56 research outputs found

    Data Driven Prediction Architecture for Autonomous Driving and its Application on Apollo Platform

    Full text link
    Autonomous Driving vehicles (ADV) are on road with large scales. For safe and efficient operations, ADVs must be able to predict the future states and iterative with road entities in complex, real-world driving scenarios. How to migrate a well-trained prediction model from one geo-fenced area to another is essential in scaling the ADV operation and is difficult most of the time since the terrains, traffic rules, entities distributions, driving/walking patterns would be largely different in different geo-fenced operation areas. In this paper, we introduce a highly automated learning-based prediction model pipeline, which has been deployed on Baidu Apollo self-driving platform, to support different prediction learning sub-modules' data annotation, feature extraction, model training/tuning and deployment. This pipeline is completely automatic without any human intervention and shows an up to 400\% efficiency increase in parameter tuning, when deployed at scale in different scenarios across nations.Comment: Accepted by the 31st IEEE Intelligent Vehicles Symposium (2020

    A Changing Landscape:On Safety & Open Source in Automated and Connected Driving

    Get PDF

    A Changing Landscape:On Safety & Open Source in Automated and Connected Driving

    Get PDF

    Deep Learning Based Malware Classification Using Deep Residual Network

    Get PDF
    The traditional malware detection approaches rely heavily on feature extraction procedure, in this paper we proposed a deep learning-based malware classification model by using a 18-layers deep residual network. Our model uses the raw bytecodes data of malware samples, converting the bytecodes to 3-channel RGB images and then applying the deep learning techniques to classify the malwares. Our experiment results show that the deep residual network model achieved an average accuracy of 86.54% by 5-fold cross validation. Comparing to the traditional methods for malware classification, our deep residual network model greatly simplify the malware detection and classification procedures, it achieved a very good classification accuracy as well. The dataset we used in this paper for training and testing is Malimg dataset, one of the biggest malware datasets released by vision research lab of UCSB
    • …
    corecore