite ordered graphs. Additional results of this thesis characterize the average-case descriptive complexity of k-CLIQUE through the lens of first-order logic.by Benjamin Rossman.Ph.D

    A Near-Optimal Depth-Hierarchy Theorem for Small-Depth Multilinear Circuits

    Full text link
    We study the size blow-up that is necessary to convert an algebraic circuit of product-depth Δ+1\Delta+1 to one of product-depth Δ\Delta in the multilinear setting. We show that for every positive Δ=Δ(n)=o(logn/loglogn),\Delta = \Delta(n) = o(\log n/\log \log n), there is an explicit multilinear polynomial P(Δ)P^{(\Delta)} on nn variables that can be computed by a multilinear formula of product-depth Δ+1\Delta+1 and size O(n)O(n), but not by any multilinear circuit of product-depth Δ\Delta and size less than exp(nΩ(1/Δ))\exp(n^{\Omega(1/\Delta)}). This result is tight up to the constant implicit in the double exponent for all Δ=o(logn/loglogn).\Delta = o(\log n/\log \log n). This strengthens a result of Raz and Yehudayoff (Computational Complexity 2009) who prove a quasipolynomial separation for constant-depth multilinear circuits, and a result of Kayal, Nair and Saha (STACS 2016) who give an exponential separation in the case Δ=1.\Delta = 1. Our separating examples may be viewed as algebraic analogues of variants of the Graph Reachability problem studied by Chen, Oliveira, Servedio and Tan (STOC 2016), who used them to prove lower bounds for constant-depth Boolean circuits

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Near-optimal small-depth lower bounds for small distance connectivity

    Get PDF
    We show that any depth-dd circuit for determining whether an nn-node graph has an ss-to-tt path of length at most kk must have size nΩ(k1/d/d)n^{\Omega(k^{1/d}/d)}. The previous best circuit size lower bounds for this problem were nkexp(O(d))n^{k^{\exp(-O(d))}} (due to Beame, Impagliazzo, and Pitassi [BIP98]) and nΩ((logk)/d)n^{\Omega((\log k)/d)} (following from a recent formula size lower bound of Rossman [Ros14]). Our lower bound is quite close to optimal, since a simple construction gives depth-dd circuits of size nO(k2/d)n^{O(k^{2/d})} for this problem (and strengthening our bound even to nkΩ(1/d)n^{k^{\Omega(1/d)}} would require proving that undirected connectivity is not in NC1.\mathsf{NC^1}.) Our proof is by reduction to a new lower bound on the size of small-depth circuits computing a skewed variant of the "Sipser functions" that have played an important role in classical circuit lower bounds [Sip83, Yao85, H{\aa}s86]. A key ingredient in our proof of the required lower bound for these Sipser-like functions is the use of \emph{random projections}, an extension of random restrictions which were recently employed in [RST15]. Random projections allow us to obtain sharper quantitative bounds while employing simpler arguments, both conceptually and technically, than in the previous works [Ajt89, BPU92, BIP98, Ros14]

    Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

    Get PDF
    We give the best known pseudorandom generators for two touchstone classes in unconditional derandomization: an ε\varepsilon-PRG for the class of size-MM depth-dd AC0\mathsf{AC}^0 circuits with seed length log(M)d+O(1)log(1/ε)\log(M)^{d+O(1)}\cdot \log(1/\varepsilon), and an ε\varepsilon-PRG for the class of SS-sparse F2\mathbb{F}_2 polynomials with seed length 2O(logS)log(1/ε)2^{O(\sqrt{\log S})}\cdot \log(1/\varepsilon). These results bring the state of the art for unconditional derandomization of these classes into sharp alignment with the state of the art for computational hardness for all parameter settings: improving on the seed lengths of either PRG would require breakthrough progress on longstanding and notorious circuit lower bounds. The key enabling ingredient in our approach is a new \emph{pseudorandom multi-switching lemma}. We derandomize recently-developed \emph{multi}-switching lemmas, which are powerful generalizations of H{\aa}stad's switching lemma that deal with \emph{families} of depth-two circuits. Our pseudorandom multi-switching lemma---a randomness-efficient algorithm for sampling restrictions that simultaneously simplify all circuits in a family---achieves the parameters obtained by the (full randomness) multi-switching lemmas of Impagliazzo, Matthews, and Paturi [IMP12] and H{\aa}stad [H{\aa}s14]. This optimality of our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs for AC0\mathsf{AC}^0 and sparse F2\mathbb{F}_2 polynomials
    corecore