

A Changing Landscape

Citation for published version (APA):
Kochanthara, S. (2023). A Changing Landscape: On Safety & Open Source in Automated and Connected
Driving. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Eindhoven
University of Technology.

Document status and date:
Published: 17/03/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/5e2a8664-aaa0-488f-9986-c050e1645cef

cyan magenta yellow black

Spine width choice of paper duplex printed on:
90 grams HVO WIT # pages : 100 x 5.95 = spine width in mm
90 grams BIOTOP # pages : 100 x 6.40 = spine width in mm
90 grams G-PRINT # pages : 100 x 4.70 = spine width in mm

A Changing Landscape:
On Safety & Open Source

in Automated and Connected Driving
PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens,
voor een commissie aangewezen door het College voor Promoties,

in het openbaar te verdedigen op vrijdag 17 maart 2023 om 13:30 uur

door

Sangeeth Kochanthara

geboren te Vattamkulam, Kerala, India

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de pro-
motiecommissie is als volgt:

voorzitter: prof.dr. E.R. van den Heuvel
promotor: prof.dr. M.G.J. van den Brand
copromotoren: dr. Y. Dajsuren EngD, dr.ir. L.G.W.A. Cleophas
leden: Prof.Dr.Rer.Nat.Habil. A. Wortmann (Universität Stuttgart)

dr. E. Poll (Radboud Universiteit)
prof.dr. H. Nijmeijer
prof.dr. M. Staron (Chalmers University)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

A Changing Landscape:
On Safety & Open Source

in Automated and Connected Driving

Sangeeth Kochanthara

The work in the thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research andAlgorithmics) andwas financed by the Nederlandse
Organisatie voor Wetenschappelijk Onderzoek (NWO), i-CAVE project (14897 P14-18).
IPA dissertation series 2023-01i-CAVE

Integrated Cooperative Automated Vehicles

Henk Nijmeijer
TU/e

Printed by: ADC Nederland

Cover: Designed using DALL-E2 by Ayushi Rastogi & Sangeeth Kochanthara
Finishing touches and layout by Jinan Sekhar Edathara www.jinansekhar.com

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-5673-1

An electronic version of this dissertation is available at https://research.tue.nl/

www.jinansekhar.com
https://research.tue.nl/

For my parents
— Sathidevi and Chandran

When we had no computers, we had no programming problem either.
When we had a few computers, we had a mild programming problem.

Confronted with machines a million times as powerful,
we are faced with a gigantic programming problem.

Edsger Dijkstra

ix

Contents

Summary xiii

Acknowledgments xv

1 Introduction 1
1.1 Safety of automated and connected driving software 3
1.2 Automotive software development:

A landmark shift . 4
1.3 Contributions and chapter organization 6
1.4 Reading guide and chapter origins . 10

2 Automotive Safety Requirements: A Systematic Literature Review 13
2.1 Study design . 16

2.1.1 Need for SLR . 16
2.1.2 Search strategy. 19
2.1.3 Study selection . 20
2.1.4 Quality assessment . 21
2.1.5 Data extraction and synthesis 23

2.2 Characteristics of primary studies . 24
2.3 Safety requirement elicitation processes (RQ1) 26

2.3.1 Findings . 27
2.3.2 Analysis . 34

2.4 Safety requirement elicitation techniques (RQ2) 39
2.4.1 Findings . 39
2.4.2 Analysis . 52

2.5 Implications . 54
2.6 Threats to validity . 59
2.7 Related work . 61

2.7.1 Cross domain studies. 61
2.7.2 On safety assurance . 62
2.7.3 On safety in the automotive domain 62

2.8 Conclusions . 63

x Contents

3 Assessing Safety Requirements for Connected Driving 65
3.1 Background . 67

3.1.1 Functional safety . 67
3.1.2 Safety tactics and patterns . 68
3.1.3 Architecture views . 69

3.2 Research design . 70
3.2.1 Derive FSRs for connected driving 71
3.2.2 Check fulfillment of FSRs. 74

3.3 Research method . 76
3.3.1 Derive FSRs for platooning . 78
3.3.2 Check fulfillment of FSRs . 82

3.4 Discussion . 86
3.4.1 Assumptions . 86
3.4.2 Applicability . 87

3.5 Related work . 88
3.6 Threats to validity . 90
3.7 Future work . 91
3.8 Conclusion . 92

4 Safety of Perception Systems for Automated Driving:
A Case Study on Apollo 93
4.1 Overview and context . 96

4.1.1 Apollo: an open autonomous driving platform 97
4.1.2 Operational design domain description. 100

4.2 Safety requirements elicitation . 101
4.2.1 Method. 101
4.2.2 Results . 104

4.3 Design assessment . 106
4.3.1 Method. 108
4.3.2 Results . 113

4.4 Discussion . 115
4.5 Threats to validity . 118
4.6 Related work . 119
4.7 Conclusions . 119

5 Painting the Landscape of Automotive Software in GitHub 121
5.1 Study design . 123

5.1.1 What is automotive software? 124
5.1.2 Identify automotive software projects 124
5.1.3 Selection and elimination criteria. 125
5.1.4 Identify baseline repositories . 126

Contents xi

5.1.5 Data analysis . 126
5.2 Categories and characteristics . 127

5.2.1 Approach . 127
5.2.2 Findings . 129

5.3 Software development style . 134
5.3.1 Approach . 135
5.3.2 Findings . 136

5.4 Implications . 139
5.4.1 Research . 140
5.4.2 Practice . 141

5.5 Threats to validity . 142
5.6 Related work . 143

5.6.1 Automotive software . 143
5.6.2 Non-automotive software landscape 143

5.7 Conclusions . 144

6 Conclusions 145
6.1 Future work . 147

A Appendix: Safety tactics 151

Bibliography 155

Curriculum Vitæ 189

xiii

Summary

Automobiles are the backbone of modern civilization. We depend on automobiles directly
for daily transport and indirectly for everything we use, including goods and services. Any
progress in the automotive industry can potentially improve the lives of almost all humans.

The twenty-first century automotive industry has become a software-intensive industry.
The industry landscape is changing with the paradigm shift to automated and connected
driving, predominantly enabled by software. This shift to automated driving, where a
vehicle drives itself, and connected driving, where a set of vehicles exchange information
and adapt their driving strategy for collective traffic optimizations, releases humans partially
or entirely from the driving task. The dependence on software for the driving task makes
the software that enables these technologies safety critical. This thesis focuses on the
changes in the safety landscape due to automated and connected driving and the landscape
shift to open source automotive software development.

Safety in automotive starts from safety requirements. Over the years, many processes
and techniques to elicit safety requirements have been proposed. Any systematic and
informed safety requirement elicitation, especially in the automated and connected driving
context, requires consolidation and synthesis of the knowledge of these processes and
techniques. The thesis presents a review of the state-of-the-art process and techniques
for eliciting safety requirements in the automotive domain, compares the processes, and
presents taxonomies of the techniques. The systematic literature review of 102 primary
studies found that despite the vast literature, there is a need for real-world case studies
for automated driving and safety requirement elicitation processes considering emergent
behaviors in connected driving.

The thesis introduces a new process to address the lack of a safety requirement elicita-
tion process for connected driving systems. The new process views the connected driving
system as a system of systems to identify the emergent behaviors (and hence the additional
safety requirements) visible only in the system of a systems view. Our case study on a
connected driving prototype developed at Eindhoven University of Technology (TU/e)
demonstrates the feasibility and ability of the new process to capture safety requirements
on collective behaviors that are invisible at an individual system level.

Safety requirements are as good as their usage in the various product life cycle stages
from design to deployment. This thesis presents how to use safety requirements in the
design stage (of software and system) in connected driving systems. While design anal-
ysis methods have matured and evolved over the years, their applicability for quality

xiv Summary

attribute safety in the automotive context was not studied in the literature. We extend
the most mature software design assessment method, the Architecture Trade-off Analysis
Method (ATAM), for system and software safety assessment in the automotive context.
The proposed method describes how to use different abstractions of the software and its
architecture effectively to analyze and assess the design against the safety requirements. A
proof of concept implementation of the proposed method is presented on the connected
driving prototype from TU/e. The designers of the prototype validated the results and
usability of the method.

Safety considerations in the design of the perception system are crucial in bringing
automated driving to actual roads. The perception system software, comprising tradi-
tional and machine learning components, is the part of automated driving software that
is responsible for understanding a vehicle’s environment and the relative position of sur-
rounding objects. The safety aspects of perception systems within the context of completely
automated driving are underexplored. The thesis presents the first study on the safety
assessment of the design of the perception system of a mature automated driving software
from the industry, Apollo, for its use on Dutch highways. The study showed that while all
requirements relating to traditional software are fulfilled, most requirements specific to
machine learning-based components are not.

The half-a-century-old landscape of automotive software and its development is shift-
ing from proprietary to open source. We offer a first glimpse into the automotive software
landscape in open source via an exploratory study through mining automotive software
repositories in GitHub. The study shows high participation from organizations and soft-
ware companies like Baidu, Microsoft, and start-ups leading the open-sourcing path for
automotive software development. The thesis characterizes open source automotive soft-
ware and its development style and potential implications across different dimensions,
including educators, new entrants, and stakeholders like car makers, safety certification
bodies, and vehicle users.

This research emphasizes the need for safety in automated and connected driving.
The processes, techniques, and methods discussed in this thesis are steps toward better
and safer automotive software, while the observations on the open source landscape can
contribute to better development of such software.

xv

Acknowledgments

My Ph.D. journey began with an interview with Mark van den Brand and Yanja Dajsuren.
Loek Cleophas joined the supervising team immediately after I started at TU/e. First of all,
I thank my promotor, Mark. I admire how you made me see the big picture, found creative
ways to pivot ideas, and facilitated whatever I needed from day one and throughout my
Ph.D. journey. I am often surprised by how you always find time for me from your busy
schedules, sometimes at short notice. Thanks to my co-supervisor, Loek. This thesis is
built on the many discussions, and the sheer amount of time you invested in me beyond
the usual working hours. I can’t thank you enough for your constant support and ability to
keep a realistic perspective on my (often) unrealistic deadlines. Thanks to my co-supervisor
Yanja, without whom the Ph.D. work package itself would not exist. You were always
available whenever I needed and your knowledge in automotive, architecture and soft-skills
have been of tremendous help to me. The freedom, comfort, guidance, and support for my
ambitions that you three gave me made this journey enjoyable.

I thank the manuscript committee: Andreas Wortmann, Erik Poll, Henk Nijmeijer,
and Miroslaw Staron, for reviewing the manuscript and for feedback. Your constructive
comments have made this thesis better.

In the early stages of my Ph.D., I was mentored by Reinder Bril, Venkatesh Vinayakarao,
and Jeroen Keiren. Thanks to Reinder for the discussions and pointers during the first
months of my Ph.D., which informed early decisions. Thanks to Venkatesh for continuous
encouragement and initial discussions on formal work (which is not a part of this thesis).
Our discussions shaped my writing (and initial paper structuring) process. Thanks to
Jeroen for coming in at a crucial stage in my Ph.D. I have learned most of my knowledge
of systematic thinking, formulation, and presentation of mathematical proofs from you.

Thanks to my collaborators and colleagues from the industry, Arash Khabbaz Saberi
(also a former Ph.D. in the SET group) and Alexandru Forrai. It was a pleasure working
with you, and the success of these projects forms part of this thesis.

I want to thank the master’s students I supervised: Tajinder Singh and Niels Rood,
whose persistence and motivation extended beyond their master’s thesis, and their work
has contributed to this dissertation. I also want to acknowledge the bachelor students
I mentored: Thijs Wester, Jari Martens, Sabine Havermans, Tim van Lankveld, Kevin
Malkow, Priyatam Sai, and Kumar Tej, who (indirectly) contributed to the connected
driving prototype at TU/e.

xvi Acknowledgments

Thanks to Magiel Bruntink, Alex Serban, Tom van der Sande, Frans Hoogeboom, and
Robbin van Hoek for being part of the team, the discussions, and creating the connected
driving demonstrator which was used in this thesis.

Thanks to my master supervisors Rahul Purandare, Geoffrey Nelissen, and David
Periera. Without them, I would not have entered the research track in my career in the first
place. The amount of feedback and mentoring I received formed the basis of all decisions I
took during my Ph.D. journey. Special thanks to Geoffrey for his valuable advice beyond
the Ph.D. and the interesting conversations.

To the amazing colleagues who made my time in Eindhoven fun, colorful, and enjoyable.
Special thanks to Rick Erkens; I always enjoyed the coffee chats, your cooking, teaching
me whatever I know about coffee brewing, and helping with the teaching. Thanks to
Lina Ochoa Venegas, Nan Yang, Mauricio Verano Merino, Daniela Girardi, Felipe Ebert,
Miguel Botto Tobar, Tukaram Muske, and Kousar Aslam for being so kind to me. I will
always remember our tons of chats, dinners, walks, and making me taste authentic cuisines.
Thanks to Thomas Neele for your special pancakes; you were my go-to person to navigate
the Dutch system. Thanks to Maurice Laveaux, you were my go-to person for my questions
on typesetting the thesis and many Dutch translations.

I also thank current and former Ph.D. candidates and Postdocs of SET, FSA, and security
groups, including Önder Babur, Wessley Silva Torres, Nathan Cassee, David Manrique
Negrin, Mahdi Saeedi Nikoo, Hossain Muhammad Muctadir, Priyanka Karkhanis, and
Sowmya Ravidas. It was a pleasure sharing office with some of you, attending multiple
official and casual events together, SubSET meetings. You always made me feel home at
Eindhoven.

Thanks to Gökhan Kahraman, Mohamoud Talebi, Mark Bouwman, Rodin Aarssen,
Josh Mengerink, Jouke Stoel, Omar Alzuhaibi, Dana Zhang, Yaping Luo, Sander de Putter,
Alexandar Fedorov, Ana-Maria Sutii, Ulyana Tikhonova, Muhammad Osama, Olav Bunte,
Anna Stramaglia, Tom Franken, Ferry Timmers, Fei Yang, JanMartens, Flip van Spaendonck,
Lars van denHaak, and Satrio Rukmono for the fun interactions at SET and FSA colloquiums
and Ph.D. meetings. I also thank colleagues from the PhD-PDEng council with whom I
co-organized several events, including a marathon and Christmas gifts.

Thank you Bas Luttik, Ion Barosan, Tim Willemse, and Erik de Vink for the many
corridor chats. Assisting in the teaching of Bas’s Logic and Set Theory course taught me a
new way of thinking and making proofs.

Thanks to the group secretaries Margje Mommers-Lenders, Agnes van den Reek, and
Désirée van Oorschot for helping with organizational tasks.

Alexander Serebrenik has been very kind to me and always offered a new perspective
from an empirical and statistical standpoint. Thanks to Eleni Constantinou, our chats and
the road trip in Cyprus, and your amazing company; you are one of the super cool people I
have ever met. Thanks to Gunnar Kudrjavets, your special way of wittiness while at the
same time being profound and how you care for others have been something I cannot wrap

Acknowledgments xvii

my head around yet. Tijs van der Storm, although we had fewer conversations, I really
enjoyed them. Thanks to Sampi and Joseph, our night outs and chats on job search was
comforting.

Thanks to the dear ones Rifat, Gitika, Subin, Akhisha, Vineesh, Devika, Kiran, Shilpa,
Amal, Vishnu, Arunitha, Subash, Babu, Shaneesh, Rishija, Vipin, Alseena, and Shafeeq.
With all the trips, countless dinner parties, badminton, card games, and help I received in
difficult times, I know I can always lean on you folks. When I arrived in Eindhoven for the
first time without a place to stay, Subin offered to share his place until I got a place. Rifat,
you have been so supportive and encouraging and our get-togethers, and regular chats,
helped me keep sane throughout the Ph.D. journey. It was an honor to be your paranymph
and best man. Kiran, you have been a great friend, and I have learned a lot from your
suggestions and view of life. I admire how Vishnu handles the worst of situations with
a laugh. Vineesh, I don’t understand how you manage to be so calm and carry yourself
without worrying about anything. The tons of advice from Shaneesh and Babu and helping
hands at crucial moments at short notice by Alseena and Shafeeq always made me feel at
home in the Netherlands. I thank all my friends whose names I could not mention explicitly.
You all have been a source of constant support and encouragement and I know that you
always will be!

What I missed most in the Netherlands was my family. The two people who changed it
are my “Dutch Parents” Thea and Cris. Any form of thanks would not be enough to convey
my gratitude and admiration for both of you and the way you both supported me, showing
me a different side of life, love, and patience. Thanks to Corry, Ronald, Marjan, and Jaap
Jan for the tea parties and for bearing with us and our super broken Dutch.

None of this could have been possible without the constant support, trust, faith, and
everything that Amma, Achan, and Kavitha have done for me. I would have been doing
some mundane job and would not have landed in the Netherlands itself. You all have
encouraged and supported me so much throughout my life that no amount of payback
will ever be enough. I am grateful for your support with my choices, many of which I
know are against your intuitions, and your unconditional love is irreplaceable in the entire
world. Thanks to my in-laws (Mummy and Papa) and Didi, who are always supportive and
accommodating, gave me a helping hand whenever I needed it; and went beyond their
belief system for me. I hope that I will be able to make you all proud.

Last but not least, to my better half Ayushi, I don’t know where to start! You stood with
me during happy and challenging times, instilling confidence, encouraging me, supporting
my ambitions, and making me stable. If it were not for you acting as a supporting pillar
beyond what I could ask for, I would not have survived the Ph.D. journey. A gazillion
thanks will not be enough.

Sangeeth
Assen, January 2023

1

1

1
Introduction

A utomobiles are an inevitable part of modern human civilization. An estimated 1.4 Bil-
lion vehicles were on roads around the globe in 2019.1 A cumulative 71 billion human

hours are spent on roads in a year in the United States alone.2 Thus, any advancement in
the automotive domain can potentially improve the lives of almost every human being.

The automotive industry, worth 3 trillion dollars3 with 66 million+ cars sold every year
in the past decade,4 has transitioned from an electro-mechanical to a software intensive one.
In 2020, the software in a car and hardware it runs on is estimated to cost from US$4,800
up to US$10,650.5 By 2030, this cost is expected to double forming an estimated 50% of the
total car cost, as shown in Figure 1.1.6

Software-centered business models are emerging and finding success for the first time
in the automotive industry. An example is Tesla Motors, which provides its advanced
driver-assistance software (called Autopilot) as a service and separately bills based on the
features opted by the user, above the cost for the car itself (such services may contribute
up to 20% of the total cost). In the 2020s, the success of a vehicle in the market depends
more on innovations in software than on the mechanical side, with 90% of all upcoming
innovations in the industry expected from software and its engineering [1]. This thesis
focuses on automotive software and its engineering.

The history of automotive software dates back to 1978 with the introduction of the
first-ever electronic control unit (special purpose computer) in a car by General Motors [2].
1https://drivetribe.com/p/how-many-cars-are-there-in-the-dqbpAzrATLOOSgDfRrgkjQ?iid=B8Prt7paR3G7Rf82CnLLTA
2https://wtop.com/dc-transit/2019/02/highway-stars-survey-shows-americans-spent-71-billion-hours-on-the-open-
roads-in-a-year/

3https://www.washingtonpost.com/business/cars-are-suddenly-worth-3-trillion-and-its-not-all-tesla/2021/12/29/
0d9deaf2-68a8-11ec-9390-eae241f4c8b1_story.html

4https://www.statista.com/statistics/200002/international-car-sales-since-1990/
5https://www.eetimes.com/projections-for-rising-auto-software-cost-for-carmakers/
6https://www.statista.com/statistics/277931/automotive-electronics-cost-as-a-share-of-total-car-cost-worldwide/

https://drivetribe.com/p/how-many-cars-are-there-in-the-dqbpAzrATLOOSgDfRrgkjQ?iid=B8Prt7paR3G7Rf82CnLLTA
https://wtop.com/dc-transit/2019/02/highway-stars-survey-shows-americans-spent-71-billion-hours-on-the-open-roads-in-a-year/
https://wtop.com/dc-transit/2019/02/highway-stars-survey-shows-americans-spent-71-billion-hours-on-the-open-roads-in-a-year/
https://www.washingtonpost.com/business/cars-are-suddenly-worth-3-trillion-and-its-not-all-tesla/2021/12/29/0d9deaf2-68a8-11ec-9390-eae241f4c8b1_story.html
https://www.washingtonpost.com/business/cars-are-suddenly-worth-3-trillion-and-its-not-all-tesla/2021/12/29/0d9deaf2-68a8-11ec-9390-eae241f4c8b1_story.html
https://www.statista.com/statistics/200002/international-car-sales-since-1990/
https://www.eetimes.com/projections-for-rising-auto-software-cost-for-carmakers/
https://www.statista.com/statistics/277931/automotive-electronics-cost-as-a-share-of-total-car-cost-worldwide/

1

2 1 Introduction

Figure 1.1: Cost of electronic systems in a vehicle. Figure credits:
"https://spectrum.ieee.org/software-eating-car"

Fast forwarding to the 2020s, high-end cars like those in the BMW 7 series might contain
150 electronic control units [1] (see an indicative figure in Figure 1.2). A pickup truck like
the Ford F-150 runs on 150 million lines of code7. Even lower end vehicles are nearing 100
million lines of code. With such code volumes, today’s cars surpass modern airplanes, the
Large Hadron Collider, the Android OS, and Facebook’s front-end software in code size by
a considerable margin.8

The industry is undergoing arguably the most significant paradigm shift since its
inception with the advent of automated and connected driving. In automated driving, the
vehicle takes over part of or the complete driving task from humans. In connected driving,
the collective traffic behavior of a set of vehicles is optimized by communication among
the vehicles and smart traffic infrastructure. In this context, this dissertation explores two
primary directions:

1. the safety of automated and connected driving software, further detailed in Sec-
tion 1.1;

2. a new landmark shift in automotive software development with the move to open
source, elaborated in Section 1.2.

7https://cmte.ieee.org/futuredirections/2016/01/13/guess-what-requires-150-million-lines-of-code/
8Note that a higher code volume does not necessarily mean higher software complexity (the most advanced
fighter jet–F35–has 35 million lines of code, but is arguably more complex). Some reasons for the magnitude
of code volumes in automobiles might be: (a) less strict quality requirements leading to unreachable code; (b)
the current style of automotive software development where the car maker does not have access to the source
code of individual ECUs leading to sub-optimal code; (c) thin profit margins, the higher speed to market and the
shorter cycle time of software features [3].

https://cmte.ieee.org/futuredirections/2016/01/13/guess-what-requires-150-million-lines-of-code/

1.1 Safety of automated and connected driving software

1

3

Figure 1.2: Electronic control units (special purpose computers) and their function. Figure
credits: [4]

1.1 Safetyofautomatedandconnecteddriving soft-
ware

Automobiles are safety-critical systems, meaning that a failure or malfunction may result
in death or injury to users and other traffic participants and can damage infrastructure.
For instance, software not functioning as intended led to the death of a pedestrian in the
infamous Uber self-driving car crash.9 Defects and failure of automotive parts are estimated
to be the reason for 120,000 accidents every year.10

In the 2020s, one of the primary reasons for vehicle safety-related issues is the failure
or malfunction of software and hardware that runs it. Recalls exemplify this trend. Recalls
are requests from a manufacturer to return a product, typically after discovering safety
issues. 2018 was a record-setting year when defects related to software and electronics
9https://www.ntsb.gov/news/press-releases/Pages/NR20191119c.aspx
Note that the investigation by the National Transportation Safety Board of the United States concluded that the distracted
emergency driver did not take over the driving task and such a take over could have avoided the incident. Uber or their
autonomous driving system was not charged. However, the automated driving stack could not accomplish its task of either
stopping or maneuvering the vehicle to avoid the crash.

10https://www.peakefowler.com/vehicle-accidents-caused-by-defective-auto-parts/

https://www.ntsb.gov/news/press-releases/Pages/NR20191119c.aspx
https://www.peakefowler.com/vehicle-accidents-caused-by-defective-auto-parts/

1

4 1 Introduction

that run the software formed the reason for the highest proportion ever of all reasons for
recalls in the United States (17.8 million out of 47.2 million total recalled vehicles). 11

Every year since 2018 software related defects formed one of the top 3 reasons in the
United States for recall.12 Just in the ten months July 2021–April 2022, 390+ crash incidents
(leading to 6 deaths and 5 serious injuries) were officially reported to be linked to advanced
driver assistance systems and their software.13

Software related safety issues can be caused by multiple factors. Some factors are:

• System or sub-system failures [5];

• Performance limitations (e.g., due to weather) or insufficient situational aware-
ness [6];

• Insufficiencies of specification [6] and deficiencies in specified driving behavior [7];

• Incorrect and inadequate human-machine interface design (leading to inappropriate
user situational awareness, e.g., user confusion, user overload, user inattentive-
ness) [6, 8]; and

• Attack exploiting vehicle security vulnerabilities [9, 10].

This thesis focuses on the first two types of safety issues. Each of the above factors can
be considered in different stages of the product life cycle including requirements, design,
development, validation & verification, and deployment. This thesis considers the first two
stages: requirements and design.

1.2 Automotive software development:
A landmark shift

In its 40+-year-old history, automotive software has been primarily developed in closed
source. Closed source software, also known as proprietary software, in the context of
this thesis, refers to software where the source code of the software is not made available
publicly or not developed publicly. Thus, the access to automotive software to academics,
educators, beginners, and even within a company was limited. This thesis shows that for
the first time in history, automotive software, at scale, across the industry, is starting to be
developed in open source.

With software being at the center stage of the automotive industry, the move to open
source can revolutionize the industry and has potential implications across the board,
including on vehicle users, educators, researchers, practitioners, companies, and safety
certification bodies.
11https://www.recallmasters.com/2018-recalls/
12Based on the recall data from https://www.recallmasters.com
13https://www.nytimes.com/2022/06/15/business/self-driving-car-nhtsa-crash-data.html

https://www.recallmasters.com/2018-recalls/
https://www.recallmasters.com
https://www.nytimes.com/2022/06/15/business/self-driving-car-nhtsa-crash-data.html

1.2 Automotive software development:
A landmark shift

1

5

Figure 1.3: A word cloud formed from the content of this thesis (Source: wordclouds.com)

1

6 1 Introduction

From a vehicle user and educator perspective, this is the first time they will be able
to have broad access to the source code of software that goes inside future vehicles as
well as free access to the tools that build them. From researchers’ perspective, for the
first time, they can compare the software and its development across companies with
the detailed development data available via open-source development platforms. Before
open-sourcing, practitioners have been in the knowledge silos of their own company/team
with little knowledge of how the rest of the teams and companies develop their software.
Open-sourcing has the potential to democratize this landscape. For companies, including
car makers (otherwise known as original equipment manufacturers), their suppliers, and
tool vendors, open-sourcing provides the potential to attract talent, gain traction for their
product, as well as elicit community participation. For safety certification bodies, this open-
sourcing trend acts as a new challenge and an opportunity to ensure software, especially
safety-critical software, is developed appropriately.

With such broad implications across many dimensions, studying open-source automo-
tive software is important for the industry as a whole and every stakeholder involved. This
thesis provides a first glimpse of automotive software and its development in open source.

A word cloud formed from the content of this thesis that succinctly represents the main
topics is presented in Figure 1.3.

1.3 Contributions and chapter organization
This thesis is primarily centered around two topics: safety of automotive software (functional
safety and safety of intended functionality) and automotive software in open source. The
contributions in this thesis are presented by answering seven research questions (RQ 1.1
to RQ 4), grouped into four categories. The first three categories (six research questions)
address the safety side, while the last category (remaining research question) addresses
automotive software in open source. The research questions and the resulting contributions
are described below.

RQ1.1: What processes are used for or applicable to safety requirement elicitation
in the automotive domain?

RQ 1.2: What techniques are used for safety requirement elicitation in the
automotive domain?

Automotive systems differ from other safety-critical systems with high competition,
yearly release cycles, and the price-sensitive nature. Another key difference is that the
operator (driver) is not trained to handle safety-critical issues. Safety-critical domains like
aviation, space, and nuclear always rely on highly trained operators. Also, the industry

1.3 Contributions and chapter organization

1

7

is moving towards automated driving, thereby eliminating the operator from the loop,
making automotive vehicles autonomous systems working among humans and human-
operated non-automated driving vehicles. RQ 1.1 and RQ 1.2 focus on the technical
aspects of safety requirement elicitation for the automotive domain, including different
processes, their steps, techniques to perform these steps, and use cases where each process
can be applied. We answer RQ 1.1 and RQ 1.2 in Chapter 2. By answering RQ 1.1, we
intend to identify, summarize, and compare the various end-to-end processes for safety
requirement elicitation. In RQ 1.2, we dive deeper into the techniques (used for different
steps in requirement elicitation processes) and compare and taxonomize them. The major
contributions presented in Chapter 2 are:

• A summary, analysis, and synthesis of the body of knowledge in safety requirement
elicitation for the automotive domain through a systematic literature review over 102
primary studies.

• Empirical validation of the need for a literature review via a systematic qualitative
analysis.

• The first taxonomy of processes and techniques for safety requirement elicitation in the
automotive domain.

One of the findings from answering RQ 1.1 is that existing safety requirement elicitation
processes do not consider connected driving. Even if there is a set of requirements for
connected driving, there is a lack of methods to assess these requirements in the software
architecture of the connected driving systems. In Chapter 3 we address these research gaps
by answering the following two research questions.

RQ 2.1: How to derive safety requirements for connected driving?

RQ 2.1: How to assess safety requirements in the software architecture of
connected driving vehicles?

In Chapter 3, we present a method to assess the functional safety of existing automotive
architecture for connected driving by combining methods from the safety engineering and
software architecture domains.

In Chapter 3, we primarily focus on the design phase (concept development phase
in ISO 26262) and validation of the resultant requirements in the software architecture
in the final product. In Chapter 3, we also present an application of our method to the
architecture of an academic prototype capable of connected driving. The connected driving

1

8 1 Introduction

scenario used to demonstrate our method is platooning, in which a manually driven vehicle
is autonomously followed by a train of vehicles.

In summary our contributions in Chapter 3 are the following:

• A new methodology for eliciting and assessing safety requirements for connected driving
use cases.

• A proof of concept application of the methodology on an academic prototype from
Eindhoven University of Technology.

Another finding presented in Chapter 2 is the lack of real-life case studies in the safety
requirement elicitation and assessment of automated driving. In Chapter 4, we address
this research gap by answering the following two research questions.

RQ 3.1: What safety requirements shall be fulfilled by a vehicle’s perception
system for autonomous driving in Dutch highway?

RQ 3.2: How to assess the safety requirements in the design of a perception
system?

In Chapter 4, we present a case study on the safety assessment of perception system of an
automated driving software stack from industry, Apollo [11], for its use in a segment of the
Dutch highway A270.14 Apollo is the most popular open-source automotive repository [12]
with its development history on GitHub dating back to 2017. It is currently one of the most
advanced automated driving frameworks [13] that is embraced by many of the world’s top
automakers and is used to offer automated driving services to the public.15

In Chapter 4, we focus on the perception system of Apollo. Perception refers to sensing
surroundings for semantic understanding, such as identifying traffic signs and locating
the vehicle’s position and relative position of objects around [14]. This information is
used for planning and executing the next driving decision. These perception systems are
built as a combination of machine learning (ML) based and traditional software [13, 15].
Perception systems are arguably the most evolving and relevant part of any automated
driving framework [12].

In Chapter 4, we elicit safety requirements for two classes of systems: (1) requirements
that can be assessed in the traditional software and (2) requirements specific to ML systems.
While there is a framework proposed in Chapter 3 for assessing traditional software safety
14https://www.openstreetmap.org/directions?engine=fossgis_osrm_car&
route=51.4564%2C5.5408%3B51.4657%2C5.5865#map=15/51.4610/5.5636

15https://www.engadget.com/baidu-apollo-go-robotaxi-shenzhen-141727050.
html

https://www.openstreetmap.org/directions?engine=fossgis_osrm_car&route=51.4564%2C5.5408%3B51.4657%2C5.5865#map=15/51.4610/5.5636
https://www.openstreetmap.org/directions?engine=fossgis_osrm_car&route=51.4564%2C5.5408%3B51.4657%2C5.5865#map=15/51.4610/5.5636
https://www.engadget.com/baidu-apollo-go-robotaxi-shenzhen-141727050.html
https://www.engadget.com/baidu-apollo-go-robotaxi-shenzhen-141727050.html

1.3 Contributions and chapter organization

1

9

requirements, there is no similar framework for assessing safety requirements specific to
ML systems. Therefore, we prepare a curated list of ML specific design choices relating to
safety and use them for design assessment.

In summary, contributions in Chapter 4 are the following:

• We identify 58 safety requirements specific to a Dutch highway segment of A270 that
can enable safe automated driving on highways.

• We present a repeatable method for safety requirement elicitation based on the current
industry standards and guidelines from the automotive industry consortium [5, 6, 16, 17].

• We present the first curated list of 10 ML specific design choices for assessing the quality
attribute safety.

• We assess Apollo’s perception system’s design for its use on a Dutch highway.

RQ 1.1 through RQ 3.2 and their answers in Chapters 2 to 4 explore the safety of
automotive software. RQ 4 explores another aspect: automotive software development (in
open source).

RQ 4: What characterizes automotive software projects in open source?

In Chapter 5, we answer RQ4 in the following two dimensions by analyzing ≈600
automotive and a similar count of non-automotive projects on GitHub created in a span of
12 years from 2010 to 2021:
(1) Categories & characteristics: We identify what types of automotive software projects are
open-sourced and compare them to each other. We also compare the automotive projects
to non-automotive projects. Further, we explore the characteristics of automotive projects
(e.g., size and maturity of the field) and their stakeholders (e.g., key players and affiliations).
(2) Software development styles: We investigate different aspects of software development
like collaboration (e.g., types of contributors, their contributions and interactions) and
contribution style (e.g., independent vs. dependent).

The major contributions in Chapter 5 are

• A manually curated, first-of-its-kind dataset of actively developed automotive software
and their classification along four popular dimensions, including safety-critical software
and tools [18]. This dataset facilitates the replication of this study and future explorations
into automotive software.

• A characterization of automotive software, including its temporal trends, popularity,
programming languages, user distributions, and development activities.

1

10 1 Introduction

This study shows that the automotive software landscape in GitHub is defined by
15,000+ users contributing to ≈600 actively-developed automotive software projects created
in a span of 12 years from 2010 until 2021. These projects range from vehicle dynamics-
related software; firmware and drivers for sensors like LiDAR and camera; algorithms
for perception and motion control; to complete operating systems integrating the above.
Developments in the field are spearheaded by industry and academia alike, with one in
three actively developed automotive software repositories owned by an organization. We
observe shifts along multiple dimensions, including preferred language from MATLAB
to Python and prevalence of perception and decision-related software over traditional
automotive software.

1.4 Reading guide and chapter origins
The content of this thesis is organized into two significant parts: safety of automotive
software & automotive software in open source. Each chapter in this thesis originates
from one or more papers, is self-contained, and can be read individually. The work in
this thesis is a part of an automated and connected driving research program i-CAVE
(Integrated Cooperative Automated VEhicles). The i-CAVE program intends to research
and demonstrate connected driving capabilities from ground up.

The thesis starts with an overview of the first step in ensuring safety, safety requirement
elicitation, in Chapter 2. Chapter 2 is based on the following publication.

• Sangeeth Kochanthara, Loek Cleophas, Yanja Dajsuren, Mark van den Brand. "Re-
quirements Engineering for Safety of Automotive " Submitted to a journal

Chapters 3 and 4 address the research gaps in safety requirement elicitation identified in
Chapter 2. Chapters 3 and 4 also address the safety assessment of automated and connected
driving systems along with real-life case studies.
Chapter 3 is based on:

• Sangeeth Kochanthara, Niels Rood, Arash K. Saberi, Loek Cleophas, Yanja Dajsuren,
Mark van den Brand. “A Functional Safety Assessment Method for Cooperative
Automotive Architecture”. In Journal of Systems and Software (JSS‘21)
In European Conference on Software Architecture (ECSA‘21) - Journal first track
Invited to Journal first track of the International Conference on Software Architecture
(ICSA‘22)

• Sangeeth Kochanthara, Niels Rood, Loek Cleophas, Yanja Dajsuren, Mark van den
Brand. “ Semi-automatic Architectural Suggestions for the Functional Safety of
Cooperative Driving Systems”. In International Conference on Software Architecture
(ICSA‘20) - New and Emerging Ideas track

1.4 Reading guide and chapter origins

1

11

Chapter 4 is based on:

• Sangeeth Kochanthara, Tajinder Singh, Alexandru Forrai, Loek Cleophas. "Safety of
Perception Systems for Automated Driving: A Case Study on Apollo" Under revision
at a journal

Chapter 5 presents a characterization of automotive software and its development in
open source. Chapter 5 is based on:

• Sangeeth Kochanthara, Yanja Dajsuren, Loek Cleophas, Mark van den Brand. “Paint-
ing the Landscape of Automotive Software in GitHub”. In International Conference
on Mining Software Repositories (MSR‘22) - One of the five out of 47 accepted MSR
2022 papers invited for an extended journal version

Finally, Chapter 6 concludes the thesis.

2

13

2
Automotive

Safety Reqirements:
A Systematic Literature

Review

Automotive is a 3 trillion dollar safety-critical industry. The ongoing paradigm shift from
electro-mechanical systems to software-intensive systems, the move toward automated driving,
high competition, yearly release cycles, and the price-sensitive nature set the automotive
industry apart from other safety-critical industries. As in other safety-critical industries,
ensuring safety in the automotive industry starts with safety requirements. Even though a
plethora of safety requirements elicitation processes and techniques for the automotive domain
have been proposed, to the best of our knowledge, no study characterizes them. This chapter
characterizes the state-of-the-art in eliciting safety requirements via a systematic literature
review. We select 102 primary studies from 2097 related articles. We identify and compare nine
distinct processes for safety requirement elicitation and construct taxonomies of 38 distinct
techniques used to conduct the different steps in each of these processes. This chapter can act
as a guide and ‘cheat sheet’ for beginners and practitioners to choose processes and techniques
for their projects. For researchers, this chapter provides an overview of the field, research gaps,
and future research opportunities.

This chapter is based on:
 S. Kochanthara, L. Cleophas, Y. Dajsuren, M. van den Brand. Requirements Engineering for Safety of Automotive.
Submitted to a journal

2

14 2 Automotive Safety Reqirements: A Systematic Literature Review

W ith an estimated 1.4 billion cars on the road and a direct market capitalization of 3
trillion dollars,1 the automotive industry forms a core part of modern civilization.

The century-old automotive industry is undergoing arguably the most significant paradigm
shift since its inception with (a) the move to driving automation and (b) the change of
propulsion systems from fossil fuel to electric-based, along with associated changes in the
powertrain2. These disruptions make the automotive industry a software-intensive and
electronic industry rather than a traditional electro-mechanical one. This paper focuses on
the safety of automotive software and the electronics that run the software. This is also
referred to as functional safety [5] and safety of intended functionality [6]).

There is an inadequacy in safety of automotive software and electronics that run it,
especially in comparison to electro-mechanical systems. For instance, software and related
defects led to the recall of 7.5 million and 5.5 million vehicles in the United States in
2020 and 2021, respectively. These recalls dominated the top reasons for recalls both
in the number of recalls and the number of affected vehicles.3 Another example is the
infamous Uber automated driving vehicle crash, which led to the death of a pedestrian.
NTSB’s4 investigation found that software and inadequate safety culture in developing
software and related systems were among the reasons for this crash.5 Such inadequacies in
ensuring safety can cause fatalities, economic losses, brand damage, destruction of traffic
infrastructure, and indirect (economic) losses. A fundamental step for safer automotive
software systems is incorporating safety into the automotive product life cycle right from
the requirement elicitation stage.

There are many kinds of safety requirements based on the underlying cause of the
requirement. For instance, safety requirements caused by deficiencies in specified driving
behavior [7], safety requirements relating to failure or malfunction of components (also
referred to as functional safety [5]), safety requirements resulting from functional insuffi-
ciencies of the intended functionality (also referred to as safety of intended functionality [6]).
This paper focuses on the latter two types of safety requirements, in the context of systems,
software, and hardware that runs the software. In the rest of this paper, safety requirements
refer to these two types.

Our goal is to characterize the state-of-the-art in safety requirement elicitation processes
and techniques in the automotive context via a Systematic Literature Review (SLR).

Secondary studies on safety requirement elicitation focused on: (a) the broader safety-

1https://www.bloomberg.com/opinion/articles/2021-12-29/cars-are-suddenly-worth-
3-trillion-and-it-s-not-all-tesla

2Powertrain is the set of components, including engine or motor, that generates (and possibly stores) power and
converts it to the rotation of the wheels.

3https://www.recallmasters.com/wp-content/uploads/2021/05/Infographic_2020_
smaller.png

4National Transportation Safety Board (NTSB) is a U.S. government agency for civil transportation accident
investigation.

5https://www.ntsb.gov/news/events/Pages/2019-HWY18MH010-BMG.aspx

https://www.bloomberg.com/opinion/articles/2021-12-29/cars-are-suddenly-worth-3-trillion-and-it-s-not-all-tesla
https://www.bloomberg.com/opinion/articles/2021-12-29/cars-are-suddenly-worth-3-trillion-and-it-s-not-all-tesla
https://www.recallmasters.com/wp-content/uploads/2021/05/Infographic_2020_smaller.png
https://www.recallmasters.com/wp-content/uploads/2021/05/Infographic_2020_smaller.png
https://www.ntsb.gov/news/events/Pages/2019-HWY18MH010-BMG.aspx

2

15

critical systems domain [19]; (b) practices and challenges in the development of embedded
systems [20]; (c) integration between requirement and safety engineering [21]; (d) managing
safety in mobile robotic systems [22]; and (e) safety in the context of product lines [23].
However, to our knowledge, there are no secondary studies on safety requirement elicitation
for automotive systems.

Automotive systems differ from other safety-critical systems. One difference is that
the operator (driver) is not trained to handle safety-critical issues, while other safety-
critical domains like aviation, space, and nuclear always rely on highly trained operators.
Furthermore, the industry is moving towards automated driving, thereby eliminating the
operator from the loop, making automotive vehicles autonomous systems working among
humans and non-automated driving vehicles.

This paper presents the first SLR on safety requirement elicitation for automotive
software and systems. Specifically, we focus on the technical aspects of safety requirement
elicitation, including different processes, their steps, techniques to perform these steps,
and use cases for each process.

We translate our goal into the following research questions:

RQ1: What processes are used for or applicable to safety requirement elicitation in the auto-
motive domain?
By answering RQ1, we intend to identify, summarize, and compare the various safety
requirement elicitation processes.

RQ2: What techniques are used for safety requirement elicitation in the automotive domain?
In RQ2, we dive deeper into the techniques (used for different steps in the processes) and
compare and taxonomize them.

Our primary contributions are:

• A summary, analysis, and synthesis of the body of knowledge in safety requirement
elicitation for the automotive domain through an SLR over 102 primary studies.

• Empirical validation of the need for such an SLR via a systematic qualitative analysis.

• Taxonomies of techniques for safety requirement elicitation in the automotive do-
main.

This chapter targets practitioners and researchers alike. For researchers, this study
outlines the automotive safety requirements elicitation research field, research gaps, and
future research opportunities. For practitioners, this paper provides a concise guide toward
choosing one or more processes and techniques for safety requirement elicitation in their
projects.

2

16 2 Automotive Safety Reqirements: A Systematic Literature Review

The rest of this paper is structured as follows. Section 2.1 presents this chapter’s
planning phase and design choices. Section 2.2 describes an overview of the research
landscape via qualitative metrics. Sections 2.3 and 2.4 answer our research questions and
discuss our findings. Section 2.5 elaborates implications of this chapter for research and
practice, while Section 2.6 presents validity threats. Related work is outlined in Section 2.7.
Finally, Section 2.8 concludes the paper.

2.1 Study design
The different steps in conducting an SLR can be organized into three phases: planning,
conducting, and reporting [24]. This section primarily discusses the study’s planning phase
and our design choices in detail. Reporting includes drawing conclusions, considering
threats, and disseminating results which are covered in later sections of the chapter.

The planning phase of this study is divided into the following 5 stages (based on various
guidelines [24–29]):

• Evaluate the need for this SLR (Garner et al. [25]);

• Form a search strategy (Kitchenham et al. [24], Petticrew et al. [26], and Petersen et
al. [27]);

• Create a primary studies’ selection procedure (Kitchenham et al. [24]);

• Identify quality assessment criteria for the primary studies (Kitchenham et al. [24],
Tiwari et al. [28], and Wieringa et al. [29]); and

• Extract and synthesize data and insights from primary studies (Kitchenham et al. [24]).

The rest of this section explains each of these stages in detail.

2.1.1 Need for SLR
To evaluate the need for this study, first, we conduct an initial search for secondary studies,
followed by a qualitative empirical evaluation.

For the initial search, we use the search string: “functional safety" AND (automotive*
OR vehic*) AND (“systematic map" OR “systematic mapping" OR “systematic literature"). The
search string is created by combining the topic (“functional safety"), domain (automotive*
OR vehic*), and the kind of studies we are looking for (“systematic map" OR “systematic
mapping" OR “systematic literature"). Note that we used the term “functional safety" instead
of “safety" since the former resulted in a low signal-to-noise ratio. Functional safety refers
to safety concerning (malfunction of) software and related systems. The term is universally
adopted in the automotive domain [5, 6].

2.1 Study design

2

17

●
●

●
●

●

●

●

Year

N
um

be
r

of
 a

rt
ic

le
s

2014 2015 2016 2017 2018 2019 2020
0

500

1000

1500

Figure 2.1: Number of articles in the result of Google scholar search of query: "functional
safety" AND (automotive* OR vehic* OR driv* OR automobile* OR AUTOSAR OR car). The
query was performed on the 2nd of August 2021

Our Google Scholar search (on November 10th, 2020) did not identify any secondary
study that focuses on safety requirement elicitation in the automotive domain. However,
we found an SLR by Martins et al. [19] on approaches to elicit, model, specify, and validate
safety requirements in the broader context of safety-critical systems. In this SLR, automotive
formed 5.29% (8 out of 151) of all the primary studies [19]. Given the study’s broader scope
and rigor, we assumed that primary studies until 2013 are covered (since the primary
studies search was conducted in 2014). We consider this study by Martins et al. [19] as a
basis to evaluate the need for our SLR.

We evaluate the need in two steps: (1) an initial analysis of the trend in the number of
relevant publications since 2014 as shown in Figure 2.1, which indicates a positive trend;
and (2) a systematic approach for qualitative empirical evaluation, presented in the rest of
this section.

We use the 3PDF framework [25] to validate the relevance of conducting this SLR
empirically. The 3PDF framework is an empirical framework consisting of three sequential
phases. A positive outcome of all three phases ascertains the need for an SLR. Note that
the 3PDF framework [25] was originally designed to address the relevance of repeating an
existing SLR. Meanwhile, we use it to identify the significance of this study using the SLR
by Martins et al. [19] as a basis. Next, we explain the 3 phases of the 3PDF framework.

2

18 2 Automotive Safety Reqirements: A Systematic Literature Review

• Phase 1: Assess currency, aims to identify whether the research questions are already
answered by available evidence or no longer considered relevant [25, 30]. This phase
consists of the following three yes/no questions and is passed if and only if all of
them are answered positively.

1. Does the published SLR still address a current question?
Yes. The study byMartins et al. [19] focuses on safety requirement elicitation for
safety-critical systems with ≈5% of their primary studies from the automotive
domain.

2. Has the SLR had good access or use?
Yes. The prior SLR [19] has a yearly average citation count of 15.5 (with a
total citation of 62 when checked via Google Scholar on the 10th of November
2020). Citation count is a measure of access, use, and relevance [31, 32]. In
the software engineering domain, a yearly average citation of 6.82 or above is
judged as having had good access or use [31].

3. Has the SLR used valid methods and was it well-conducted?
Yes. Martins et al. [19] followed the well-established guidelines of Kitchen-
ham [24] for conducting the SLR and the work has been published in a top-tier
peer-reviewed journal from the domain.

Since all the questions are answered yes, we proceed to the next phase.

• Phase 2: Identify relevant new methods, studies, and other information. This phase
focuses on whether new information is not covered by the existing study, including
study design, evidence synthesis, and new primary studies. The phase consists of
two yes/no questions, and proceeding to the next phase needs at least one question
to be answered positively.

1. Are there any new relevant methods (in conducting the SLR)?
Yes. In addition to the approaches used in the study design of the prior SLR [19],
we add the following new methods: (a) full-text search and (b) both forward
and backward snowballing.

2. Are there any new studies or new information?
Yes. The period of our initial search is between the end of Martins et al.’s study
(2014) and 2020. This ensures that every primary study we considered is not
included in their research. Furthermore, this period experienced landscape
shifts in the automotive industry with automated and connected driving enabled
by software-intensive sub-systems [12].

Both the questions are answered with yes; therefore, we advance to the next phase.

2.1 Study design

2

19

• Phase 3: Assess the effect of updating the review. This phase aims to assess whether
the information from the new primary studies influences the conclusion compared
to the base SLR. A Yes answer to any of the two following questions empirically
validates the need for a new study.

1. Will the adoption of new methods (for conducting the SLR) change the findings,
conclusions, or credibility?
Maybe. The new methods that we adopted were full-text search and snow-
balling. Our initial set of primary studies is disjoint from the set of primary
studies considered in the prior SLR [19]. Also, snowballing has resulted in
identifying new techniques and wider adoption of some of the processes and
techniques for safety requirement elicitation, which were not evident otherwise.

2. Will the inclusion of new studies, information or data change findings, conclusions,
or credibility?
Yes. Only 5.29% of primary studies in Martins et al. [19] are from the automotive
domain. We scope our work specifically to the automotive domain. This makes
a direct comparison of our study with theirs inaccurate. Also, the study does
not differentiate or taxonomize processes and techniques or present challenges
specific to the automotive context.

Thus, the execution of the 3PDF framework empirically establishes the need for our SLR.

2.1.2 Search strategy
Our search strategy consists of identifying search keywords and multiple iterations to
compose a search string followed by automatic search. We perform both forward and
backward snowballing to widen the set of primary studies beyond the initial search.

The search string was constructed from two sets of strings, one for scoping: (automotive,
vehicle, vehicular, drive, driving) and another related to the intervention: (functional safety,
hazard, accident, risk). The final search string was formed by iterative refining (via piloting)
to reduce the amount of noise while covering as much relevant literature as possible. The
following search string was formed after several iterations:

The term “functional safety" is searched within keywords, title, and abstract AND the
following terms were searched in the full text of publications.

(automotive OR vehicle OR vehicular OR drive OR driving) AND
(hazard OR risk OR accident)

2

20 2 Automotive Safety Reqirements: A Systematic Literature Review

To identify and compose the search string, we use the PICOC (Population, Intervention,
Comparison, Outcome, Context) method [24, 26, 27] as detailed below.

• Population: peer-reviewed publications describing safety requirement elicitation
processes and techniques as well as application of such approaches to the automotive
domain [24, 26, 27].

• Intervention: processes or techniques for safety requirement elicitation [24, 26].

• Comparison: compare the different processes and techniques of safety requirement
elicitation by means of identifying the different strategies used, and their context of
application [24, 26, 27].

• Outcome: safety requirement elicitation process, different stages in the processes,
techniques used to conduct each stage, and the following aspect of each process/tech-
nique: (a) context of use, abstraction level of application, and applicable compo-
nents [24, 26, 27].

• Context: any phase in the automotive product life cycle that comprises safety re-
quirement elicitation [24].

We use the same search databases as in the related studies [19, 21]. The databases in-
cluded are IEEE Xplore, ACM Guide to Computing Literature, ScienceDirect, and Springer-
Link. Except for SpringerLink, automatic search is directly performed in the corresponding
database. Since SpringerLink does not have a feature for the intended search string, we
used broader search criteria (searching in the whole body of publications rather than title,
tags, and abstract), with which a bibliography is retrieved. A further refined search is
performed within this bibliography using the reference manager Mendeley.

Once the initial set of primary studies is finalized based on full-text reading, we applied
snowballing to gather additional studies. We applied the guidelines by Wohlin et al. [33] to
conduct backward and forward snowballing. For backward snowballing, we checked the
references of primary studies (using titles only) until no new studies were found. Likewise,
for forward snowballing, we looked at the articles (titles only) citing our primary studies
until no further studies were found. For forward snowballing, we used the ‘cited by’ feature
of Google Scholar and went through the citations to every primary study. The number of
studies considered in each of the steps mentioned above is presented in Figure 2.2.

2.1.3 Study selection
We create inclusion-exclusion criteria tailored to focus on the technical aspects of safety
requirement elicitation, which is the focus of this study. We excluded studies on other di-
mensions of safety requirement elicitation. Some examples are: (a) social and human-related
factors that play a role in eliciting requirements like meetings, reviews, communication

2.1 Study design

2

21

among different parties; (b) a combination of technical, social, and human-related factors;
and (c) processes and techniques that merge safety requirement elicitation with requirement
elicitation for other quality attributes like security.

Our inclusion and exclusion criteria are as follows:
Inclusion criteria:

I1 Any study that presents, compares, or discusses approaches (techniques, models, frame-
works, methods, processes, or methodologies) to (help) elicit safety requirements, either
used in or usable for the automotive domain.

I2 Studies relating to safety requirements in the context of safety analysis, hazard analysis,
or safety-critical standards from the automotive domain.

The exclusion criteria cover secondary studies; articles that are not written in English;
non-peer-reviewed articles (gray literature); short papers (< 4 pages); studies below a quality
threshold of 50% according to the quality assessment criteria detailed in Section 2.1.4 below;
and studies that do not explicitly specify or are not from the automotive domain.

To ensure reproducibility, we conducted an inter-rater agreement. Before the first
author selected primary studies, the rest of the authors evaluated the selection criteria. To
assess the quality of the selection process, the second and third authors independently
used the selection criteria on two disjoint random samples of the initial set of studies. The
first author independently evaluated these two sets of studies employing the same criteria,
resulting in the inter-rater agreement measured to 0.8 and 1 with the second and third
authors, respectively, according to Cohen’s kappa statistics [34]. This shows the highest
level of inter-rater agreement in both cases.6 Each disagreement between two researchers
was discussed and resolved with the intervention of a third researcher.

We followed a five-step study selection procedure as presented in Figure 2.2. We
incrementally apply the inclusion-exclusion criteria in steps 1, 3, 4, and 5. This includes
applying inclusion-exclusion criteria on the additional studies resulting from snowballing
(only 17 studies were selected after the application of inclusion-exclusion criteria on the 48
studies resulting from snowballing).

2.1.4Quality assessment
Quality assessment of primary studies is crucial (i) “to investigate whether quality differences
provide an explanation for differences in study results” ; (ii) as a “means of weighting the
importance of individual studies when results are being synthesised” ; and (iii) “to guide
recommendations for further research” [24].

We derived the quality assessment criteria from the guidelines of Kitchenham et al. [24],
Tiwari et al. [28], and Wieringa et al. [29], as summarized in the first column of Table 2.1.
6Since Cohen’s Kappa statistic being at least 0.80 is considered best agreement [35, 36].

2

22 2 Automotive Safety Reqirements: A Systematic Literature Review

Automatic Keyword Search

Step 1 530 Titles

Step 2

493 Titles

Step 3

202 Titles

Step 4

85 Titles

Step 5

102 Titles

Application of inclusion-exclusion criteria on title and abstract

Application of inclusion-exclusion criteria on full-text

Snowballing -
(a) 32 studies in backward (b) 16 studies in forward
 Total 48 studies selected for full-text reading

Science Direct
81

Springer Link
1347

IEEE Xplore
448

ACM
83

1959 Titles

Duplicate Removal

 Application of the criteria:
(1) publication date: 2014 -2020 (2) peer-reviewed
(3) title, abstract, or keywords comprises "functional safety"

Figure 2.2: Procedure to select primary studies

We chose those questions from the guidelines that apply to our list of primary studies. For
example, the question “Was there any control group present with which the treatments can
be compared” [28] does not apply to studies that present the application of a requirement
elicitation technique to an automotive component.

All the questions that form our assessment criteria have three possible answers “Yes",
“Partially," and “No," with a score of 1, 0.5, and 0, respectively. The score of each primary
study is the sum of scores for every pertinent question (see Table 2.1). We use this scoring
method to gauge the primary studies’ credibility, completeness, and relevance.

2.2 Characteristics of primary studies

2

23

2.1.5 Data extraction and synthesis
We iteratively created a digital data extraction form. We created an initial set of attributes
to be extracted from the primary studies and applied this to 10% of the initial set of primary
studies. This form was iterated based on data synthesis at 30%, 50%, and 70% (of the
initial set of primary studies) based on the categories and information emerging from data
extraction. We applied a backward pass on the prior studies in cases where extra attributes
were added to the data extraction form during the process. Finally, the following categories
of data were extracted from primary studies:

• Administrative information: Paper ID; Title; and Source.

• Literature characteristics: Authors; Year; Venue type (journal, symposium, conference,
or workshop); Venue;

• Data pertaining to RQ1: What processes are used for or applicable to safety requirement
elicitation in the automotive domain?

– What process(es) are employed, compared, or discussed?

– What is the motivation or reason to choose a specific process (or how a process
compares with other processes)?

– What are the steps followed in executing the process?

– Which component or setting is the process applied to?

• Data related to RQ2: What techniques are used for FSR elicitation in the automotive
domain?

– What are the techniques employed, compared, or discussed?

– Which high-level step (of a process) is accomplished using the specific tech-
niques used or discussed?

– What is the motivation or reason to choose a specific technique (comparison
among techniques)?

– Which component or setting is the technique applied to?

The data extraction form is a table with one column for each of the above categories and a
row for each paper.

Data synthesis was performed after aggregating the information collected using digital
forms. The data synthesis is achieved by cross-reading each column to answer the research
questions.

2

24 2 Automotive Safety Reqirements: A Systematic Literature Review

Journal
16%

Workshop
20%

Conference &
Symposium

65%

(a) Primary studies classified on type
of venues.

Industry-
academia

collaboration
35%

Industry
18%

Academia
47%

(b) Source of primary studies based on au-
thor affiliation

Dependable Systems &
Networks

5%
Electronics

9%

Other

10%

Vehicular &
Transportation

Systems

13%

Software
Engineering

20%

Safety &
Reliability
Engineering

22%

Systems Engineering

22%

(c) Primary studies categorized on domain

Figure 2.3: An overview of the publication, domain, and contribution landscapes of the
primary studies

2.2 Characteristics of primary studies
Our study selection process resulted in 102 primary studies [P1–P102]. This section presents
an overview of the publication landscape, quality, and a preliminary analysis of the primary
studies. We analyze the publication trend across venues. We also classify the studies based
on their domain and on whether the study is a contribution from industry, academia, or
both.

2.2 Characteristics of primary studies

2

25

Table 2.1: Quality assessment summary of primary studies. The bold face part shows two
aspect that only a few papers report

Percentage Yes Partially No

Aim clearly presented 100% 0% 0%
Approach clearly explained 83% 17% 0%
Clarity of application context 31% 63% 6%
Threats to validity taken to consideration 6% 1% 93%
Presence of discussion on results 46% 31% 23%
Limitations/Scope discussed 6% 9% 85%
Related work discussed 64% 27% 9%

Quality assessment of primary studies shows that most existing studies do not report
limitations and scope of their solution. We assessed the quality of each study according to
the criteria summarized in Table 2.1. On application of our quality assessment criteria, we
found that only a few papers (at least partially) report the following two aspects (highlighted
with boldface in Table 2.1): (1) threats to validity, taken into account in 7% (7 out of 102) of
primary studies; and (2) limitations, discussed in 15% (15 out of 102) primary studies. The
first observation is not surprising since only a few studies (4 out of 102) report empirical
analyses. However, with a few studies reporting scope or limitations makes the reuse and
replication of a majority of studies difficult. Our advise for future papers is to explicitly
state the limits and scope of proposed solution.

Quality assessment of primary studies

Most existing studies do not report limitation and scope, further limiting our ability
to reuse. We advise future studies to report it.

Most studies in safety requirement elicitation are published at conferences. We classified
studies based on the type of venue as shown in Figure 2.3a. Most of the primary studies (66
out of 102) are published at conferences and symposiums. Twenty studies are published in
workshops and sixteen in journals.

The publication landscape of safety requirement elicitation has substantial contributions
from industry. We classified the studies according to industry, academia, or industry-
academia collaboration contributions. Two intuitive means to identify the source of contri-
butions are (1) the affiliation of authors and (2) the source of case studies and data. The
latter is not feasible in our context since many primary studies do not explicitly specify the
source of the case study, data, or the examples they use. Therefore, we choose to classify the
source of the study based on the author’s affiliation into three categories: (1) industry, (2)

2

26 2 Automotive Safety Reqirements: A Systematic Literature Review

academia, and (3) industry-academia collaboration. If all the authors are affiliated with the
industry, then the study is considered from industry and similarly for academia. If a study
has author affiliations from both industry and academia, it is classified as industry-academia
collaboration. The resulting classification is presented in Figure 2.3b. This categorization
shows that most of the primary studies (54 out of 102) have some contributions from
industry, making the safety requirement elicitation publication landscape one with a solid
industrial contribution.

Publication landscape

A majority of studies are published in conferences and symposiums with 53% of all
studies having contributions from industry.

Safety requirement elicitation is a multi-disciplinary field of research. We examined the
domain of each primary study. We identified the domains by research areas listed on the
web page of the publication venue of each primary study. When a venue represented one
domain, publications were classified to that domain. There were also cases where a venue
represented more than one domain. Here, we chose to report the domains together if most
of the venues listed two or more areas together, like reliability engineering and safety
engineering. Otherwise, we counted the study in both areas. For this analysis, we excluded
venues like the International Conference for Convergence in Technology, which does not
have specific research areas, or venues like the International Conference on Networks,
Communication, and Computing, which specify a wide variety of unrelated domains. This
does not affect our classification since less than 1% of the primary studies are from such
venues. All the domains that cumulatively covered less than 5% of the publications were
classified as ‘other’ in the final list of domains. The resultant set of domains is presented
in Figure 2.3c. The set of domains depicted shows the multi-disciplinary nature of safety
requirement elicitation research.

Multi-disciplinarity

Primary studies span across different disciplines with a domination of software, systems,
reliability and safety engineering.

2.3 Safety reqirement elicitation processes (RQ1)
In this section, we identify, summarize, and compare processes (also referred to as method-
ologies [P32,P59]) used or discussed in the primary studies for safety requirement elicitation
in the automotive context. In our context, processes or methodologies refer to the high level
steps that describe the elicitation of safety requirements [5,6,37] [P20,P40,P46,P59,P77,P86].

2.3 Safety reqirement elicitation processes (RQ1)

2

27

For example, the safety requirement elicitation process prescribed by the industry-standard
ISO 26262 consists of four high-level steps as shown in Figure 2.4.

We organize the rest of this section into two parts. Section 2.3.1 compiles the safety
requirement elicitation processes proposed, used, or discussed in the primary studies.
Section 2.3.2 analyzes the application of the processes reported in the literature, their
temporal trend, the associated research gaps, and the upcoming domain trends.

2.3.1 Findings
The primary studies mention 9 unique processes for safety requirement elicitation. We
organize them into the following 7 categories (1⃝ - 7⃝).

Processes

There are 9 unique safety requirement elicitation processes in the automotive domain.

1⃝ ISO 26262: The ISO 26262 standard [5] forms the basis for safety requirement
elicitation in the automotive domain. One focus area of the standard is risks from systematic
and random hardware failures in automotive electronic systems and the software that runs
them (also termed functional safety). The standard is an adaptation of IEC 61508 [38] to
the automotive domain, the latter being a generic standard that outlines safety guidelines
for developing any electronic and programmable systems that carry out safety functions.

The safety requirement elicitation process outlined by the standard (ISO 26262: part-
3 [5]), highlighted by the dashed red rectangle in Figure 2.4, comprises four steps: item
definition, hazard analysis, risk assessment, and safety analysis. The item definition step
specifies the system and its boundaries on which the rest of the steps will be performed.
The hazard analysis step first identifies possible situations that can be a safety risk, followed
by safety goals to prevent harm in those situations. The risk assessment step assesses the
level of risk for each safety goal based on three factors:
(a) Exposure (frequency or probability of the safety goal violation);
(b) Controllability (in situations of safety goal violation by the driver); and
(c) Severity (of harm on violation of the safety goal). It then allocates a score from A
through D, indicating the importance of covering a safety goal during further development
steps, with D indicating the highest risk level and A the lowest. This score is called the
Automotive Safety Integrity Level (ASIL) score. Note that these safety goals have a system-
wide scope. Finally, the safety analysis step maps these safety goals to safety requirements
for individual sub-systems or components, which can then be used in developing individual
sub-systems.

2

28
2
Automotive

Safety
Req

irements:A
Systematic

Literature
Review

Specification of social safety
requirements - [P23]

Preliminary feature description

Item definition & Safety goals

Item definition

Hazard analysis:
to derive safety goals

Risk Assessment:
 ASIL allocation to Safety goals

Safety analysis:
 to generate safety requirements

Identify systemic hazards

Define control structure

Identify inadequate control actions

Identify the causes of unsafe control
actions and create safety requirements

Specification & Design

SOTIF related Hazard identification

Identification and evaluation of functional
insufficiencies and triggering conditions

SOTIF related Risk evaluation

Deriving safety requirements to reduce
risk of critical functional insufficiencies

 and/or avoid triggering conditions

 & Safety goals

Find dimensioning
hazardous events

Function
refinement

Hazard analysis

2

1 ISO 26262 [1] 5
Safety requirement elicitation

for automated driving
by Warg et al. [P82]

6 STPA [28,P38,P45,P100]

7 ISO 21448 (SOTIF) [2]

control actions

Figure 2.4: Different safety requirement elicitation processes from the automotive domain. The ISO 26262 process
(highlighted in red) forms the basis for safety requirement elicitation in the domain. The circled numbers (1⃝, 2⃝, 5⃝- 7⃝)
point to the part of Section 2.3.1 in which the corresponding methodology is discussed. Similar steps across different
processes are color-coded the same. The methodologies proposed by Schoenemann et al. [P59], Saberi et al. [P86],
and Kochanthara et al. [P32], described in 3⃝ and 4⃝ in Section 2.3.1 use the entire ISO 26262 process without any
modification (with the primary difference of partitioning the scenarios space before starting the ISO 26262 process).
Therefore, we have not presented them in the figure.

2.3 Safety reqirement elicitation processes (RQ1)

2

29

The above process, prescribed by the ISO 26262 standard, forms the basis of safety
requirement elicitation in the automotive domain. Note that we do not differentiate between
the 2018 and 2011 versions of ISO 26262 or its regional variants (for example the Chinese
GB/T 34590 safety standard, used by Zhou et al. [P85]) since the fundamental concepts
and high-level steps do not differ among them. The other processes from the primary
studies that are described in this section build on or complement ISO 26262 in various
ways, fundamentally differing from ISO 26262’s process either in its concept, model, or in
the high-level steps.

Basis

The process outlined by ISO 26262 (part-3) forms the basis of all safety requirement
elicitation processes in the automotive domain.

The rest of this section is organized as follows. Parts 2⃝ - 4⃝ describe five processes that
extend ISO 26262 requirement elicitation. After those we elaborate on three methodologies
proposed as replacement for ISO 26262 in parts 5⃝ - 6⃝. Finally, we present a process (7⃝)
that complements the ISO 26262 elicitation process.

2⃝ Social safety requirements: Gharib et al. [P21] argue that ISO 26262 does not con-
sider safety requirements specific to driver behavior, which they term as “social safety
requirements”. An example of a social safety requirement is “identify available information
concerning the driver state (e.g., head pose and motion, hands and foot location and motions)
at any point in time” [P21]. Gharib et al. [P21] propose to add a step to elicit social safety
requirements at the end of ISO 26262 requirement elicitation, as shown as a white box
below the ISO 26262 process flow in Figure 2.4. They also present an example of the
proposed extension on a maneuver assistance system to detect and respond to drivers’
unintended maneuvers. However, they did not describe any systematic method to elicit
social safety requirements.

Social safety requirements

Social safety requirements are safety requirements specific to driver behaviour, pro-
posed by Gharib et al. [P21]. Details on how to elicit these requirements are not
available.

3⃝ Safety requirements for connected driving: Connected driving refers to multiple
vehicular systems and traffic infrastructure communicating and working as a single system.
This forms a system of systems and enables collective traffic optimizations. Such a system
of systems perspective is missing in ISO 26262 [P32, P86], thus making ISO 26262 unsuited

2

30 2 Automotive Safety Reqirements: A Systematic Literature Review

for use in the connected driving context. Saberi et al. [P86] and Kochanthara et al. [P32]
propose augmentations to the ISO 26262 process for this context.

The process by Saberi et al. [P86] uses the steps for safety requirement elicitation
from ISO 26262 but is executed separately, from a system of a systems perspective. Their
extension to ISO 26262 is inspired by hazard analysis for the system of systems from other
domains [39]. Saberi et al. [P86] also partially outlines the usage of their method in the
context of a connected driving use case of trucks, where a lead truck is driven by a driver
and a sequence of other trucks autonomously follows the leader.

Kochanthara et al. [P32] suggest a two-step extension to the ISO 26262’s process,
considering the heterogeneity of connected systems. i.e., traffic infrastructure and multiple
kinds of vehicles (for example, trucks and cars or different types of cars) forming a connected
system. Their first step is partitioning the scenarios for connected driving operations into
sets of scenarios specific to each different system (vehicle) and those common to or involving
the entire connected system. Thus, a connected driving system consisting of 𝑛 distinct
types of vehicles will have 𝑛+1 sets of scenarios. Then, the ISO 26262 process is applied to
each of the 𝑛 distinct types of vehicles separately. The partitioning and applying ISO 26262
process on each of the 𝑛 distinct types of vehicles, is the first step. In the second step, the
scenarios specific to the connected system, i.e., common to the entire connected system
or involving more than one vehicle, are considered. A connected system architecture is
created using the individual systems’ (distinct types of vehicles’ and traffic infrastructure’s)
components. The connected system architecture should show the possible interactions
across the individual systems’ components. Now, the ISO 26262 method should be applied
to the entire connected system using its architecture and the scenarios specific to the
connected system. They also show the applicability of their approach in a similar use case
as in Saberi et al. [P86].

Connected driving

Connected driving refers to multiple vehicular systems and traffic infrastructure
communicating with each other and working as a single connected system. To elicit
safety requirements for connected driving, Saberi et al. [P86] and Kochanthara et
al. [P32] extends the ISO 26262 process to cover both individual-vehicle perspecitve(s)
and a connected system perspective.

2.3 Safety reqirement elicitation processes (RQ1)

2

31

4⃝ Scenario-based safety analysis for automated driving: Schoenemann et al. [P59] argue
that the number of operating situations to be considered for safety requirement elicitation
for automated driving might be unlimited, making the ISO 26262 process infeasible. Their
proposal extends the ISO 26262 process for automated driving with the abstraction of
the system’s behavior to limit the number of parameters. The proposed process starts
with decomposing the system’s functional behavior into a higher abstraction of functional
scenarios and then performing ISO 26262 safety requirement elicitation specifically for
each functional scenario. Thus, the steps (other than decomposing the system’s functional
behavior into functional scenarios) are the same as ISO 26262.

5⃝ New requirement elicitation process for automated driving: Warg et al. [P77] argue that
ISO 26262 assumes a driver for fallback in case of a malfunction or failure of a component.
At the same time, there is no driver to fall back to in the case of entirely automated
driving. To address this gap, Warg et al. [P77] present an approach based on the ideology
of adequately specifying the system and its function iteratively using their version of
hazard analysis. This process ensures that the automated driving functions are adequately
specified. It also ensures that all the relevant hazardous events related to all functions that
enable automated driving are covered. Their process differs from the one by Schoenemann
et al. [P59] (see 4⃝ above) to automated driving in two aspects: (1) Schoenemann et al. [P59]
uses the ISO 26262 process as is, while Warg et al. [P77] proposes a new iterative process to
replace it; and (2) Schoenemann et al. [P59]’s process is aimed to scale the ISO 26262 process
to an in-feasibly high number of operating situations via abstraction. At the same time,
Warg et al.’s ideology is based on iteratively defining a function and minimal representative
set of hazardous conditions.

Warg et al. proposed a new process as shown as the rightmost flow in Figure 2.4. It
differs from the ISO 26262 process in the first two steps: preliminary feature description
and new hazard analysis. The preliminary feature description step describes the proposed
feature’s anticipated benefits and initial scope. The hazard analysis step consists of two sub-
steps: finding dimensioning hazardous events and function refinement. The dimensioning
hazardous events are the sets of hazardous events that are sufficient to identify all critical
safety goals. The function refinement sub-step aims to elicit requirements for the intended
nominal functionality and define the scope of each function. Therefore, the hazard analysis
step results in (ideally) a minimal set of hazardous events and refined functionality from
the preliminary feature description.

Another significant difference between this process and ISO 26262 is that the definition
of the system and its boundaries (item definition) is an intermediate step in Warg et
al.’s [P77] process, yet it is the starting step in ISO 26262 (see Figure 2.4).

2

32 2 Automotive Safety Reqirements: A Systematic Literature Review

Automated driving

Automated driving refers to a vehicle taking over (part of the) driving and eliminating
the need for a human for (some) driving tasks. Schoenemann et al.’s [P59] and Warg et
al.’s [P77] proposes processes to address two limitations of the ISO 26262 process in an
automated driving context: (a) the possibility of unlimited number of conditions [P59]
and (b) the assumption of driver fallback which leads to inadequate specification of
functionalities, respectively.

6⃝ Systems Theoretic Process Analysis (STPA): The primary difference between STPA and
ISO 26262 is that STPA treats accidents as a control problem rather than a failure problem.
STPA is proposed for safety requirement elicitation in the general context of safety-critical
systems from a system theoretic point of view [37]. In literature, STPA has been used
in the automotive domain in two contexts: (1) as a methodology for safety requirement
elicitation that complies with the ISO 26262 standard [P33,P40,P94]; and (2) as a technique
for the steps (similar to) hazard analysis and safety analysis [P89] [6], from the ISO 26262
and ISO 21448 (described in 7⃝) processes. In this section, we discuss the former context.

STPA intends to prevent accidents by enforcing constraints on component behavior and
interactions. The underlying model of STPA promises to cover more causes of accidents
than component failures, like design errors and flawed requirements [37]. Therefore, two
dominant reasons to advocate STPA over the ISO 26262 process are: (1) the wide variety
of error types it covers (ISO 26262 only covers random hardware failures and systematic
failures) [P33]; and (2) less dependence on expert knowledge [P33,P89]. The error types
STPA covers include component failures, inadequate component interactions, software
failures, human error, and system failure [P33]. Another advantage of STPA is that expert
knowledge is not always required for requirement elicitation [P33,P89].

However, the original STPA process [37] lacks a risk assessment step. Mallya et al. [P40]
showed that the STPA process could be augmented to include a risk assessment step from
ISO 26262 as shown in flow 6⃝ STPA) in Figure 2.4. The STPA safety requirement elicitation
process itself consists of 4 steps, as shown in Figure 2.4. The first step (identify systemic
hazards) identifies the possible accidents and hazards that can cause these accidents and is
similar to the hazard analysis part of ISO 26262. The second step of defining a functional
architecture (control structure in STPA’s original terminology) includes defining the sys-
tem’s interaction with the environment and stakeholders in addition to defining the system
and its boundaries as is done in the ISO 26262 process. The third step, identifying unsafe
control actions using the functional architecture and hazards from the previous steps, is
similar to a partial merge of the hazard analysis and safety requirement elicitation steps in
ISO 26262. We mention partial merge here since identifying hazards (possible accidents)
from hazard analysis step and identifying safety requirements from safety analysis step of

2.3 Safety reqirement elicitation processes (RQ1)

2

33

ISO 26262 is not a part of identifying unsafe control actions step in STPA. These two parts
from hazard and safety analysis comes in first and last step of STPA respectively.

After third step in STPA, Mallya et al.’s augmentation [P40] adds the risk assessment
from ISO 26262. The final step is similar to the last step from ISO 26262 (safety analysis). It
identifies safety requirements based on the unsafe control actions (and their corresponding
risk level in Mallya et al.’s augmentation [P40]).

System Theoretic Process Analysis (STPA)

STPA originates from system theory rather than control theory on which ISO 26262
is based. STPA promises inclusion of requirements beyond systematic and hardware
failures (which is the scope of ISO 26262) including inadequate component interactions
and human errors.

7⃝ ISO 21448: The standard ISO 21448 [6] alternatively known as Safety of Intended
Functionality (SOTIF), is introduced to complement ISO 26262 in contexts “where proper
situational awareness is essential to safety and where such situational awareness is derived
from complex sensors and processing algorithms" [6]. The SOTIF process focuses on hazards
that do not exist because of failures, but instead because of insufficiency of specifica-
tion, performance limitations, insufficient situational awareness, incorrect and inadequate
Human-Machine Interface design, impact from active infrastructure and vehicle to vehicle
communication, and external systems [6]. Note that attacks exploiting vehicle security vul-
nerabilities, and intentional actions that violate the system’s intended use, like a substitute
hand to fool an “hands-on wheel” detection safety measure, is out of the scope of SOTIF.
Also, the standard is in its development stage, and a complete version is yet to be released
to the public.

The SOTIF safety requirement elicitation process consists of five steps, as shown in
Figure 2.4. The first step, specification and design, is analogous to the item definition step
from ISO 26262. This step consists of defining the operating environment like road surface
and climatic conditions, the system’s interactions with users and traffic participants, and
the system and its boundaries. The second step, SOTIF-related hazard identification, is
analogous to the hazard analysis step from ISO 26262 but scoped to intended functionality
rather than failure scenarios. The third step, SOTIF-related risk evaluation, is analogous
to risk assessment from ISO 26262 and is based on three aspects: occurrence frequency
of a given scenario, the severity of a triggering condition (same as in ISO 26262), and the
effectiveness of measure taken for the safety of the intended functionality. The fourth
step identifies insufficiencies of specification, performance limitations, and conditions that
trigger the limitations that could initiate hazardous behavior. The final step is deriving
safety requirements to avoid or prevent hazardous behavior.

2

34 2 Automotive Safety Reqirements: A Systematic Literature Review

ISO 21448 – Safety of Intended Functionality (SOTIF)

ISO 21448 complements the ISO 26262 process for automated driving and include
requirements relating to insufficiencies of specification, performance limitations, in-
sufficient situational awareness, incorrect and inadequate Human-Machine Interface
design, impact from active infrastructure and vehicle to vehicle communication, and
external systems.

2.3.2 Analysis
We analyze the processes presented in the prior section based on their temporal adoption
trend and context of usage. Based on this information and the comparison presented in the
preceding section, we present research gaps and upcoming domain trends.

2014 2015 2016 2017 2018 2019 20200

5

10

15

20

25

6

7

2
3

11

16

10

12

11

14

13

16

7

13

1 1
3

1 1

4
1 1 2

1 1 1
1

11

2⃝ Social Safety requirements 3⃝ Connected Driving
4⃝& 5⃝ Automated Driving 6⃝ STPA
7⃝ ISO 21448 1⃝ ISO 26262

Figure 2.5: Number of primary studies that discuss safety requirement elicitation processes
plotted across years

A process adoption’s temporal trend is an indicator of its use, in the scope of peer-
reviewed literature. A positive trend points to tooling and community support. Both of
these are essential for the application of the process in large-scale systems. The adoption
of processes across years does not indicate any apparent overall patterns as shown in
Figure 2.5. However, the number of publications that mention the usage of ISO 26262’s
process peaked in 2019 with a substantial decrease in 2020. The number of publications that
report usage of STPA first peaked in 2016, followed by a downfall and a small increase again.

2.3 Safety reqirement elicitation processes (RQ1)

2

35

1⃝ ISO 26262 7⃝
ISO 21448

6⃝ STPA 3⃝
Connected
driving

4⃝& 5⃝
Automated
driving

2⃝ Social
Safety

requirements

0

5

10

15

20

25

30

35

40

45

50

3

3

1

2

2

2 1

3

2
1 1

2

1
1

1

3

16

6

1

11

Vehicle-centric functional components

Powertrain
Battery Management System
Braking & Steering system
Fuel injection system

User-centric functional components

Human Machine Interface

Advanced driver assistance system

Advanced active safety system

Connected driving use-cases

Highly automated driving use-cases

Figure 2.6: Number of primary studies presenting the usage of different safety requirement
elicitation processes

Adopting the rest of the processes is reported primarily in the papers that describe them or
in papers by the same authors. The only exception is one paper by Stolte et al. [P66] which
reports usage of Warg et al.’s [P77] process (described in 5⃝). In summary, the application
of processes proposed by industry-specific standards dominates across years, while the
other processes proposed to extend or replace the standards do not show wide adoption
except for STPA. Note that the adoption estimates are based on the primary studies and
the real industry adoption might be different. Since industrial usage might not always be
apparent from papers published, it will have to be substantiated via future research, for
instance, using interviews or surveys.

2

36 2 Automotive Safety Reqirements: A Systematic Literature Review

High adoption of industry standard processes

ISO 26262’s safety requirement elicitation process dominates in adoption across years.
Other processes proposed to extend or replace the ISO 26262’s process do not show wide
adoption with the exception of STPA.

The practicality and limitations of processes in different use cases will only be known
by the application of the process in those use cases. Therefore, prior application contexts
are important for researchers, practitioners, educators, and beginners to identify avenues
for future research, the starting point for similar use cases, and to act as a guide for the
application of processes. For this, we first group the components and use cases where the
processes have been applied into the following six categories based on existing classification
schemes in literature [12, 40].
(1) Vehicle-centric functional components are the components necessary for the functioning
of the vehicle. Examples are powertrain, battery management system, braking and steering
system (including their safety systems such as anti-lock braking system), and fuel injection
system.
(2)User-centric functional components, which in our context is the Human-Machine Interface
(HMI), for interacting with the vehicle.
(3) Advanced driver assistance systems like adaptive cruise control, traffic jam assist, and
lane management system, which can assist a human driver in a driving task but cannot
accomplish a complete driving task on their own.
(4) Advanced active safety systems like advanced emergency braking system, collision
warning and avoidance systems, and maneuver assistance system that use multiple sensors
and sensor fusion techniques to actively ensure the safety of traffic participants.
(5) Highly automated driving use cases where the vehicle is capable of handling a complete
use-case without driver intervention like automated valet parking, automated shuttles
that can operate without a human driver on specific routes, and completely automated
driving that can drive ideally anywhere or at least in a geofenced area without the active
intervention of a human driver.
(6) Connected driving use cases like platooning where multiple vehicles form a vehicle train
with only the lead vehicle driven by a human and the rest autonomously following the
vehicle in front.
The number of articles that report safety requirement elicitation in each of the above
categories and the processes they use is plotted in Figure 2.6. The ISO 26262’s process is
used in primary studies for every category except for User-centric functional components
(HMI); STPA and ISO 21448 processes and the processes proposed for automated driving
have been reported to be used in more complex use cases (except in one study for battery
management systems) andHMI. HMI is not seen traditionally as a safety-critical component;

2.3 Safety reqirement elicitation processes (RQ1)

2

37

however, with the advent of advanced driver assistance systems, and highly automated
and connected driving, HMI is becoming safety-critical.

Essential versus Advanced functions

The ISO 26262’s process has shown to be usable for safety requirement elicitation of
essential automotive functions that do not require complex situational awareness.

Informed by the adoption, temporal trend, and comparison of processes, we point to
the following three dimensions that need further exploration. One, components and use
cases to which the current processes can be applied, but have not been presented in the
literature. Two, new contexts and emerging technologies like neural processing units and
Machine Learning (ML) based software, which might require new processes for safety
requirement elicitation. Three, the introduction of new systems outside the vehicle like
intelligent traffic infrastructure and use of the cloud for (assisting) automated driving. The
scope and criticality of these external systems will have to be quantified to identify (1)
whether they need a separate or integrated requirement elicitation and (2) whether the
existing process can be used. Next, we elaborate on each of these aspects.

The literature lacks case studies on categories like advanced active safety systems like
blind-spot detection and advanced driver assistance systems like adaptive cruise control,
as evident from Figure 2.5. These features have matured from research and development
to production and are standard features in today’s high-end cars. Upcoming technologies
currently in research and development, like highly automated and connected driving,
also lack case studies compared to other categories. The adoption of processes other
than the industry-standard processes is still low. The lower adoption makes the iterative
improvements and scope of their applicability harder to identify and hinders further
research. The majority of existing case studies on advanced systems for automated and
connected driving are rudimentary examples. The practicality of new processes presented
within the scope of these advanced systems is yet needed to be shown in practice. To
summarize, new processes proposed in primary studies need more case studies in their
respective context for conclusive verdicts on the feasibility of their application in real-world.

Case studies

There are few to no case studies that use requirement elicitation processes other than
ISO 26262 or on advanced components and use cases.

All the advanced driver-assist and safety features as well as automated and connected
driving are enabled by special-purpose hardware and software that utilizes ML. Yet neither
of the two standards ISO 26262 and ISO 21448 mentions [41] any requirements or processes

2

38 2 Automotive Safety Reqirements: A Systematic Literature Review

regarding developing neural networks for usage in such systems. The basis and underlying
model on which the requirement elicitation processes were built belonged to an era before
ML based software were mainstream. In ML based systems, the system’s behavior is
dictated by the input data and not by human written logic. The newly proposed processes
build on the basic safety requirement elicitation framework proposed by ISO 26262 and
mainly focus on the increased complexity, non-existence of driver (controllability aspect),
sufficient specification of (safety) requirements, and foreseeable misuses in the context
of automated and connected driving, rather than on the above mentioned fundamental
changes.

ML based sub-systems

Whether the current processes are sufficient to elicit safety requirements for special
purpose hardware and ML based software is an open question.

Connected driving builds on collective traffic optimization by a set of vehicles commu-
nicating with each other and external entities (roadside infrastructure) using peer-to-peer
networking or via the cloud. With the intelligent traffic infrastructure being a part of a
driving task and the cloud acting as a data intermediary or a sensor, both of them become
safety-critical components. However, the new methods proposed to elicit safety require-
ments for the connected driving context focus on the vehicles and do not consider the
safety requirements for the infrastructure involved.

Smart infrastructure and intermediaries

How to elicit safety requirements for traffic infrastructure and communication inter-
mediaries like the cloud in the context of connected driving is another open question.

The landscape shifts in the automotive industry with automated driving will also impact
safety requirement elicitation. Like the smartphone replaced three separate devices for
music, taking photos, and communication; automated driving bundles advanced tasks
together. Therefore, many of the categories specified in Figure 2.6 might be a single one in
the future. This changes prior assumptions on driver fallback and turns many non-safety
critical systems into safety-critical. For example, maps, previously a non-safety critical
part, used at human discretion, have an active role in automated driving and are sometimes
considered as a sensor. Previously, the driver was assumed to be vigilant and ready all the
time for fallback. Now, HMI can be used to decide on a driving task and for emergency
takeover, making HMI a critical safety component. The impact of such changes on safety
requirements and their elicitation is yet to be seen.

2.4 Safety reqirement elicitation techniqes (RQ2)

2

39

Blurring lines

No more separation of advanced driver assistance and safety systems; these all are
bundled together in highly automated driving.

2.4 Safetyreqirementelicitationtechniqes (RQ2)
In this section we identify, review, taxonomize, and compare techniques (also referred
to as methods [5, 37] [P20,P46,P78]) for safety requirement elicitation in the automotive
domain. Techniques or methods refer to the alternative ways to conduct each high-level
step [6, 21, 37] [P40,P46,P59,P77] in safety requirement elicitation processes as presented
in Section 2.3. For example, two widely used techniques to conduct the safety analysis step
in the ISO 26262 process (the last step in the red highlighted part of Figure 2.4) [5] are fault
tree analysis [42] (FTA) and failure mode effect analysis [43] (FMEA).

We organize the rest of this section into two parts. Section 2.4.1 present a summary
and taxonomies of techniques for safety requirement elicitation. Section 2.4.2 analyzes the
techniques, their scope, the associated research gaps, and the upcoming domain trends.

2.4.1 Findings
There are 38 distinct safety requirement elicitation techniques discussed in the primary
studies. Our taxonomy is inspired by stages in automotive product development and
the reference product life cycle from industry standards [5, 6]. In automotive product
development, the norm is to design and evaluate at the system level, then subsystem
level, followed by the design and development of the individual hardware and software
components. We follow the same structure for creating our taxonomy. Our taxonomy is
organized based on the level of application (system, software, and hardware), the usage
context (general, automated driving, and connected driving), and the scope of application
of the techniques, as shown in Tables 2.2 to 2.4. This allows easy identification of the choice
of techniques by both researchers and practitioners. We organize the entire taxonomy
of techniques based on the steps in safety requirement elicitation processes (since the
techniques are alternate ways to conduct these steps).

To group techniques based on the safety requirement elicitation steps, we must adhere
to the definitions of what each step is intended to achieve in the safety requirement
elicitation processes. However, in the literature, there is little consensus on this subject.
For example, Vilela et al. [21] use the term safety analysis to denote any technique used
in safety requirement elicitation in the larger context of safety-critical systems; while
Kolln et al. [P33], and Abdulkhaleq et al. [P89] use both the terms hazard analysis and
safety analysis to compare the same set of techniques. Since this study focuses on the

2

40 2 Automotive Safety Reqirements: A Systematic Literature Review

automotive domain, we follow the terminology from the industry standards ISO 26262 and
ISO 21448. These standards have industry consensus and wide adoption (as is evident from
the discussion in Section 2.3.2 above).

For consistency and brevity, we group techniques for similar steps of safety requirement
elicitation processes (shown with the same color in Figure 2.4) together and refer to each
group with the terms (for steps) from the ISO 26262 process. However, in our taxonomy,
we refer back to the original processes (refer to the fourth column of Tables 2.2 to 2.4
that shows our taxonomy). Note that the social safety requirement elicitation step [P20],
shown in the white box in Figure 2.4, is not similar to any of the four steps from the ISO
26262 process. We did not find any technique for this step in primary studies including the
original study itself [P20]. Therefore, we do not consider this step for our taxonomy. Also,
our taxonomy does not have the first step of the ISO 26262 process (item definition) nor
similar steps in other processes. This step (formally or informally) defines the system, its
boundaries, the environment it operates in, the traffic participants it interacts with, and the
stakeholders. Such a definition uses languages for modeling, which is a topic in itself for
another study and beyond the scope of this work. Therefore, we group techniques based
on their usage for each of the other three steps (and corresponding similar steps in other
processes shown in Figure 2.4).

We present the techniques in the following three parts (corresponding to the three
steps in ISO 26262 process): Hazard analysis, Risk assessment, and Safety analysis.
Tables 2.2 to 2.4 show our taxonomy, one for each of the three steps. The techniques
are presented in the third column of each table. The primary studies that mention these
techniques along with the corresponding process (identified from each primary study)
are presented in the fourth column. The first two columns present two dimensions of
our taxonomy, and a third dimension is specified in the caption of each table. Note that
we only considered explicitly mentioned techniques. For example, Wang et al. [P75] uses
the method of brainstorming but does not mention it explicitly; thus, the study is not
considered for the technique. In cases where a method is used for more than one step, it is
presented in all steps.

Techniques

There are 38 distinct techniques used in primary studies for safety requirement elici-
tation. We group them into three categories: hazard analysis, risk assessment, and
safety analysis. We taxonomize techniques in each category based on the application
level, usage context, and scope, as shown in Tables 2.2 to 2.4.

2.4 Safety reqirement elicitation techniqes (RQ2)

2

41

Table 2.2: Hazard analysis techniques from primary studies. All the above techniques
are reported in the corresponding primary studies with the scope of identifying/deriving
hazardous events or situations and thus deriving safety goals.

Level
of

appli-
cation

Usage
con-
text

Technique Process [Primary
studies]

System &
Software

General
1 Guide-word based brainstorming ISO 21448 & STPA [P98]

2 Failure Mode and Effect Analysis (FMEA) ISO 26262 [P84,P85]

3 Undesired Combination State Templates No process specified [P1]

4 Hazard analysis using vehicle level simulator & item
functional model

ISO 26262 & ISO
21448 [P62]

Automated
Driving

5 Situation/Scenario Analysis & Brainstorming
ISO 26262 [P96]
ISO 21448 [P34]

6 guide words based, HAZard and OPerability analysis
(HAZOP)-inspired brainstorming

ISO 21448 [P34]

7 Iterative hazard analysis and function refinement Process for automated
driving [P77]

8 Shared and multi-level hazard analysis ISO 26262 [P47]

Connected
Driving 9 Guide-word based brainstorming

Process for
connected driving [P32],
No process specified [P97]

Hardware
specific

General
10 Brainstorming ISO 26262 [P68]

11 HAZOP ISO 26262 [P15,P27]

12 FMEA ISO 26262 [P68,P76]

Automated
Driving

13 HAZOP extension to automated driving ISO 26262 [P5]

14 HAZOP based on sensor limitations to identify malfunctions ISO 21448 [P42]

Hazard analysis
The objective of hazard analysis (and similar steps) is to identify (a) (minimal set of)
hazardous events either caused by a system’s malfunctioning behavior or related to the
system’s intended functionality, (b) unsafe control actions, (c) possible accidents, and (d)
hazards that can cause the accidents. These can then be used to derive safety goals or to

2

42 2 Automotive Safety Reqirements: A Systematic Literature Review

refine the system’s functionality (see Section 2.3.1 for more details). We taxonomize hazard
analysis techniques as shown in Table 2.2 and discuss each of the techniques starting with
the simplest one.

Brainstorming (5 and 10 in Table 2.2) is a technique to identify hazardous events and
eventually safety goals for hardware, system, and software specific requirements [P34,P68,
P96]. The idea is to first think of possible scenarios and situations that can lead to potential
hazards; and then use these to identify safety goals to avoid harm in those hazardous
situations.

Guide-word based brainstorming (1 and 9 in Table 2.2) is a more structured, systematic
form of brainstorming. It uses guide-words to explore the hazardous situation space [P32,
P34,P96–P98]. Guide-words are predefined words like No and Late, which, when combined
with scenarios, can thus be used to identify potentially hazardous situations. This structured
method is shown to be applied in general [P98] and in automated [P34,P96] and connected
driving [P32,P97] contexts.

HAZard and OPerability analysis or HAZOP (11 in Table 2.2) is the technique from
which the usage of guide-words stems. In its original form, HAZOP is a structured and
systematic method with a specific documentation style. HAZOP also recommends a specific
team composition (to conduct the analysis) with certain roles inside the team [44]. HAZOP
is reportedly used in its traditional form at the hardware level [P15,P27].

Three extensions to HAZOP (6 , 13 , and 14 in Table 2.2) were proposed in the context
of automated driving [P5, P34, P42]. Martin et al. [P42] showed that HAZOP, based on
limitations of sensors like cameras and LiDARs, can be used to identify hazardous situations
related to the safety of intended functionality (14 in Table 2.2). Another extension of
HAZOP uses a skill graph as a functional model of the system with scenarios for automated
driving to find hazardous events [P5] (13 in Table 2.2). Kramer et al. [P34] uses a HAZOP-
inspired brainstorming approach using guide-words for identifying hazards in the context
of automated driving (5 in Table 2.2). They also use it in the context of safety of intended
functionality, focusing on environment triggers that can cause hazards.

Failure Mode and Effect Analysis or FMEA (2 and 12 in Table 2.2) is another traditional
and systematic technique [43]. FMEA is a bottom-up method, starting from the failure
of a component(s) and then identifying the potentially hazardous situations it can lead
to. FMEA is reported to be used for hazard analysis at system, software, and hardware
level [P68,P76,P84,P85].

Undesired combination state templates (3 in Table 2.2) is a technique proposed by
Aceituna et al. [P1] for identifying hazards which can be caused by a combination of system
components’ (and environmental) states. They argue that traditional hazard analysis
techniques like FMEA focus on hazards relating to the state of (failure of) one component
or event. The proposed method identifies hazards relating to multiple (failure) events
while reducing the number of state permutations needed in combinatorial approaches. The
technique uses templates to identify the combination of events/states (rather than a single

2.4 Safety reqirement elicitation techniqes (RQ2)

2

43

event/state in FMEA), which can lead to a potential hazard. Thus, it forms a complementary
method to the traditional hazard analysis techniques.

Iterative hazard analysis and function refinement (7 in Table 2.2) is a technique proposed
by Warg et al. [P77] that can help reach completeness of safety goals for the completely
automated driving functionality. They argue that in completely automated driving settings,
the traditional methods used for hazard analysis are insufficient to ensure safety goals’
completeness. They suggest that hazard analysis should have a broader scope to ensure
that a vehicle’s function fulfills its specifications for completely automated operation. Their
technique uses an iterative procedure using trees of hazards and operational situations
that can help reach a more complete and minimal set of safety goals than other techniques.
They use hazard analysis as an aid rather than an afterthought, when defining the scope of
vehicular functions. On the contrary, other techniques define the functions before hazard
analysis.

Shared and multi-level hazard analysis (8 in Table 2.2) is a technique proposed based
on the idea of shared responsibility in automated driving. The hazard analysis techniques
discussed above take only the vehicle (and its driver) responsible for the potential haz-
ards and associated safety goals. Monkhouse et al. [P47] suggest that automated driving
comes with shared responsibility between multiple traffic participants to avoid hazardous
situations. The study recommends performing hazard analysis considering the division of
responsibilities, and handling hazard analysis at various levels, for instance, one level for
each participant.

Hazard analysis using vehicle level simulator and item functional model (4 in Table 2.2)
is proposed to increase the accuracy and reliability of hazard analysis techniques. Most
methods mentioned above (except FMEA) do not use a detailed system model for hazard
analysis. Sini et al. [P62] and Tao et al. [P68] use simulators to model system and its
environment (item functional model) to aid hazard analysis [P62,P68].

Hazard analysis techniques

here are 12 distinct techniques for hazard analysis and similar steps discussed across
17 primary studies. Brainstorming forms the basis for a majority (1 , 5 , 6 , 9 , 10 ,
11 , 13 , and 14) in Table 2.2) of techniques. Some techniques (3 , 4 , 7 , 8 , 13 ,
and 14 in Table 2.2) are proposed by the primary studies while the rest of them use
existing techniques in the automotive context. Most of the techniques are reported in
the context of the safety requirement elicitation processes of industry standards ISO
26262 and ISO 21448.

2

44 2 Automotive Safety Reqirements: A Systematic Literature Review

Table 2.3: Risk assessment techniques from primary studies. Except for the quantitative
risk norm (fourth row in the third column), the rest of the methods are used in general
context. The quantitative risk norm is proposed and used specifically to replace the ASIL
levels in the context of automated and connected driving.

Level of
applica-
tion

Scope Technique Process [Primary
studies]

System &
Software

1

Identify/allocate
Automotive
Safety
Integrity
Level (ASIL)
for systemwide
safety goals

Usage of Controllability, Exposure, and Severity
metrics from ISO 26262

ISO 26262 [P30,P32,P39,P41]
[P62,P72,P76,P82,P85,P96]
STPA [P6,P40,P94]

Augmenting the ISO 26262 metrics with plant and
fault modeling

ISO 26262 [P84]

Identifying severity ratings using simulation No process
specified [P17]

Quantitative Risk Norm to replace ASIL ratings for
automated & connected driving

ISO 26262 [P9,P78]

2
ASIL
decomposition

High to low ASIL decomposition according to ISO
26262 guidelines

ISO 26262 [P51]

Merging ASIL allocation method from ISO 26262
with ASIL decomposition

ISO 26262 [P37]

3
Optimal
ASIL allocation
out of possible
allocation options

Genetic Algorithm with cost heuristics ISO 26262 [P3]

Tabu Search with cost heuristics ISO 26262 [P3,P102]

Penguin Search No process
specified [P93]

4
Reducing
ASIL allocation
search space

Cut-set based reduction ISO 26262 [P23]

Heuristic cost based reduction ISO 26262 [P23]

Ant colony optimization algorithm No process
specified [P24]

Hardware
specific

5 Identify/allocate
ASIL for
functional
component
(hardware)

specific safety
goals

Usage of Controllability, Exposure, and Severity
metrics from ISO 26262

ISO
26262 [P15,P27,P35,P36,
P38,P60,P63,P68,P69,P76]

6 ASIL
decomposition

Dependent Failure Analysis ISO 26262 [P83]

7 Optimal ASIL
allocation

Genetic Algorithm with cost heuristics ISO 26262 [P3]

2.4 Safety reqirement elicitation techniqes (RQ2)

2

45

Risk assessment
Risk assessment intends to allocate scores for safety goals such that the score indicates
the urgency and reliability level needed to address the safety goal. Table 2.3 shows a
taxonomy of techniques for risk assessment derived from the primary studies. Unlike
hazard assessment techniques, the risk assessment techniques have different scopes of
application, as listed in the second column of Table 2.3. We elaborate on each group of
techniques based on their scope of application.

Identification of ASILs (1 and 5 in Table 2.3) is the problem of identifying the risk
level of a safety goal. ASIL is the risk scoring scheme from the ISO 26262 standard (see
Section 2.3.1 under 1⃝ for more details). The standard also provides a metric that combines
the three individual ratings to identify the ASIL level.

These metrics are used by a majority of the studies [P6, P15, P27, P30, P32, P35, P36,
P38–P41,P60,P62,P63,P68,P69,P72,P76,P76,P82,P85,P94,P96] (first row of 1 and 5 in
Table 2.3). These studies use the metrics with the three assumed individual ratings derived
from operational scenarios.

All the studies use the metrics for their case studies except Khastgir et al. [P30]. They
explore how to improve inter-rater reliability of risk assessment while using the metrics in
ISO 26262. They look at the two following settings: one, a rerun of the same techniques by
different teams using the same data; two, with no restrictions on techniques and data (i.e. not
necessarily the same methods and data) by different teams but with the same analysis scope
and objectives [45]. They propose a rule set for risk assessment to improve the reliability of
risk assessment (the severity and controllability ratings) in the automotive context. They
conclude that subjective interpretation and resulting unreliability and variation could be
reduced using an exhaustive and explanatory rule-set [P30].

Augmenting the ISO 26262 metrics with plant7 and fault modeling (second row of 1 in
Table 2.3) is another method to reduce subjectivity of the ISO 26262 ASIL determination. The
method stems from control theory and is proposed by Zhang et al. [P84]. They propose the
use of mathematical modeling of the system and faults. Such modeling enables quantitative
analysis via simulation. This can provide sound reasoning for exposure and controllability
ratings, and evidence for the ratings can be provided by fault simulations.

Identify severity ratings using simulation (third row of 1 in Table 2.3), the usage of
formal models and physics based simulations for risk assessment. This contrasts with the
abovementioned studies, where severity level is computed based on various assumptions.
Duracz et al. propose amethod that allows computing severity levels for specific operational
scenarios with accurate bounds on all the modeled parameters like the pre-collision and
post-collision velocities, which contribute to a hazardous event [P17].

7Plant (in control theory) refers to a machine or system. Plant modeling refers to specifying the system as a
relation between output and input signals. Plant and fault modeling refers to modeling both the system and
probable faults.

2

46 2 Automotive Safety Reqirements: A Systematic Literature Review

Quantitative Risk Norm or QRN to replace ASIL ratings for automated and connected
driving (fourth row of 1 in Table 2.3) is a risk assessment scoring system proposed by
Warg et al. [P78]. They suggest that the automated driving systems’ safe behavior results
from a combination of tactical and operational decisions. Therefore, safety guarantees
can be achieved by adjusting the proactive decision-making, in addition to addressing
random and systematic failures. These two kinds of failures are independent of the traffic
situations and are the only kinds of failures the ASIL ratings takes into account [P78]. QRN
is proposed to substitute the fixed risk assessment criteria of ISO 26262. Warg et al. [P78]
suggests to define what is regarded ‘sufficiently safe’ at design time. This definition is to
used to identify discrete risk levels called consequence classes. Each consequence class
receives a total norm frequency informing how often, at most, this kind of consequence is
allowed to occur. The consequence classes along with their norm frequency is QRNs. QRNs
can be used to classify incidents into a set of incident types. Now each safety goal will be
associated with one incident type. Warg et al. [P78] demonstrate the applicability of QRN
for automated driving while Bergenhem et al. [P9] show its applicability for connected
driving.

ASIL decomposition (2 and 6 in Table 2.3) is the process of decomposing a higher
ASIL rating of a functional component by implementing the functional component with
redundancy. Here, each redundant component will have a lower ASIL rating than the
original functional component, while combined, the functionality they achieve will still
have a higher ASIL rating. The idea is that redundant components with individually higher
probability of failure will have a lower overall failure rate. Readers can refer to Park et
al. [P51] (first row in 2 Table 2.3) for an example implementation of the guideline.

Merging ASIL allocation method from ISO 26262 with ASIL decomposition (second row
of 2 in Table 2.3) is proposed by Lidstrom et al. [P37]. They argue that the allocation
and decomposition of ASILs should not be separate as specified in ISO 26262 and instead
should be merged into one. They point out that separating the two processes applies only
to systems with a specific kind of redundancy where two or more safety mechanisms
check some state and take action sequentially. Such separation is not applicable in cases of
redundancy where only one of the redundant components is operating and the other is on
standby. They propose a method to combine the allocation and decomposition of ASILs.
They apply it in the context of an actuation system for automated driving.

Dependent Failure Analysis or DFA (6 in Table 2.3) is a part of the ASIL decomposition
where a higher ASIL rating is splited to lower ASILs among a set of components. DFA [46]
is performed to ensure that a single root cause cannot lead to the failure of all the lower
ASIL components: whether the ASIL rating, when split into multiple components, does not
lead to dependent failures among the components. Young et al. [P83] propose a new scoring
system for root causes of dependent failures. This scoring system can be used to compare
failures’ root causes, which can aid ASIL decomposition. They claim that their scoring
system is more exhaustive and compelling than IEC 61508 – ISO 26262’s predecessor.

2.4 Safety reqirement elicitation techniqes (RQ2)

2

47

Optimal ASIL allocation (3 and 7 in Table 2.3) problem arises when there are multiple
ways to allocate ASIL ratings to individual components which together perform a function
(forming a functional component). According to Azevedo et al., the ASIL allocation problem
is a complex optimization problem with a vast search space of possible ASIL allocations to
individual components [P3]. They present a genetic algorithm and tabu search algorithm
with cost heuristics to find a strategy that minimizes the total cost of development and
production while meeting the desired ASIL level with the least effort [P3]. Following
Azevedo et al.’s work, Sorokos et al. [P102] also showed the application of tabu search
to ASIL, allocation in the context of a braking system. Another work in the direction of
optimal ASIL allocation is using the penguin search algorithm by Gheraibia et al. [P93].
They claim that the penguin search algorithm can produce optimal or near-optimal results
within the least amount of time and resources for the computation. Detailing these search
algorithms is beyond the scope of this chapter.

Reducing ASIL allocation search space (4 in Table 2.3) is important since, in any practical
case, the search space for finding an optimal ASIL allocation that meets the safety and cost
requirements has a huge solution space due to the combinatorial nature of the problem [P23].
Searching through this space may become impracticable in large and complex systems [P23].
Therefore Gheraibia et al. [P23] propose two solutions that can be sequentially performed
to reduce the solution space: (1) Cut-set based reduction where cut sets8 with different
orders are formed as trees with their roots and nodes as the cut sets and leaves as basic
events. The idea is to limit the possible ASIL range for a basic event (leaf node) and thus
reduce the search space by reducing the possible ASIL allocations; (2) Heuristic cost-based
reduction9 which reduces solution space by grouping the ASIL allocations to equivalence
classes and creating a priority list of the allocations in each equivalence class. Gheraibia et
al. [P24] further builds on their earlier work [P23] and adds an ant colony optimization
algorithm for further solution space reduction.

Note that techniques like FMEA and its augmentation [P11] are used to assess whether
a component or system adheres to a specific ASIL level (ASIL evaluation). This is out of
our scope since it does not belong to eliciting safety requirements but instead assesses the
fulfillment of safety requirements.

8“A cut-set is a minimal combination of failures of components, which, if they occur in conjunction, lead to a
hazard” and fault tree analysis is used to find cut sets. [P23]

9“Cost heuristics are functions that determine the cost of associating the ASILs to each component of the
system" [P23]

2

48 2 Automotive Safety Reqirements: A Systematic Literature Review

Risk assessment techniques

There are thirteen distinct techniques for risk assessment and similar steps discussed
across 34 primary studies. These are techniques to (1) identify/allocate risk scores to
safety goals; (2) decompose risk scores to multiple components; (3) identify optimal
allocation of risk scores; or (4) reduce risk score allocation space. Most studies discuss
or use techniques belonging to the first category. The only process specified for risk
assessment in all the primary studies is ISO 26262’s process.

Safety analysis
Safety analysis is the process of deriving functional safety requirements from safety goals
and allocating them to the individual components, system, software, or hardware archi-
tecture.10 A taxonomy of techniques used for safety analysis in the primary studies is
presented in Table 2.4. Now we summarize each method in the order of predominance of
usage and simplicity.

Fault Tree Analysis or FTA (1 , 5 , 8 and 10 in Table 2.4) is a top-down, tree based,
safety analysis technique that starts from a safety goal and leads to safety requirements
and their allocation to architecture components [42]. The safety goal (or a potential hazard)
is taken as the root node or top event of a tree made of logic gates as intermediate nodes.
The safety requirements form the leaf nodes of the tree. The tree is constructed top-down
from the root to the leaves. The fault tree can be qualitative (without any labels on edges
connecting the nodes) or quantitative (with the edges labelled with failure probabilities).
FTA has been applied for all levels and all usage contexts that we considered in this
chapter [P10,P14,P15,P27,P32,P35,P36,P38,P45,P48,P58,P60,P82,P86].

FTA with fault classification (9 in Table 2.4) is proposed by Dajsuren et al. [P13] for
identifying the relative contributions of different groups of faults (fault classes) to the
safety goals. They use fault classification—a key-value structure indicating the frequency of
different faults—rather than failure probabilities to label the fault tree starting with the leaf
nodes. They use this method to identify the percentage of total potential failures caused by
vehicle-to-vehicle communication faults in connected driving.

Dynamic Fault Trees or DFTs (2 in Table 2.4) are proposed by Ghadhab et al. [P92]
to augment fault trees for faithful representation of vehicle system model. They suggest
that the traditional fault trees are not sufficiently expressive for faithful representation
of vehicle system models. DFTs extend fault trees with the following four specific gates:
sequence-enforcers, for restricting sequence between children of a node; priority-and, for
indicating priority between children of a node; spare-gates, for supporting reduced or zero
10In some processes, the intermediate safety goal step is skipped, and safety requirements are directly derived
from hazardous events

2.4 Safety reqirement elicitation techniqes (RQ2)

2

49

Table 2.4: Safety analysis techniques from primary studies. All the above techniques are
reported in the corresponding primary studies with the scope of identifying/deriving safety
requirements from safety goals using architecture of the system or the specific component.

Level
of

appli-
cation

Usage
context

Technique Process [Primary
studies]

System &
Software

General

1 Fault Tree Analysis (FTA) No process specified [P10]

2 Dynamic fault trees No process
specified [P92]

3 Component integrated component fault trees No process
specified [P16]

4 Model Based Safety Analysis (MBSA)
ISO 26262 [P48,P84]
No process specified [P53]

Automated
driving

5 FTA ISO 26262 [P58]

6 Environment fault tree ISO 21448 [P34]

7 MBSA augmented with simulation No process
specified [P70]

Connected
driving

8 FTA Process for connected
driving [P32,P86]

9 FTA with fault classification ISO 26262 [P13]

Hardware
specific General

10 FTA ISO
26262 [P14,P15,P27,P35,
P36,P38,P45,P48,P60,P82]

11 Common-cause fault analysis ISO 26262 [P18,P27]

12 Failure Mode and Effect Analysis (FMEA)
ISO 26262 [P27,P35,P48]
No process specified [P53]

13 Aging FMEA ISO 26262 [P57]

14 Failure Mode Effect and Diagnostic Analysis (FMEDA) ISO 26262 [P12,P28,P45,
P50,P95]

15 FMEDA augmented with Simulation ISO 26262 [P61]

16 Dependent failure analysis ISO 26262 [P50]

2

50 2 Automotive Safety Reqirements: A Systematic Literature Review

failure rate; and functional dependencies supporting modeling feedback loops and triggers.
They show the applicability of DFTs in the case study of a vehicle guidance system.

Environment Fault Tree or EFT (6 in Table 2.4) proposed by Kramer et al. [P34] extends
fault trees to specify environmental conditions using special gates. In EFT, environmental
conditions are modeled as leaf nodes that trigger higher-level faults. EFTs classify the causes
for deviation from correct behavior to (random) hardware faults, (systemic) design faults in
hardware or software, (systemic) specification faults either due to incorrect assumptions or
lacking a structural approach. This method is specified in the context of safety of intended
functionality in automated driving.

Common Cause Fault analysis or CCF (11 in Table 2.4) is a safety analysis technique
that uses fault trees to identify faults caused by the same set of causes or conditions. Such
common cause faults can be fatal in case of redundancy, especially in cases where a higher
risk level is addressed by using redundant components rated with lower risk levels. Here
a common cause fault can lead to the failure of all redundant units at once, potentially
leading to a sub-system or system-wide failure. Frigerio et al. [P18] suggest that such
faults should be avoided across individual components contributing to redundancy. An
application of CCF is presented by Huang et al. [P27] in the context of the steer-by-wire
system’s hardware.

Failure Mode and Effect Analysis or FMEA (12 in Table 2.4), in contrast to FTA, is a
bottom-up safety analysis technique [43]. The analysis starts with the possible malfunction
or failure of individual components. It works backward to identify the effects of the failure
in the system and which safety goals they (failure of a component) violate. The potential
failure modes are typically derived from experience with similar products and processes. In
our primary studies, FMEA is reported in the contexts of the hardware part of steer-by-wire
system [P27], brake-by-wire system [P35], and part of ignition system [P53]. Further
optimizations for streamlining FMEA are proposed in [P48].

Aging FMEA (13 in Table 2.4) tailor fits FMEA to focus on aging effects for circuits
in automotive. Aging FMEA proposed by Scharfenberg et al. [P57] analyze the electrical
properties’ change due to aging and identify aging-dependent critical hardware components
that can lead to a potential hazard or safety goal violation. The method is an adaptation
of FMEA assisted with simulation. They show the feasibility of the method using a fuel
injection system case study.

Failure Mode Effects and Diagnostic Analysis or FMEDA (14 in Table 2.4) builds on
FMEA [47] with adding three aspects to each failure mode that affects safety goals: (1)
failure rate or the rate at which the component experiences faults; (2) whether there is a
safety mechanism to detect the failure mode or probability to detect internal failures; and
(3) the effectiveness of the safety mechanism at detecting faults. The end product of this
analysis consists of the hardware parts related to failures and metrics that show the level
of safety readiness. In primary studies, FMEDA is applied on hardware of anti-lock braking
system [P45,P50], system-on-chip [P12], FPGA [P28], and powertrain electronics [P95].

2.4 Safety reqirement elicitation techniqes (RQ2)

2

51

FMEDA augmented with simulation (15 in Table 2.4) is presented by Sini et al. [P61] to
help designers, especially in cases where the system’s behavior is highly coupled with the
vehicle’s behavior. They simulate the system/component and generate possible failures or
misbehaviors using fault injection and then propagate these misbehaviors to the vehicle
level using a vehicle dynamics simulator. They use it for failure effect classification by
taking the predicted effects on dynamics and drivability of the vehicle.

Component Integrated Component Fault Trees or C2FTs (3 in Table 2.4) are proposed as
a combination of FTA and FMEA [P16]. The resulting tree structure’s root nodes represent
safety goal violations or hazards of a system, leaf nodes represent basic failure modes,
and the intermediate nodes present the relation between failure modes and hazards with
Boolean gates. Domis et al. [P16] use C2FT in the context of product lines.

Dependent Failure Analysis or DFA (16 in Table 2.4) focus on safety goal violation due
to possible common cause(s) and cascading failures between elements [46]. DFA aims
to identify the common causes that can violate required independence or freedom from
interference between elements and, in turn, causes a safety goal violation. Nardi et al. [P50]
mentions the usage of this method in the case study of an anti-lock braking system.

Model based safety analysis or MBSA (4 and 7 in Table 2.4) is an umbrella term that is
used to denote any safety analysis that uses a (formal) system model created ideally using
a model-based development process, extended with a fault model [48]. Using a system
model in the safety analysis can minimize subjectivity and be more complete, consistent,
and error-free than using an informal system model or no model. The underlying safety
analysis technique(s) can be any of the above-discussed techniques. MBSA, in conjunction
with FTA and FMEA, is reported in primary studies [P48,P53,P84]. In addition, a study by
Tlig et al. [P70] extends MBSA with simulation for safety analysis of automated driving
systems.

Safety analysis techniques

There are thirteen distinct techniques for safety analysis and similar steps discussed
across 28 primary studies. These techniques build on two base techniques: (1) the
top-down Fault-Tree Analysis or FTA; and (2) the bottom-up Failure Mode and Effect
Analysis or FMEA. FMEA and its extensions are predominantly reported in hardware-
specific contexts, while FTA and its extensions dominate usage in systems and software.
While ISO 26262’s process dominates the underlying process for which these techniques
are used, a good number of primary studies (five out of 28) do not specify any process.

2

52 2 Automotive Safety Reqirements: A Systematic Literature Review

2.4.2 Analysis
We analyze the techniques presented in the prior section regarding their scope and context
of usage. Based on this information and the comparison presented in the preceding section,
we present research gaps and upcoming domain trends.

Each step in safety requirement elicitation can be conducted using multiple kinds of
techniques. Especially for beginners, it is important to understand which techniques can
be employed in a given context; for educators, which techniques to teach. Our study can
aid in these directions. We find that no one technique fits all levels of an application or all
use cases for any step in the safety requirement elicitation. For any real-life use case, we
believe it is best to use a combination of techniques to identify safety requirements. Each
technique has its strengths and drawbacks. For instance, FTA can easily be applied for the
safety analysis at system, software, and hardware levels; however, it might not be able to
find dependent failures. To the best of our knowledge, no cheat sheet lists the strengths
and drawbacks of individual techniques. Our taxonomy is a mere first step in this direction.
However, an in-depth comparison of the techniques for their use in the automotive context
is out of the scope of this study and is an essential future research direction.

No silver bullets

No one technique fits all application contexts; it is best to use a combination of
techniques to identify safety requirements.

The repeatability of safety requirement elicitation techniques is a key factor in ensuring
safety from a safety engineering and requirements engineering perspective. For instance,
one element in the safety certification in almost all domains is based on an assessment by
an independent team by repeating or assessing the safety cases. Such activities require
objective safety requirement elicitation. The primary studies show that most methods
rely on expert knowledge, rendering them subjective. Surprisingly there is little effort
to quantify the subjectivity. We found only one study on the subjectivity of a technique,
which focused on a specific risk-assessment technique [P30]. Even though methods like
model-based safety analysis are proposed to increase reliability and repeatability of the
safety analysis, (1) their adoption rate is low (only one of the primary studies uses model-
based safety analysis in their case study), and (2) there are fewer such methods for hazard
analysis and risk assessment.

Repeatability

Most methods rely on expert knowledge rendering them subjective and thus hampering
repeatability.

2.4 Safety reqirement elicitation techniqes (RQ2)

2

53

Informed by our taxonomy of techniques presented in the prior section, we foresee four
aspects that need further exploration: (1) comparison among techniques, (2) completeness
and coverage of safety requirements, (3) lack of techniques to support steps of newer
processes, and (4) whether the current techniques are a match for the new application
contexts arising along with the automated and connected driving. We elaborate on each of
these aspects below.

Comparison among techniques is necessary to identify the most suited techniques
for use by both practitioners and researchers. There is little empirical evidence on which
method to choose among the available options. Current studies only compare the techniques
FTA, FMEA, and STPA, where STPA is considered as a technique rather than a process [P33,
P89]. Existing studies argue that STPA is better than FTA and FMEA. However, no studies
specify the scope of the techniques which could allow practitioners to make an informed
decision on which technique to choose for a specific use case. Also, most of the studies
that compare the methods are on toy case studies, which might not represent methods’
real-world efficacy.

Comparison

There is a lack of studies that systematically compare the requirement elicitation
techniques.

Ensuring the completeness and coverage of safety requirements is essential for the
rest of the development process. Failing to ensure this can lead to high costs, impact
the timeline of product development, and potentially catastrophic consequences during
operation [49, 50]. However, we did not find any studies that look in this direction for any
of the specified techniques.

Completeness & coverage

Completeness and coverage of safety requirements, especially in the context of auto-
mated and connected driving, are seldom explored.

Any process for safety requirements is ineffective unless there are systematic techniques
to support or perform the individual steps in the process. Even though the steps in newer
processes like STPA are similar to the steps from more established processes like the one
from ISO 26262, the way to conduct them and their intended outcomes are either different
or have different scopes. Thus, the techniques to conduct the steps in traditional techniques
do not apply to the newer processes, and we did not find any other systematic techniques
in the primary studies to conduct the individual steps. For example, no systematic method

2

54 2 Automotive Safety Reqirements: A Systematic Literature Review

to perform the individual steps of STPA is used in any of the primary studies that apply
STPA [P27,P40,P42,P87,P91,P98]. Rather these studies use informal guidance and previous
examples to conduct STPA. The only exception is a technique for hazard analysis, namely
iterative hazard analysis (7 in Table 2.2), which is specified to conduct a step similar to
hazard analysis in a new process for automated driving (5⃝ in Figure 2.4).

New processes versus old techniques

The newer processes, especially based on fundamentally different approaches, lack
systematic techniques to support their steps.

One primary enabler for current innovations in automated and connected driving is
the use of ML based sub-systems, especially for perception and planning [12]. Most of
the techniques mentioned in this section were developed in and for an era prior to the
development of these technologies. The special-purpose hardware like Neural Processing
Units uses a different style of instruction execution than traditional processing units [51].
The applicability and adequacy of current techniques, which might be built on the assump-
tions for traditional general-purpose hardware, need further studies. It is also yet to be
seen whether the current techniques can be applied in the context of safety requirements
for developing neural networks, which are increasingly used in perception and planning
subsystems of automated driving stacks.

ML based systems

The adequacy of current techniques to elicit safety requirements for special purpose
hardware and ML based software is yet to be seen.

2.5 Implications
We presented a taxonomy and comparison between different processes. One use-case of
this work is as a cheat sheet or guidebook for practitioners and educators. This work
outlines what exists in the peer-reviewed literature in almost every technical dimension of
automotive safety requirement elicitation.

This study has broad implications from research to practice. We present the implications
in the rest of this section in the following five parts:

2.5 Implications

2

55

• current state of safety requirement elicitation;

• a trend of creating islands of knowledge;

• the changing landscape of the automotive domain;

• the lessons that can be learned and reused beyond automotive software engineering;
and

• education.

Current state
We discuss two aspects of the current state of safety requirement elicitation research:
maturity of the research field and transparency & replicability of the primary studies.

Maturity: The safety requirement elicitation for older technologies has matured, while
the newer concepts need further research. Four ways to empirically measure the maturity
of a research area are (1) author divergence [52], where a diverse set of authors indicate a
mature research field; (2) prevalence of case studies [53] where the bulk of case studies point
to maturity; (3) relation between academic work and what is applied in the field [52, 54]
where more evidence of industry/practitioner participation form an indicator of maturity;
and (4) convergence of best practices [54] where a majority of studies showing adaptation
of a set of similar practices indicate maturity. Based on these four parameters, we classify
the safety requirement elicitation into two contexts: for traditional components and the
newer age concepts and components.

We define traditional components as the components in production for more than a
decade. Examples are the steering system and most items belonging to vehicle-centric
functional components, as shown in Figure 2.6. We define newer age concepts as those
that have not entered or are currently entering the production stage and components that
enable the implementation of the concepts. Example concepts are highly automated driving
and example components are ML based perception systems that enable highly automated
driving.

The safety requirement elicitation relating to the former context (traditional compo-
nents) is more mature than the latter based on the above mentioned four metrics. The
evidence are high author divergence, a wide range of case studies, and increased industry
participation based on the (meta) data from 62 papers that explicitly mentions case study on
specific components. Regarding a wider range of case studies, case study on traditional com-
ponents form 44 papers [P2,P3,P7,P14,P15,P26,P27,P31,P35,P36,P38–P41,P44–P46,P49–P51,
P54,P55,P57,P60–P64,P67–P69,P71,P72,P74,P76,P77,P79,P82,P84,P85,P87,P88,P98,P99]
while 19 mentions case study on new age components [P5,P6,P9,P13,P21,P30,P32,P37,
P42, P46, P59, P65, P66, P86, P90, P91, P94, P96, P101] with one study [P46] belonging to

2

56 2 Automotive Safety Reqirements: A Systematic Literature Review

both categories since it mentions more than one case study. Concerning author diver-
gence, out of the 19 papers on new age components, up to four papers have common
authors [P5,P65,P66] with at least two more similar clusters of papers with overlapping
authors [P13, P32, P86, P90, P91]. In the 44 case studies on traditional components, most
sets of authors for the papers are disjoint, with the size of the largest cluster of papers with
the same authors being three [P61–P63]. With respect to industry participation, the papers
with all authors affiliated with the industry form 5% of the newer age components while
16% for the traditional components.

For the fourth metric, the convergence of best practices, we have two angles: processes
and techniques. In the context of processes, we can see convergence to ISO 26262 (see
Figure 2.6). In the context of techniques, we can see convergence to brain-storming and
related techniques for hazard analysis, usage of metrics from ISO 26262 for risk assessment,
and FTA and FMEA-related techniques for safety analysis (see the last column of Tables 2.2
to 2.4).

Transparency & replicability: A majority of the primary studies do not specify details
on techniques that the studies employ, hampering transparency and replicability. In the
case of hazard analysis, many studies do not specify which technique they use for hazard
analysis; instead, they directly present the results of hazard analysis. For risk assessment,
the assumptions on coming up with a specific value for exposure, controllability, and
severity are often not specified. For safety analysis, the intermediate results are often not
presented, making it hard to understand and replicate the final result. For future studies,
we recommend reporting the techniques, intermediate results from these techniques,
associated assumptions, and their scope.

Islands of knowledge
From our 102 primary studies, we noticed a systematic trend of creating islands of knowl-
edge inside companies where the detailed knowledge on safety requirement elicitation
stays inside the companies and are not available via peer reviewed publications. We present
two related aspects below.

Sharing specifications, intermediate results, and related data of research: Continuing our
prior discussion on transparency & replicability, the majority of the studies, except for a few
(e.g., [P32]), do not share the details on case studies. For example, an operational design
domain (ODD) definition is essential for making an informed judgment on any result of
hazard analysis of a system. However, most studies do not provide details but only discuss
the final result. The assumptions (e.g., exclude snowing conditions) during the process and
the intermediate steps (e.g., fault trees; hazardous events) are essential to judge the results
produced in the papers and, most importantly, to build on for future studies. In its current
format, this “unknown details" makes it difficult for newer researchers and other related
disciplinarians to enter this field. The sharing of related data on research should be the

2.5 Implications

2

57

norm as in other software engineering fields like mining software repositories.
Sharing real-case studies: Given the existence of myriad vehicle types with various

capabilities, it is safe to assume that considerable safety requirement elicitation has been
performed for their development. Yet, to our knowledge, no real-world, industry-scale case
studies have been published on this topic in peer-reviewed literature. So far, publications
in collaboration with industries either use toy case studies (e.g., [P1]) or very high-level
abstractions (e.g., [P86]) hampering any real-world reproducibility. The publication of
real-world case studies can help researchers and the automotive community to identify
current issues facing the industry and contribute to rectifying and proposing methods
and techniques, rather than creating islands of knowledge inside companies. This can
reduce the work to re-invent the knowledge and benefit the companies to get better talent
and suggestions from academia. Additionally, with the higher reliance on software and
related components for automated and connected driving, openness to independent safety
verification/certification (in contrast to self-certification) should be made a norm.

Changing landscape
Is safety requirement elicitation catching up? The last decade marks arguably the most
significant paradigm shift in the automotive industry since its inception. Four dimensions
of this shift are the transition from internal combustion to electrification, automated and
connected driving, ongoing shift to open source software development, and start-ups
entering the field and finding success bringing disruptive ideas and new business models.
This means profound changes in almost all dimensions of automotive software and the
electronics that run them. Whether the safety requirements elicitation is catching up is
still an open question. There is relatively more research on transition to electrification
(especially on battery and power-train) as evident from Figure 2.6. The open-sourcing
trend is still unfolding [12] and its safety requirement elicitation side might be too early
to research. Automated and connected driving is achieved by combining special purpose
hardware, ML based software, and traditional software to make them work seamlessly.
We discuss three dimensions of this topic further: (a) functional safety and (b) safety of
intended functionality in the context of ML based components, and (c) connected driving-
specific issues. All the above aspects are particularly challenging to safety certification
bodies across the globe.

ML based components & functional safety. Both software and hardware components spe-
cific to ML (and mainly neural networks) function fundamentally different from traditional
components. For example, the software components are built from data rather than human
logic. The hardware components are based on multi-threaded execution, parallelism, and
many levels of optimizations compared to non-parallel execution units otherwise used.
Given the ML based components are now becoming a part of safety-critical applications,
we need (functional) safety requirement elicitation methods that take the peculiar nature of

2

58 2 Automotive Safety Reqirements: A Systematic Literature Review

these components into account, which is not the case currently. This might need thinking
with a different perspective altogether than the traditional kinds.

When we look at the case studies (on functional safety), the vast majority use traditional
processes and techniques. Even though newer methods and techniques for automated and
connected driving are proposed, there is little evidence for their applicability and suitability
in the real world. Also, the sufficiency of current processes and techniques to address
ML based systems is another daunting question for industries and safety certification
bodies. Multiple processes and techniques might be applicable to ML based systems. While
our study presents a comparison among processes, no study on in-depth comparison
of techniques, in the context of the automotive domain. To summarize, there are many
potential directions for research in the ML based component’s context, including case
studies on newer processes and techniques and in-depth comparison among existing
techniques for their suitability, sufficiency, and scope.

ML based components & safety of intended functionality. Safety of intended functionality,
especially in the context of removing the human operator fallback, is out of the scope of
traditional processes and techniques. Even though methods like STPA is developed to cover
some aspects, its real-world adaption is low, and so far, the scope of STPA is at the system
level. The standard, ISO 21448, is proposed to tackle the safety of intended functionality. It
is still in its beginning stage and gives only conceptual directions than concrete guidelines.
Safety of intended functionality in both hardware and software levels still needs processes
and techniques that can be applied to special purpose hardware like neural processing
units. The processes and techniques could be entirely new, extension of current ones, or
studies show that existing techniques are applicable in such settings.

Connected driving specific issues. There can be three kinds of communications connected
driving: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-road users
(V2R). The first two kinds are more established than the third kind. As we mentioned
in Section 2.3, there is a lack of methods that integrates V2I along with the traditional
automotive safety requirement elicitation. There are at least two challenges here, (1)
safety requirement elicitation for communication intermediaries like cloud for connected
driving11 and (2) requirements spanning across multiple vendors (e.g., the manufacturers
for smart traffic infrastructure and vehicles might be different). Further research is needed
in these two directions.

While vulnerable road users form about a third of fatalities in road accidents in the
USA12, safety requirement elicitation for vehicle-to-road user communication is not men-
tioned in any of the primary studies. It is still an open question how to complement the
information on road users (cyclists and pedestrians) beyond vehicle sensors (like camera
11Connected driving refers to a set of vehicles and traffic infrastructure communicate various parameters to
optimize the collective traffic behavior. This communication is often achieved by using intermediaries such as
cloud.

12https://crashstats.nhtsa.dot.gov/Api/Public/Publication/813178

https://crashstats.nhtsa.dot.gov/Api/Public/Publication/813178

2.6 Threats to validity

2

59

and LiDAR) and remove their blind spots. Safety requirement elicitation regarding the
same is also in its nascent stages and needs further research.

Multi-disciplinarity: beyond automotive software engineer-
ing
This chapter explored the technical dimension of safety requirement elicitation. However,
there are other dimensions, e.g., combining safety requirement elicitation with aspects
like security, tool support, and the human and social factors of safety requirement elic-
itation. These are some directions the future research can explore for a comprehensive
understanding of safety requirement elicitation.

While this chapter considered a system and software view of safety requirement
elicitation, the area is primarily multi-disciplinary, as shown in Figure 2.3c. Also, there
are similar domains like advanced robotics (e.g., robots from Boston Dynamics13), which
are multi-disciplinary, with similar challenges in perception systems and unsupervised
deployment (in the future). It might be interesting to see how these domains compare and
what can be learned from each discipline.

Education
The next generation of engineers who will have to build more of these new systems is
being educated today. In the context of software engineering, most curricula do not focus
on safety, let alone the safety of the newer types of systems. Since software systems are
becoming more safety-critical, this trend needs to change, and safety has to be incorporated
as a topic. We believe it is equally important to educate on the caveats and limitations of
current techniques since it is crucial to understand the scope of existing processes and
techniques for their correct usage in real-life. Also, in typical software engineering curricula,
a systems view is seldom included but is crucial in the context of safety requirements. We
strongly encourage including this in the curricula for educating future software engineers.

From a practitioner’s perspective, it might be difficult to have a definitive idea on
which processes and techniques to use in different contexts, especially for ML based
systems. While this chapter can be used as a cheat-sheet, there is still room for an in-depth
comparison of the techniques. Some directions are: (a) the scope and possible application
contexts of techniques; and (b) objective criteria on when to and not to choose a technique.

2.6 Threats to validity
This section presents the threats inherent in our study despite our best attempts at mitigat-
ing them during design, implementation, and interpretation. Below we use the framework
by Cook and Campbell [55] to discuss the threats to validity.
13https://www.bostondynamics.com/

https://www.bostondynamics.com/

2

60 2 Automotive Safety Reqirements: A Systematic Literature Review

Construct validity: For a systematic literature review to be useful, the articles analyzed
should be representative, presenting an overview. To identify representative scientific
articles, we employed multiple methods, including:

1. PICO method (see Section 2.1.2) to create the search string;

2. both forward and backward snowballing on the primary studies to improve the
coverage of relevant research articles and to make the process as insensitive to the
choice of the search string and databases as possible;

3. documentation of our search process, inclusion-exclusion criteria, and information
extracted from the selected papers for transparency and replicability of our research;
and

4. independently assessing the intermediate steps as authors, and resolving disagree-
ments with discussions.

Still, we might have missed relevant articles, for instance, non-peer-reviewed articles.
Conclusion validity: In comprehending the scientific literature for presenting insights,

we foresee two threats: one, characteristics of the available literature, and two, researcher
bias in interpretation. For the first part, we have limited control over the availability of
scientific literature. For instance, we observed that case studies on real-life vehicles could
have added deeper insights for investigation. Unfortunately, such studies are limited. To
mitigate researcher bias in interpretation, we followed the definitions from the literature
and did not make assumptions or choices if the text was not clear. Also, we explicitly
defined the criteria we followed to ensure objectivity.

Internal validity: As indicated above, our findings are susceptible to publication bias
since we only analyze published scientific literature. Our choices ensure that our analysis
rests on systematic scientific findings but implies that non-peer-reviewed articles (e.g.,
negative results) are systematically removed. It is possible that a study including other
sources of information can present a different picture than the one depicted here. Also, our
study inherits the same threats for quality assessment as in Kitchenham et al. [24], Tiwari
et al. [28], and Wieringa et al. [29] as we adopted the same methods.

External validity: The representativeness of our study hinges on the domains we
considered for our analysis and the representativeness of the studies within these domains.
We search for relevant articles on a broader range: using multiple databases and applying
techniques such as snowballing. But our investigation is also limited by our choices to
study articles written in English, non-grey literature, and published in reputed venues. All
of the above factors influence our findings’ generalizability and define the scope within
which our results apply.

2.7 Related work

2

61

2.7 Related work
We classify the secondary studies that cover safety requirements during product develop-
ment into three categories: (𝑖) studies applicable to multiple domains, (𝑖𝑖) studies on safety
assurance, and (𝑖𝑖𝑖) studies that focus on the automotive domain. Since our scope is limited
to safety, we do not discuss secondary studies on the intersection of safety and security.
This section discusses relevant secondary studies and discludes primary studies as this
chapter is a secondary study.

2.7.1 Cross domain studies
Pereira et al. conducted an SLR on requirements to be considered, and on requirement en-
gineering practices and challenges in developing embedded systems [20]. They summarize
open issues that can be potential research directions, which include: “Requirements Specifi-
cation for automotive system"; “Improve the development process for ensure functional safety
requirements"; “Handling of non-functional requirements such as ⋯, safety,⋯"; “Specification
of safety requirements"; and "Analysis of hazard and threats, ⋯, and safety".

Martins et al. present an SLR on approaches to elicit, model, specify and validate safety
requirements in the context of safety-critical systems and usage of these approaches in
industrial settings [19]. This work forms a precursor to our study, as detailed in Section 2.1.2.

Vilela et al. performed an SLR to explore methods to improve the integration between RE
and safety engineering [21]. They identified techniques and tools used for hazard analysis
and safety analysis (to be) used by requirement engineering and safety engineering teams.
They also generated a taxonomy of these techniques along with a separate taxonomy of the
safety information used or generated by these techniques. This study is complementary to
our focus.

Bozhinoski et al. [22] presents a systematic mapping study onmanaging safety in mobile
robotic systems from a software engineering perspective. Their primary studies on safety
management in the context of self-driving cars conclude that “self-driving vehicles lack a
standardized platform, processes, and tools for designing and analyzing safety approaches" [22].
However, they did not consider safety standards from the automotive domain.

Another direction pursued in literature is functional safety in product line engineering.
Baumgart et al. conducted a systematic mapping study to summarize topics covered and
evaluation approaches used in the literature on the functional safety of product lines
[23]. Gadelha Queiroz et al. performed an SLR for identifying approaches, methods, and
methodologies from the intersection of the product line engineering and model-driven
engineering for safety-critical systems [56]. We consider this direction of research out of
scope for this work.

2

62 2 Automotive Safety Reqirements: A Systematic Literature Review

2.7.2 On safety assurance
Safety assurance is about providing evidence that safety is ensured. Safety requirements
are a part of safety assurance, and in this SLR, we focus on eliciting functional safety
requirements. Nair et al. conducted an SLR towards establishing evidence for system
safety [57]. They focused on three aspects: the information that constitutes evidence;
structuring of evidence; and evidence assessment. There are also model-based methods
based on goal structured notation and conceptual models for establishing evidence for
system safety [58–60].

Bolbot et al. examined different sources of complexity introduced to cyber-physical
systems and explained different methods for safety assurance in those contexts [61]. This
work does not specify methods used in the automotive domain nor uses any systematic
method to identify the different techniques in the literature for safety assurance.

Ingibergsson et al. [62] conducted a systematic mapping study on (coding) practices in
developing safety-critical software for field robots. Field robots are machinery for outdoor
tasks like agriculture. They concluded that most approaches propose solutions to attain
safety, focus on behavior modeling, and do not stress reliable software development e.g., in-
volving formal verification. Half of the literature they considered uses non-standardized
methods to develop software. They also note an increase in safety-related issues with the
introduction of computer vision.

In this work, we concentrate on approaches for generating safety requirements rather
than safety assurance. However, conclusions from these studies, for example, the nascence
of technologies like computer vision which does not follow traditional development meth-
ods, equally, apply in the context of our work.

2.7.3 On safety in the automotive domain
Some secondary studies from the last decade discuss safety and are specific to the auto-
motive domain. A few studies ([63, 64]) outline safety-related methods across the entire
product life cycle, while others focus on a specific stage of product development [65], a
specific technology [66], or a specific use-case [67]. In addition to the secondary studies,
there is a proliferation of experience reports [68, 69]. We do not cover experience reports
in our related work since they form a different class of studies than secondary studies.

Studies by Kannan et al. and Gosavi et al. consider the entire product life cycle [63, 64].
Kannan et al. [63] present a gap analysis between the objectives of the ISO 26262 standard
and safety-related techniques to achieve these objectives. They conclude that there is a
need for tooling for conducting HARA, combining sub-phases of product development,
integration among the product development phases of design, requirement management,
and validation and verification. They also find a lack of methods for ASIL decomposition
for large-scale systems.

2.8 Conclusions

2

63

Gosavi et al. [64] summarize four primary studies from the product development phase
at the system, hardware, and software levels covered by parts 4, 5, and 6 of ISO 26262. They
noted the lack of a standard and inadequacy of ISO 26262 to address functional safety in
the development of autonomous and semi-autonomous vehicles.

Gheraibia et al. [65] reviewed different approaches for the specific sub-phase of product
development, ASIL allocation. ASIL allocation methods find optimal allocations of ASILs
(QM, A, B, C, D, with QM being negligible risk and D being highest risk) to system
architecture components such that safety requirements are guaranteed to be met at the
lowest possible cost. They classify approaches for ASIL allocation into two categories—exact
and optimization approaches—and present the pros and cons of each method.

Borg et al. present a short review of validation and verification (V&V) methods for
the safety of the specific technology, machine learning, and deep learning methods, to be
used in the automotive domain [66]. They classify support for V&V of machine learning
and deep learning-based systems as formal methods, control theory, probabilistic methods,
process guidelines, and simulated test cases. They conclude that the V&V methods for
machine learning and deep learning lag compared to other areas. Also, those V&V methods
suggested by ISO 26262 do not apply to developing components that use machine learning
and deep learning methods. They stress the need for a new standard for them.

Axelsson [67] presented an SLR and a gap analysis on safety in the specific use-case
of platooning. Platooning is a coordinated movement of vehicles as a train with minimal
distance between vehicles in the pack. Specifically, they focus on safety analysis methods,
hazards and failures, and solutions to improve safety for platooning. The authors also note
a lack of studies from commercial settings and current research primarily from research
prototypes or technology demonstrators.

Even though many of these studies overlap with our work, we did not find any system-
atic study on eliciting safety requirements for the automotive domain.

2.8 Conclusions
This work characterizes safety requirement elicitation in the automotive domain and
presents a comprehensive overview of the current landscape through a systematic literature
review. This chapter is a first step in the direction of summarizing, taxonomizing, and
comparing processes and techniques for safety requirement elicitation for the automotive
domain.

We identified nine safety requirement elicitation processes and 38 distinct techniques.
Out of the nine processes, we observed that the process outlined in the ISO 26262 standard
forms the basis for requirements elicitation in the automotive industry. Other processes
have been proposed to complement, extend, or replace the process outlined in the standard.
This chapter offers an overview, comparison, and taxonomy of such processes and corre-
sponding techniques for safety requirement elicitation in the automotive domain. Based on

2

64 2 Automotive Safety Reqirements: A Systematic Literature Review

this information, temporal adoption trend, usage context, and scope, we presented research
gaps and discussed current domain trends.

The current landscape shifts in the automotive industry, such as automated driving,
connected driving, and themove to open sourcing, have profound implications for the safety
of automotive systems. We empirically showed the immaturity of the safety requirement
elicitation concerning newer concepts and components like automated and connected
driving. For instance, the majority of processes and techniques for safety requirement
elicitation were proposed more than two decades ago. At the same time, the upcoming
perception and decision systems for automated driving rely on ML based components
whose feasibility of usage in real-world scenarios (e.g., neural networks) was demonstrated
only a decade ago. The applicability and scope of the processes and techniques to these
new-age components is still an open question. Another example is the lack of studies on
safety requirements regarding traffic infrastructure and communication with vulnerable
road users, which are critical to accomplishing connected driving. Other dimensions,
e.g., combining safety requirement elicitation with aspects like security, tool support, and
the human and social factors of safety requirement elicitation, are yet to be explored.

We emphasize the importance of safety requirement elicitation of software and related
systems and show the importance of a systems and multi-disciplinary perspective. This
work opens up many future avenues for research and provide a concise and comprehensive
guide to practitioners and educators.

3

65

3
Assessing

Safety Reqirements
for Connected Driving

The scope of automotive functions has grown from a single vehicle as an entity to multiple
vehicles working together as an entity, referred to as connected driving. The current automotive
safety standard, ISO 26262, is designed for single vehicles. With the increasing number of
connected driving capable vehicles on the road, it is now imperative to systematically assess
the functional safety of architectures of these vehicles. Many methods are proposed to assess
architectures with respect to different quality attributes in the software architecture domain,
but to the best of our knowledge, functional safety assessment of automotive architectures
is not explored in the literature. We present a method that leverages existing research in
software architecture and safety engineering domains, to check whether the functional safety
requirements for a connected driving scenario are fulfilled in the technical architecture of a
vehicle. We apply our method on an academic prototype for a connected driving scenario,
platooning, and discuss our insights.

This chapter is based on:
 S. Kochanthara, N. Rood, L. Cleophas, Y. Dajsuren, M. van den Brand. Semi-automatic Architectural Suggestions
for the Functional Safety of Cooperative Driving Systems, ICSA’20 (New and Emerging Ideas track) [70];
 S. Kochanthara, N. Rood, A. Saberi, L. Cleophas, Y. Dajsuren, M. van den Brand. Semi-automatic Architectural
Suggestions for the Functional Safety of Cooperative Driving Systems, JSS’21 [71]; and
 S. Kochanthara, N. Rood, L. Cleophas, A. Saberi, Y. Dajsuren, M. van den Brand. Summary: A Functional Safety
Assessment Method for Cooperative Automotive Architecture, ECSA’21 [72]

3

66 3 Assessing Safety Reqirements for Connected Driving

T raffic congestion was estimated to cost 305 billion dollars in 2017 to traffic participants
in the United States of America.1 With continuously increasing urban population [73],

traffic congestion will continue to be an inevitable problem for the foreseeable future.
Around 70% of all goods transported around the United States are moved by trucks, and the
lion’s share of the cost for operating trucks comprises fuel costs and driver salary [74]. One
potential solution to reduce traffic congestion and operational costs is connected driving.

Connected driving refers to the collective optimization of the traffic participants’ behav-
ior by sharing information using wireless communication such as a peer-to-peer network
or via other actors like the cloud [75]. connected driving can improve traffic efficiency,
reduces cost, and increases comfort [76,77]. It is one of the 54 trends shaping the technology
market, according to market research.2 In the year 2020 alone, 10.46 million new vehicles,
with some form of connected driving capabilities, are projected to hit the roads.23 With
millions of connected driving capable vehicles on roads, the safety of these vehicles needs
urgent attention.4

A majority of the connected driving functionalities are achieved by determining a
vehicle’s behavior for optimal traffic behavior according to the information received from
other traffic participants. Such optimal behaviors are achieved (partially or fully) using
software-controlled steering, acceleration, and braking [78]. Therefore, any problem in the
software can lead to catastrophic effects not only to the vehicle itself but also to other traffic
participants. To avoid such events, connected driving systems are designed to operate in
case of failure or fail safely.

The current guidelines to ensure the safety of automotive systems (and their architec-
ture) are provided by ISO 26262:2018 - a product development standard for the automotive
domain [5]. The ISO 26262 standard offers systematic methods from the safety engineering
domain to identify safety requirements. Any automotive software architecture that fulfills
these safety requirements is deemed safe-by-design.

ISO 26262 standard neither considers connected driving nor prescribes methods for
architecture assessment. The standard is designed for single vehicles and does not include
a connected perspective in which a set of vehicles is seen as a single entity [79, 80]. This
can mean that a low-risk safety requirement from a single-vehicle perspective can have
catastrophic effects on other cooperating vehicles [77]. To create a functionally safe
architecture from a connected perspective, existing studies have extended the standard
guidelines [70, 81] or presented an architecture framework [77]. Yet, checking the safety
of software architecture of an existing vehicle for connected driving, remains an open
question.
1https://www.smartcitiesdive.com/news/gridlock-woes-traffic-congestion-by-the-
numbers/519959/

2https://go.abiresearch.com/lp-54-technology-trends-to-watch-in-2020
3https://www.forbes.com/sites/samabuelsamid/2019/10/28/volkswagen-includes-nxp-
v2x-communications-in-8th-gen-golf/

4https://www.sciencedaily.com/releases/2019/05/190519191641.htm

https://www.smartcitiesdive.com/news/gridlock-woes-traffic-congestion-by-the-numbers/519959/
https://www.smartcitiesdive.com/news/gridlock-woes-traffic-congestion-by-the-numbers/519959/
https://go.abiresearch.com/lp-54-technology-trends-to-watch-in-2020
https://www.forbes.com/sites/samabuelsamid/2019/10/28/volkswagen-includes-nxp-v2x-communications-in-8th-gen-golf/
https://www.forbes.com/sites/samabuelsamid/2019/10/28/volkswagen-includes-nxp-v2x-communications-in-8th-gen-golf/
https://www.sciencedaily.com/releases/2019/05/190519191641.htm

3.1 Background

3

67

ISO 26262 standard does not prescribe methods to assess the functional safety of automo-
tive architecture. Many approaches to assess architectures with respect to quality attributes
have emerged in the software architecture domain in the past three decades [82–89].
However, only some of these methods are designed for operational quality attributes like
performance (in contrast to development quality attributes like maintainability) [82, 90].
To the best of our knowledge, none of these methods are designed to assess the operational
quality attribute functional safety of automotive systems.

This chapter presents a method to assess the functional safety of existing automotive
architecture for connected driving, by combining methods from the safety engineering and
software architecture domains. Our method has two parts:
(𝑖) derive Functional Safety Requirements (FSRs) for connected driving scenarios—an
extension of our earlier work [70];
(𝑖𝑖) check whether the (technical) software architecture fulfills the derived functional
safety requirements—a combination of techniques [84, 91, 92] adapted from the software
architecture domain.

This chapter primarily focuses on the design phase (concept development phase in ISO
26262) and validation of the resultant requirements in the software architecture in the final
product. We demonstrate our method on the architecture of an academic prototype capable
of connected driving. The connected driving scenario used for demonstration is platooning,
where a manually driven vehicle is autonomously followed by a train of vehicles.

The rest of the chapter is organized as follows. Section 3.1 presents the background
relevant to the study. Section 3.2 describes the proposed method to derive FSRs and check
for their fulfillment in vehicles’ technical software architecture. Section 3.3 details the
application of the proposed approach on an academic prototype for the connected driving
use case, platooning, and interpreting the results from this case study. Section 3.4 discusses
our implicit assumptions, applicability, and scope of our approach. Section 3.5 outlines
related research. Section 3.6 presents threats to validity, followed by future research
directions in Section 3.7 and the conclusion in Section 3.8.

3.1 Background
In this section, we discuss the three basic concepts upon which we build the contributions of
this chapter. First, we outline the relevant concepts in automotive functional safety. Second,
we discuss some basics on safety tactics and patterns. Last, we give a brief introduction to
the two views of automotive architecture.

3.1.1 Functional safety
Functional safety is defined as “an absence of unreasonable risk due to hazards caused by
malfunctioning behaviour of E/E systems" [5] where E/E systems refer to electrical and/or
electronic systems. In the automotive domain, functional safety is defined by two standards:

3

68 3 Assessing Safety Reqirements for Connected Driving

ISO 26262:2018 and ISO 21448 [6], serving complementary purposes. The former focuses on
the hazards caused by the malfunctioning of components of a system, while the latter does
on the hazards resulting from the functional insufficiency and misuse [5, 6]. ISO 26262 [5]
is the current safety standard with its latest revision from 2018. In contrast, ISO 21448 [6],
is currently available as ISO/PAS 21448 specifications with a formal release planned in
2021. The predecessor of these standards is the broader IEC 61508 standard [38], which
outlines the functional safety guidelines for developing electrical/electronic/programmable
electronic systems that are used to carry out safety functions [38].

We primarily focus on the concept phase (part 3) of the ISO 26262 standard, which
outlines the derivation of FSRs and their allocation to functional architecture components.
The concept phase is executed on an itemwhere an item is defined as “system or combination
of systems, to which ISO 26262 is applied, that implements a function or part of a function at
the vehicle level” [5].

The derivation of functional safety requirements (FSRs) begins with creating hazardous
events. Each hazardous event is a combination of a hazard, an operational mode, and
an operational situation. An example of a hazardous event is a brake failure (hazard) in
eco-driving mode (operational mode) while driving on a highway (operational situation).
The operational modes and operational situations are derived from natural language
descriptions of intended environments or situations where the system operates. This
natural language description is referred to as scenario description or scenarios from hereon.

To ensure safety from hazardous events, safety goals are defined. These goals are broad,
presenting high-level safety requirements. Each safety goal is allocated a score, termed
Automotive Safety Integrity Level (ASIL), of A, B, C, or D, which specify the importance of
achieving the goal (A for least important and D for most important) during further stages
of product development. The ASILs are calculated based on exposure, controllability, and
severity of each safety goal according to the ISO 26262 guidelines [5]. Each safety goal is
decomposed into one or more FSRs [5]. Each FSR inherits the (maximum) ASIL from the
safety goal(s) it is derived from.

In the literature, there is little consensus on safety requirements being functional or
non-functional requirements. FSRs are classified as functional requirements in the safety
engineering domain. However, FSRs are predominantly classified as quality requirements
(non-functional requirements) in the software architecture domain [85].

3.1.2 Safety tactics and patterns
Architectural tactics encapsulate design decisions that can influence the behavior of a
system with respect to a quality attribute [85]. Architectural tactics are abstract, do not
impose a particular implementation structure, and can be seen as recommendations without
a prescribed implementation. On the other hand, architectural patterns are well-defined
structured entities with a prescribed implementation that realize tactics. This chapter

3.1 Background

3

69

employs safety tactics and patterns [91, 92] which are architectural tactics and patterns to
address safety.

3.1.3 Architecture views

Total System
scope

Functional Architecture
view

Technical Architecture
view

Runtime Model view

allocated runtime model
allocation subview

Allocation
view

Hardware Topology
view

functional view technical view

runtime subview

target topology

topology subview

Technical Software Architecture

Figure 3.1: Functional and technical architecture views and their scope, adapted from
Broy et al [93]. Functional and technical architecture are views of the same system at
different architectural abstraction levels, with functional being the highest abstraction
level. Runtime model describes system behavior while hardware topology describes the
structure of hardware platform containing electronic control units, sensors, mechanical
components, and the buses that interconnect them. Allocation associates elements of the
runtime model with the elements of hardware topology. Runtime model and allocation
together form technical software architecture.

We use the architecture of a system in two contexts: (𝑖) to generate FSRs from hazardous
events by mapping hazardous events to functional components of the system; (𝑖𝑖) to
identify whether one or more safety tactics are used for the implementation of a functional
component.

The first context needs a functional decomposition view of the system [5], known as
functional architecture view [93–96]. In the automotive domain, the functional architecture
view outlines functional composition, functional entities, their interfaces, interactions,
inter-dependencies, behavior, and constraints in a vehicle [93]. This view is derived from
the functional viewpoint, which considers the system from the angle of vehicular functions
and their logical interactions from a black-box perspective [93]. Note that the scope of this
view is at the system level.

The second context demands more details that are not available in the functional

3

70 3 Assessing Safety Reqirements for Connected Driving

architecture view but are available in the technical architecture view (also described as
the implementation view) [93, 95–97]. The technical architecture view outlines specific
software implementation, physical components (like electronic and electrical hardware),
their relationships, the allocation of software parts to hardware components, the depen-
dencies among software and hardware components, and constraints [93]. Clearly, there is
strong conformity between the technical architecture view and the functional architecture
view [93]. A pictorial depiction of these two architectural views is shown in Figure 3.1.

We chose the technical architecture view since it enables identifying whether one or
more safety tactics are implemented, and this view is readily available, as it is mandatory
in automotive projects [93]. In contrast, other views might lack necessary detail or may be
outdated. In the rest of this chapter, we discuss the runtime model and allocation part of
the technical architecture view, together termed as technical software architecture.

3.2 Research design
We propose a method that checks whether the technical software architecture of a vehicle
fulfills the FSRs for connected driving scenarios. The method consists of two parts: (𝑖)
derive FSRs for connected driving scenarios (see Section 3.2.1 and Figure 3.2), and (𝑖𝑖) check
whether the derived FSRs are fulfilled in the technical software architecture of a vehicle
(see Section 3.2.2 and Figure 3.3).

FSRs for connected driving shall be implemented in individual vehicles. The ISO 26262
standard recommends mapping of FSRs (or breaking down FSRs) to individual system
architecture components [5]. Further, such a mapping is crucial given the complexity and
scale of the system. Referring to the existing solutions from the safety engineering disci-
pline [98], the current methods do not map derived FSRs for connected driving scenarios
to individual vehicle components [70]. Our solution bridges this gap by integrating a con-
nected functional architecture (with its individual components belonging to the vehicular
functional architecture) with the existing methods to derive FSRs. This step is presented in
detail in Section 3.2.1.

Next, we check whether the derived FSRs are fulfilled in the technical software architec-
ture of a vehicle. Our method of assessing the fulfillment of derived FSRs is a combination
of techniques adapted primarily from the software architecture domain. With no existing
architecture assessment techniques addressing the quality attribute of functional safety in
the context of automotive systems, the proposed method takes inspiration from traditional
architecture assessment techniques like ATAM [84,85] and employs the safety tactic frame-
work [91, 92, 99] to leverage existing architecture knowledge. This part of our method is
presented in Section 3.2.2.

Alongside functional safety, cyber-security is another area that is increasingly addressed
together with functional safety [100]. The scope of our approach is limited to functional
safety and security is out of our scope. Moreover, FSRs are often fulfilled dedicatedly in

3.2 Research design

3

71

hardware or a combination of hardware and software. Even though the first part of our
method associates FSRs to architecture components at the system level, the second part
of our approach focuses on software. FSRs fulfilled in hardware architecture (hardware
topology in Figure 3.1) is beyond the scope of our method.

3.2.1 Derive FSRs for connected driving
The deriving FSRs part of our method needs only a black box view of individual vehicle
functions and interactions among these functions. Therefore, we use the functional archi-
tecture view for deriving FSRs for connected driving. Note that functional architecture is
the overall system architecture (see Figure 3.1), which includes both hardware and software
components.

We extend the traditional method outlined by the ISO 26262 standard [5] to derive
FSRs for connected driving scenarios. The traditional approach (the concept phase of ISO
26262) is executed on an individual vehicle as the item. We propose a similar approach to
be executed on the entire connected system in parallel. Figure 3.2 presents an overview of
the proposed method. We first outline the traditional method, followed by our prior work
on its extension [70] and our new contribution. For the rest of the chapter, we use the term
vehicular perspective for an individual vehicle as a unit under consideration and connected
perspective for a set of vehicles as a unit under consideration.

Traditionally, FSRs for a vehicular perspective are derived by mapping the safety goals
for a vehicle on to the individual components of the vehicle’s functional architecture. This
process ofmapping, also termed safety analysis, captures information on themalfunctioning
of a component that can lead to violation of a safety goal. Safety analysis is performed
using a systematic process like fault tree analysis (FTA) [42] or failure mode effect analysis
(FMEA) [43]. To conduct safety analysis, we need two inputs: (𝑖) the functional architecture
that captures a system’s decomposition into functional components and the interconnection
between these components, and (𝑖𝑖) safety goals.

According to ISO 26262 guidelines [5], safety goals are derived from hazardous events.
Hazardous events are found by decomposing the scenario description using the hazard
analysis and risk assessment technique (HARA) [5]. This method to derive FSRs is depicted
by part 3 and flows 𝑎 and 𝑑 of Figure 3.2, with 𝑎 and 𝑑 acting as inputs to safety analysis.
This method of deriving FSRs from scenario descriptions has been standard practice in the
automotive domain [5] for at least a decade [101].

During safety goal derivation using HARA, each safety goal is assigned an ASIL level.
The ASIL level is allocated based on the severity of the damage possible by the hazardous
event, and the probability of exposure and controllability of the vehicle during the event,
according to the metric provided by ISO 26262 [5]. Each FSR inherits the highest ASIL of
the safety goal(s) it is derived from. An FSR with ASIL ‘D’ indicates that the most stringent
safety measures must be applied to meet the FSR. In contrast, ASIL ‘A’ indicates a lower
risk and lower level of safety measures.

3

72 3 Assessing Safety Reqirements for Connected Driving

System Architect

item:
individual vehicle

/

Functional Decomposition
from Vehicular Perspective

Connected functional
architecture

Hazardous events from
vehicular perspective

Functional Safety Requirements

Vehicle
Functional

Architecture

Safety Analysis

Functional Decomposition
from Connected Perspective

Hazardous events from
connected perspective

Safety goals
from vehicular perspective

Safety goals
from connected perspective

Scenario Description

 ISO 26262 Kochanthara et al.[32] Our
Contribution

a

1 2

b

c

d

item:
connected driving system

3

Figure 3.2: Method to derive FSRs for connected driving scenarios. The gray part on the
right is the traditional method from ISO 26262 [5], and the black part on the left is our
addition to the traditional approach. System architect represents external entities involved
in creating the connected architecture.

In a connected system, a safety goal for one vehicle can lead to an FSR in another
vehicle. For example, consider a simple connected driving scenario of one vehicle (follower)
autonomously following another manually-driven vehicle (leader) using vehicle-to-vehicle
communication for coordination. A safety goal in this setting is: “the follower shall au-
tonomously accelerate in accordance with the acceleration of the leader." Even though the
safety goal seems to belong to the autonomously accelerating component of the follower,
it also maps to the functional architecture component(s) of the leader. This safety goal
leads to the following FSR on the acceleration sensing component of the leader : “failure in
the acceleration sensing component of leader shall not communicate incorrect acceleration
information to the automatic steering component of the follower”. Failing to meet this re-
quirement (and its associated safety goal) can potentially lead to a crash. Such safety goals,
however, will only be visible in the connected perspective.

3.2 Research design

3

73

In the proposed method, we have one item per individual vehicle type, and an item
for the entire connected system of which the vehicles are part. A connected system can
have more than one type of vehicle (for example, two vehicles with different functional
architectures forming a connected system) and other entities like a cloud, enabling con-
nected driving capabilities. In the case of more than one type of vehicle (with different
functional architectures), each kind of vehicle will form an item. For each item, except
for a connected system, the traditional ISO 26262 analysis described above is applicable.
We believe that two items, as shown in Figure 3.2 will generalize to other scenarios that
require more than two items. Such cases only add replication of traditional ISO 26262
analysis (see shaded part in figure 3.2) for each additional item (i.e., each unique functional
architecture). In any case, there will only be one connected functional architecture and thus
only a connected item. For the rest of this section, we consider two items: an individual
vehicle (representative of all vehicle functional architectures) and the connected system.

We propose that FSRs for a connected system are derived from: (𝑖) safety goals from the
vehicular perspective (as in the traditional method), and (𝑖𝑖) safety goals from the connected
perspective. Along these lines, our prior work [70] extended the traditional process to
derive safety goals for the vehicular perspective to the connected perspective (annotated
as part 2 in Figure 3.2) to cover FSRs from both perspectives. This process partitions the
scenario description into vehicle-specific and cooperation-specific parts. Next, we apply
the traditional safety goal identification steps to the two parts. FSRs from the vehicular
perspective are then derived, as discussed above.

We observed that the connected functional architecture should be built using individ-
ual vehicle functional components. This will preserve the mapping between functional
architecture of connected system and its implementation view (in the technical architec-
ture of the vehicles). A connected functional architecture is required for safety analysis
techniques like FTA [42] to derive FSRs, by mapping safety goals to components of func-
tional architecture. We propose that the connected functional architecture be built from
(𝑖) the functional architecture of individual vehicles that constitute the connected system
and (𝑖𝑖) the connected scenario description of the interaction between individual vehicles.
With these requirements, system architects can create a functional architecture of the
connected system such that the individual components of the architecture are mapped
onto the components of the functional architecture of vehicles. This process is labeled as
part 1 in Figure 3.2; the complete process of deriving FSRs from the connected perspective
is shown by the labels 1, 2, 𝑏, and 𝑐.

In summary, the presented method maps each individual connected driving scenario
to a set of FSRs, where each FSR is associated with at least an individual vehicle function,
which in turn is associated with a functional component. Note that a one-to-one mapping
is suggested for the efficiency of method and is not mandatory. Mapping an FSR to multiple
functional components is unwise for two reasons: (1) the responsibility is not clear, therefore
implementation may go wrong; and (2) testing may not be feasible at that level and only

3

74 3 Assessing Safety Reqirements for Connected Driving

integration testing can assess the achievement of that FSR. In the rest of the chapter, we
assume that each FSR can be mapped to a functional architecture component.

3.2.2 Check fulfillment of FSRs
Our method to check for the fulfillment of FSRs in the technical software architecture of
individual vehicles is organized in two phases. Phase one ensures that it is possible to
realize all the FSRs by identifying whether there are conflicting FSRs. Phase two describes
a systematic method to check for the fulfillment of FSRs in the technical architecture.
Figure 3.3 depicts an outline of the process.

safety tactics

Yes

Technical architecture
 fulfills FSRs

Safety Tactics and Patterns
from Literature

 Incorporating tactics (and patterns) in the technical architecture

Group FSRs based on associated
functional architecture component

Set of FSRs for each functional
architecture component

yes

No

Conflicting
requirement in

any ?

Identify tactics for implementing each FSR

Applicable tactics for each FSR

No

 Are tactics
from realized for every

in the technical
architecture?

Set of FSRs with no tactic from
implemented in the technical architecture

Associating feasible combinations of tactics in
with patterns for each

Ph
as

e
1

Ph
as

e
2

Resolve Conflicts

Vehicle Software Architecture

Vehicle Functional
Architecture

Vehicle Technical
Architecture

Set of Functional Safety
Requirements (FSRs)

Ap
pl

ic
ab

le
 p

at
te

rn
s

fo
r s

pe
ci

fie
d

ta
ct

ic
 c

om
bi

na
tio

ns

Set of applicable tactics and patterns for each FSR

: Out of scope

Technical architecture
 does not fulfill FSRs

Figure 3.3: Method to check the fulfillment of FSRs in technical architecture

3.2 Research design

3

75

Our method uses both functional and technical views. The functional view is used for a
sanity check among FSRs for conflicts. The technical view, in contrast, is used for checking
the implementation of each vehicular function (and its associated safety mechanisms)
against the corresponding FSRs.

In phase one, we check for conflicting FSRs. Two FSRs are conflicting if both of them
cannot be fulfilled at the same time. A hypothetical example of conflicting FSRs is:
FSR_01: A failure in the actuation sensor shall be indicated by a fault message from the sensor.
FSR_02: A failure in the actuation sensor shall cease any further messages from the sensor.
FSR_01 and FSR_02 are conflicting requirements: sending a message for FSR_01 and not
sending any message for FSR_02 for the same event (failure in the actuation sensor), which
cannot be realized simultaneously.

Comparing every pair of FSRs for conflicts will lead to a quadratic number of com-
parisons (if 𝑛 is the number of FSRs, the number of comparisons is 𝑛(𝑛 − 1)/2 ≈ 𝑂(𝑛2)).
We compared FSRs that belong to the same functional architecture component for con-
flicts. This can reduce the number of comparisons up to a factor of 𝑑 , where 𝑑 is the
number of functional components (i.e., the number of comparisons can be reduced up
to 𝑛(𝑛−𝑑)/𝑑 ≈ Ω(𝑛2/𝑑)). Such a reduction is possible since safety analysis techniques for
deriving FSRs ensure that each FSR belongs to only one functional component [5, 42, 102].
Further, FSRs belonging to a component can have conflicts among themselves but not with
the FSRs belonging to other components. For example, in our case study in Section 3.3, we
derived 31 FSRs across 8 functional components. Comparing every pair of FSRs would result
in 465 comparisons; however, grouping FSRs based on functional components reduced it
to 60. This process is annotated as Phase 1 in Figure 3.3.

The presence of conflicting requirements points to flaw(s) in any of the following:
(𝑖) the functional architecture, (𝑖𝑖) functional decomposition of the scenario, or (𝑖𝑖𝑖) the
scenario itself. This is based on the assumption that the rest of the steps are carried out
without mistakes. These conflicts need resolution before proceeding. While resolving such
conflicts is beyond the scope of this work, checking for these conflicts provides a sanity
check that it is possible to meet all FSRs in a given technical architecture.

An FSR may be fulfilled by a safety tactic or a combination of safety tactics. To identify
whether an FSR is fulfilled, we propose checking the vehicle technical software architecture
for the implementation of safety tactics [91,92] that canmeet the FSR. This is achieved in two
steps: (𝑖) identify a set of safety tactics (hereafter referred to as applicable safety tactics) such
that the implementation of each tactic, in itself or in combination with some other tactics in
the set, can fulfill the FSR; and (𝑖𝑖) check whether any feasible combination of tactics from
the applicable safety tactics that are present in the vehicle technical architecture meets the
FSR. Note that, for an FSR 𝑓𝑖 and its corresponding functional component 𝑐𝑖 , the applicable
safety tactics for 𝑓𝑖 need to be compared with only the safety tactics implementations used
in the technical architecture counter part of 𝑐𝑖 and its associated safety mechanisms since
𝑓𝑖 is only associated with 𝑐𝑖 .

3

76 3 Assessing Safety Reqirements for Connected Driving

Applicable safety tactics for an FSR can be identified based on the FSR description
(by navigation through a tactic hierarchy) [85, 91, 92] or by matching the FSR description
to the descriptions of each tactic [92]. Consider the following example FSR: “failure in
the acceleration sensing component of leader shall not communicate wrong acceleration
information to the automatic steering component of the follower.” According to the first
method—safety tactic hierarchy [91]—an applicable safety tactic for failure containment
using redundancy is diverse redundancy [91]. The same tactic can be identified by matching
the FSR description to the tactic description [92]. For example, the diverse redundancy
tactic’s description—“introduction of a redundant system which allows detection or masking
of failures in the specification or implementation as well as random hardware failures" [92]—
matches the FSR description.

By the end of this two step process of identifying applicable tactics and checking the
technical architecture for these tactics, we will have a list of FSRs that do not have any
feasible combination of tactics implemented. If the list is empty, then the vehicular technical
architecture fulfills all the FSRs for the given connected driving scenario. Otherwise, the
list shows the FSRs that have not been fulfilled.

As a by-product, for each unfulfilled FSR, we will also have a set of applicable tactics
such that some feasible combinations from this set can fulfill the FSR. These combinations
point to a set of safety patterns since safety patterns are associated with the safety tactics
they implement [92]. These applicable safety patterns (and applicable tactics) provide the
system architects with a set of possible design decisions to realize the unfulfilled FSRs.
Detailed analysis on the applicability of these safety patterns and trade-off analysis among
them is beyond the scope of our work.

Note that the architecture tactics are not associated with any safety integrity level.
Therefore, whether a tactic can address a given ASIL level is a research topic on its own
and is beyond the scope of our work. Our objective for (the second phase of) our method is
to identify relevant tactics to see whether they are implemented in the technical software
architecture.

3.3 Research method
This section presents an application of the proposedmethod on a connected driving scenario:
platooning. First, we describe the platooning scenario and the functional architecture of an
individual vehicle, the two inputs to our proposed method. Next, we present the results
of applying our method to platooning and its interpretation. All artifacts generated are
available online [103].

A platoon is a vehicle train in which a manually driven vehicle (referred to as leader)
is autonomously closely followed by at least one vehicle (referred to as follower). In a
platoon, vehicles coordinate with each other using vehicle-to-vehicle (V2V) communication.
Platooning has shown the potential to (𝑖) reduce average fuel consumption [76]; (𝑖𝑖)

3.3 Research method

3

77

improve safety—for example, by preventing rear end collisions by enabling platoon-wide
braking [77]; and (𝑖𝑖𝑖) increase traffic throughput by increasing average speed and reducing
traffic jams. In this case study, the scope of platooning is limited to highways and highway
interchanges.

We applied the proposed method on a connected driving software architecture de-
veloped for the i-CAVE project5 that is deployed on Renault Twizy6 – a small electric
vehicle. The vehicle is fitted with extra sensors and actuators including a complete software
stack (hereafter referred to as i-CAVE demonstrator). The software stack of the i-CAVE
demonstrator is deployed on a combination of a real-time computer—an Advantech ARK-
3520P7—that runs the Simulink RealTime operating system and an Nvidia’s Drive PX2
platform.8 In-depth details of the prototype (including mechanical design, the details on
individual sensors and extra outfits on the vehicle) are beyond the scope of this chapter.
Interested readers can refer to Hoogeboom’s work for details [104].

A simplified functional architecture of i-CAVE demonstrator is shown in Figure 3.4a.
For simplicity, we present only those functional components that are fundamental to
achieve platooning. The arrows indicate data flow from sensor abstraction to actuator
while the system as a whole is a closed control loop. Note that we focus on uni-directional
information flow in our case study. However, a complete platoon setting will include
bi-directional information flow.

Some of the functional architecture components are grouped to classes based on their
functionality (as shown in Figure 3.4a). For example, sensor abstraction is a class of com-
ponents that contain two types of functional components namely actuation sensors and
environment perceptions sensors. The functional components inside each class act as
independent entities and do not have data flow between them. The functional components
of the architecture are described below:
𝑎) Sensor abstraction consists of hardware sensors and their encapsulation via its software
interfaces. Two classes of sensors are functionally distinguished: (𝑖) actuation sensors that
monitor vehicle state and dynamic attributes like speed and inertial measurements; (𝑖𝑖)
environment perception sensors, like RADAR and GPS, that monitor the vehicle’s external
environment and localize the vehicle on the map.
𝑏) Sensor fusion combines data from different kinds of sensors to generate information about
the vehicle and its surroundings. The sensor fusion of i-CAVE demonstrator has three func-
tional components: (𝑖) host tracking that combines location and inertial measurement data
to determine the absolute position of the vehicle, (𝑖𝑖) vehicle state estimator that combines
acceleration information with data from actuation sensors to estimate the dynamic state
5https://www.nwo.nl/en/cases/i-cave-five-years-research-cooperative-and-
autonomous-driving

6https://www.renault.co.uk/electric-vehicles/twizy.html
7https://www.advantech.com/en/products/1-2jkd2d/ark-3520p/mod_6666bf1e-af4f-47b6-
8006-1a0a89eb3c93

8https://developer.nvidia.com/drive/

https://www.nwo.nl/en/cases/i-cave-five-years-research-cooperative-and-autonomous-driving
https://www.nwo.nl/en/cases/i-cave-five-years-research-cooperative-and-autonomous-driving
https://www.renault.co.uk/electric-vehicles/twizy.html
https://www.advantech.com/en/products/1-2jkd2d/ark-3520p/mod_6666bf1e-af4f-47b6-8006-1a0a89eb3c93
https://www.advantech.com/en/products/1-2jkd2d/ark-3520p/mod_6666bf1e-af4f-47b6-8006-1a0a89eb3c93
https://developer.nvidia.com/drive/

3

78 3 Assessing Safety Reqirements for Connected Driving

of the vehicle, and (𝑖𝑖𝑖) target tracking component that combines data from environment
perception sensors like radar to detect objects and other vehicles in the surroundings of
the vehicle.
𝑐) V2V communication communicates actuation-related signals for platooning between a
vehicle and its surrounding vehicles.
𝑑) Vehicle control generates control signals for autonomous actuation of the vehicle using
the information about the state of the vehicle, its surroundings, and information about the
vehicle in front (received via V2V communication). When manually driven, this component
receives actuation commands from a human driver.
𝑒) Actuator is hardware and corresponding software interface for accelerating, steering,
and braking of the vehicle, also known as drive-by-wire interface.
Note that the components to fulfill non-functional requirements (outside the platooning
functionality), like safety management components, are not shown since they are not part
of basic functional architecture needed to achieve platooning.

3.3.1 Derive FSRs for platooning
Following are the steps in the first part of our method, depicted in Figure 3.2.

Functional decomposition: We decompose the platooning scenario description (also
referred to as SD) into five sub-scenarios.

SC-1 A vehicle can join a platoon as a follower after the last follower.

SC-2 A follower can leave a platoon.

SC-3 A platoon can split into two platoons.

SC-4 Two adjacent platoons can merge into a single platoon.

SC-5 When the leader leaves a platoon, the first follower becomes the new leader.

A platoon is formed when one vehicle joins another vehicle to form a two-vehicle platoon.
Eventually, a platoon is disbanded when a vehicle leaves a two-vehicle platoon. The join
and leave actions in a platoon are performed manually by the driver of the vehicle.

The platooning scenario description is partitioned into 9 functions from the vehicle
perspective and 6 functions from the connected perspective. These functions are listed in
Table 3.1.

Hazardous events: Next, we identify hazards relating to these functions. We use the
seven most common guide words from the automotive domain (no, more, less, as well
as, part of, reverse, and other than) [38] to identify 57 hazards. For example, the platoon
function—“keep sufficiently safe inter-vehicular distance"—with the guide word less creates
the hazard—“keeping less than sufficiently safe inter-vehicular distance"—that can potentially

3.3 Research method

3

79

Actuator

Sensor Abstraction

Vehicle Control

Sensor Fusion

Host Tracking Vehicle State
Estimator

Target
Tracking

Actuation
Sensors

Environment
Perception

Sensors

V2V
Communication

: Class of Component: Functional Component

(a) Vehicle functional architecture

 Leader
Actuator

Interfaces

Input from
Driver

V2V
Communication

: Class of Component: Functional Component

Vehicle
Control

: Data used for platooning : Data not used for platooning

 Follower

Sensor Fusion

Actuator
Interfaces

Sensor
Abstraction

Input from
Driver

V2V
Communication

Vehicle
Control

to

V2
V

C
om

m
un

ic
at

io
n

co

m
po

ne
nt

 o
f

ne
xt

 F
ol

lo
w

er

(b) Connected functional architecture for platooning

Figure 3.4: A simplified functional architecture of i-CAVE demonstrator and the platooning
architecture (connected architecture) derived from it.

3

80 3 Assessing Safety Reqirements for Connected Driving

lead to crash inside a platoon. The list of hazards is available online [103] and the count of
hazards derived from each function is shown in Table 3.1.

These 57 hazards (26 from connected perspective and 31 from vehicular perspective)
when combined with operational modes (7 from connected perspective and 6 from vehicle
perspective) and operational situations (2 per perspective) resulted in 340 hazardous events,
140 from vehicle perspective and 200 from connected perspective. Note that not every
combination of hazards, operational modes, and operational situations is feasible and the
infeasible combinations are not considered further. An example of a hazardous event from
connected perspective is: “keeping less than sufficiently safe inter-vehicular distance (hazard)
during merge with another platoon (operational mode) on highway (operational situation)".

Safety goals: For each hazardous event, we created a safety goal to prevent it. We
merged similar goals in each perspective to have 14 and 11 safety goals from vehicle and
connected perspective respectively. For example, the safety goal “sufficiently safe inter-
vehicular distance shall be kept regardless of the operational mode or operational situation of
the platoon" is formed by combining the goals derived from 56 hazardous events.

For ASIL allocation to safety goals, we assumed that all vehicles inside a platoon, except
for the leader, cannot rely on a human driver for fallback in case of any failure. For vehicles
joining or leaving a platoon, during the process of joining and leaving, we assume a human
driver for fallback in case of failures. We have given the lowest score for controllability
in the scenarios pertaining to follower vehicles. Since the leader is human-driven, the
controllability of the leader vehicle is assumed to be the highest. The highest levels are
assigned to the severity if a vehicle or platoon failure causes a crash since we assumed
the speed range for highways. We assumed different exposure levels based on scenarios
(joining platoon, leaving platoon, splitting of a platoon, merging of two platoons, and
change of leader in a platoon) and operational situation (highway or highway- interchange)
with the highest exposure levels in operational scenario highway. Therefore, most of the
safety goals are assigned ASIL D. The detailed list of exposure, controllability, and severity
levels assigned and resulting ASIL for each safety goal is available online [103].

Connected functional architecture: Figure 3.4b shows a simplified connected functional
architecture for platooning with functional components for platooning as well as the
working of vehicles within a platoon at the functional level. The connected functional
architecture is created by four system architects, who are mechanical engineers involved
in the development of i-CAVE demonstrator with at least a master’s degree and a minimum
of two years of experience in automotive architecture development. The connected func-
tional architecture contains the same functional components as the vehicular functional
architecture (see Figure 3.4a and Figure 3.4b), but only the components that are used to
accomplish the connected functions and their interconnections are used. For example,
a design choice of the system architects was to communicate the information from the
vehicle control functional unit of the leader to the follower and not to communicate the
sensor information between the leader and the follower. Thus, in the leader, the sensor

3.3 Research method

3

81

Table 3.1: Hazards for functions identified from platooning description

Connected functions Hazard
(count)

Keep optimized inter-vehicular distance within a platoon 4
Make place for a vehicle to join 6
Merge with another platoon 4

Split into two platoons 4
Change leader 4

Keep proper distance to the surrounding traffic 4

Vehicle functions Hazard
(count)

Autonomously follow the vehicle in front (follower) 3
Keep a proper distance to the surrounding traffic as part of a platoon (follower) 5

Leading the platoon (leader) 4
Take leader role of platoon 3

Switch from leader to follower role 3
Join platoon (follower) 2

Leave platoon 2
Timely react to the actions of surrounding vehicles in a platoon 5

Follow traffic indications, signs and rules 4

abstraction and sensor fusion class of functional components are not used for connected
driving functions. Also, these functional components are not used for leader’s own driving
functions since the leader is manually driven. Therefore, in the connected functional
architecture, in the leader block, these components are not shown for leader (see the leader
block at the top of Figure 3.4b).

Safety analysis: Finally, FSRs are derived by mapping safety goals to the functional
architectures using fault tree analysis (FTA) [42]. The FTA generated 16 FSRs from the
vehicle perspective and 15 FSRs from the connected perspective. i.e., 31 in total. The count
of FSRs for each functional component is presented in Figure 3.5 along with some example
FSRs in the second column of Table 3.2.

Interpretation of results

In our case study, the traditional safety analysis (vehicular perspective) according to
ISO 26262, resulted in 16 safety goals leading to 16 FSRs. While the proposed extension of
safety analysis resulted in 9 more safety goals and 15 more FSRs, resulting in a total of 25

3

82 3 Assessing Safety Reqirements for Connected Driving

safety goals and 31 FSRs. The maximum number of FSRs from the vehicular perspective
is associated with the vehicle control component (6 FSRs), while in the context of FSRs
from the connected perspective, it is the V2V communication component (5 FSRs). Another
interesting note is that most of the FSRs (17 out of 31; 12 from the vehicular perspective
and 5 from the connected perspective) is assigned with ASIL D while only a relatively
low number of safety goals (7 out of 25; 6 from the vehicular perspective and 1 from the
connected perspective) as assigned with ASIL D. This difference in ASILs between safety
goals and FSRs because of most functional safety requirements being related to multiple
functional safety goals, and FSRs inherit the highest ASIL of their related safety goals.

Our count of FSRs (31 FSRs from 25 safety goals in total) is low compared to industry
scenarios in which a similar count of safety goals are linked to more than 100 FSRs.
We believe that the reduced number of FSRs is related to the simplicity of our vehicle
functional architecture. To give perspective, a reference architecture presented in [105]
has 39 functional components while our simplified architecture has 8.

It is possible to have overlap of FSRs derived from both the perspectives. That is, the
same FSR can be derived as a result of connected and vehicular perspectives. Our case
study, however, did not result in any overlapping FSRs.

3.3.2 Check fulfillment of FSRs
Following are the steps in second part of our method, depicted in Figure 3.3.

Check for conflicts in the derived FSRs: We grouped FSRs based on their associated
functional architecture component. For example 9 FSRs belong to the functional architecture
component vehicle control and 3 of them is shown in Table 3.2 (see details in the third–fifth
row, first and second column). The overall count of FSRs grouped on associated component
is shown in Figure 3.5. Within each group, we compared the descriptions of each pair
of FSRs to identify potential conflicts. We did not find any conflict in the 8 groups. The
complete list of FSRs grouped by functional architecture component and compared pairwise
is available online [103].

Identify safety tactics for implementing each FSR: For each FSR we identified a list of
applicable safety tactics. We chose the following 13 safety tactics on which the 15 most
widely used safety patterns build [91, 92]: simplicity, substitution, sanity check, condition
monitoring, comparison, diverse redundancy, replication redundancy, repair, degradation,
voting, override, barrier and heartbeat [91, 92]. More details on individual tactics are
presented in Appendix A.

3.3
Research

method

3

83

Table 3.2: FSRs that are found to be fulfilled in the technical architecture of i-CAVE demonstrator. FSRs in blue cells are
derived from connected (platooning) perspective and other FSRs are derived from vehicle perspective.

FSR Applied
Tactics Implementation in Technical Architecture

En
vi
ro
nm

en
t

pe
rc
ep
tio

n
Se
ns
or
s Failure of environment perception sensors

shall not result in the generation of in-
correct information on distance to the
surrounding vehicles and objects. Sa

ni
ty

C
he
ck
,

Ba
rr
ie
r,

H
ea
rt
be
at
,

C
on
di
tio

n
M
on
ito

ri
ng

Cyclic Redundancy Check (CRC) for messages (sanity check)
and validity time per message (heartbeat) is implemented in
the Environment perception Sensors component while a watch
dog is implemented in the safety management (condition mon-
itoring). Software interface for each sensor is implemented
independent of each other to protect from unintended influ-
ence between interfaces (barrier).

Ac
tu
at
io
n

Se
ns
or
s External interference shall not invali-

date/corrupt data from actuation sensors
. Sa

ni
ty

C
he
ck

CRC and a message counter is implemented

Ve
hi
cl
e

Co
nt
ro
l A failure in vehicle control shall not

cause generation of incorrect actuation
signals Ba

rr
ie
r,

C
on
di
tio

n
M
on
ito

ri
ng

Two independent driving modes are implemented in vehicle
control component. One mode generate control signals (when
in follower role) relying on V2V communication and the other
without relying on V2V communication (barrier). A monitor
for checking correct working of (and switching between) the
two modes is implemented in safety management (condition
monitoring).

A failure in vehicle control shall neither
inhibit nor modify the input from driver
to further pass on. Si

m
pl
ic
ity

The driver input is bypassed directly to Actuators.

A failure in vehicle control shall not
cause a switch to manual drive mode
while in platooning mode Sa

ni
ty

C
he
ck
,

O
ve
rr
id
e,

C
on
di
tio

n
M
on
ito

ri
ng

A state machine based method for mode selection and moni-
toring is implemented as a part of safety management.

V2
V

Co
m
m
un

ic
at
io
n

Failure in V2V communication shall not
transmit incorrect information to or re-
ceive incorrect information from a vehi-
cle joining or leaving a platoon. H

ea
rt
be
at

Heartbeat messages to continuously monitor reliability of com-
munication channel are implemented in V2V Communication.

3

84 3 Assessing Safety Reqirements for Connected Driving

Each safety tactic has an aim and a description of its scope [92]. For example, the aim
of safety tactic simplicity is to “avoid failure by keeping a system as simple as possible" and
its description is “Simplicity reduces system complexity. It includes structuring methods or
cutting unnecessary functionality and organizing system elements or reducing them to their
core safety functionality to eliminate hazards." [92].

Applicable tactics for each FSR: To identify whether an implementation of a safety
tactic can realize an FSR, the aim and description of the safety tactic is matched with the
description of the FSR. Examples of FSRs, safety tactics that match them as well as their
implementation are presented in Table 3.2. Table 3.2 also shows that the first FSR listed
does not match the simplicity tactic (not present in column 3) resulting from the inherent
complexity of environment perception sensors. A complete list of the 31 FSRs and matched
safety tactics is available online [103].

1

1

1

1

2

4

1

2

1

2

2

2

2

2

3

1

1

1

1

Actuation Sensors

Environment Perception Sensors

Host Tracking

Vehicle State Estimator

Target Tracking

Vehicle Control

V2V Communication

Actuator

FSRs unfulfilled (Vehicle perspective)

FSRs fulfilled (Vehicle perspective)

FSRs unfulfilled (Platoon perspective)

FSRs fullfilled (Platoon perspective)

Host Tracking

Environment Perception Sensors

Actuation Sensors

1 1 1 1
2

4

1
2

1

2

2 2

2

2

3 1

1

1

1

2 2

3 3

4

9

5

3

Actuation Sensors Environment
Perception Sensors

Host
Tracking

Vehicle State
Estimator

Target Track ing Vehicle Control V2V
Communication

Actuator

Chart Title
FSRs unfulfi lled (Vehicle perspective) FSRs fulfilled (Vehicle perspective) FSRs unfulfi lled (Platoon perspective)

FSRs fullfilled (Platoon perspective) Total

2

2

3

3

4

5

3

9

Actuator

V2V Communication

Vehicle Control

Target Tracking

Vehicle State Estimator

Figure 3.5: The 31 FSRs, grouped by associated functional component. The total FSRs for
each group is shown at the end of each stacked bar

Check for safety tactics implementations in technical architecture: Finally, to identify
whether the vehicle architecture meets an FSR, we analyzed the implementation of the
associated functional architecture component in the technical architecture of the i-CAVE
demonstrator. The technical architecture of the i-CAVE demonstrator is implemented in
MATLAB/Simulink. We inspected the MATLAB code as well as the Simulink state flow
diagram to identify functional architecture components as well as any associated safety
management system. We mapped the implementations of these functional architecture
components to the safety tactics identified for each FSR to evaluate whether each FSR is
fulfilled by the technical architecture. Table 3.2 shows the FSRs that are found to be fulfilled

3.3 Research method

3

85

in the technical architecture, the tactics applied from the set of applicable tactics, and how
the specific combination of applied tactics fulfills the corresponding FSR. Also, an example
of FSR that is found to be unfulfilled is: “A failure in Actuator (software interface) should
not cause propagation of incorrect control signals to hardware actuators". A complete list of
unfulfilled FSRs is available online [103].

For each functional component, Figure 3.5 shows the count of FSRs that are realized and
not realized from the vehicle as well as the platooning perspective, respectively. Recall from
Section 3.3.1 that we derived 16 and 15 FSRs from the vehicle and platooning perspective,
a majority of them relate to vehicle control. Out of the 16 FSRs for the vehicle perspective,
3 FSR are fulfilled by the vehicular technical architecture and the remaining 13 FSRs are
unfulfilled. Likewise, for the connected perspective, 3 FSRs are fulfilled and the remaining
12 FSRs are unfulfilled. We showed our results to the four system architects of the i-CAVE
project. They confirmed that fulfilled FSRs are implemented and unfulfilled FSRs are not
implemented in i-CAVE demonstrator. For the 25 FSRs unfulfilled by i-CAVE demonstrator,
we provide a list of applicable safety patterns that can act as a starting point for the next
design iteration of the technical architecture.

Interpretation of results

Our study shows that the technical architecture meets only 6 out of 31 FSRs (with all
six fulfilled FSRs presented in Table 3.2). In our case study, we checked whether FSRs are
fulfilled in the i-CAVE demonstrator using 13 safety tactics. The set of tactics was chosen
based on their use in the 15 most widely used safety patterns [92]. It is possible that we
might have classified some fulfilled FSRs to be unfulfilled since we considered only 13
tactics. However, the architects of the i-CAVE project agreed to our findings. This indicates
that our classification was correct.

Our assessment using these safety tactics showed that, out of the 15 FSRs from the
connected perspective, 12 were unfulfilled. Notably, we found almost as many unfulfilled
FSRs from the vehicle perspective as from the connected perspective. An explanation for
this observation relates to the capabilities of the vehicle behind the i-CAVE demonstrator.
The i-CAVE demonstrator uses a Renault Twizy9 which is a bare-bones two seater electric
vehicle. To give perspective, the Renault Twizy is small enough (2338𝑚𝑚 × 1381𝑚𝑚) to
be used in bicycle lanes, is lightweight (gross weight of 690 kilograms) and has a driving
range of up to 51 kilometers. In contrast, Tesla’s entry level vehicle, Model 3,10 is almost
double in dimension, three times in gross weight, and more than ten times in driving
range. As a result, the i-CAVE demonstrator has limited features and components. Also,
the demonstrator is a work-in-progress being developed iteratively by a multi-domain
team. Since some parts of the technical architecture were not implemented during our case
9https://www.renault.co.uk/electric-vehicles/twizy/specifications.html
10https://www.tesla.com/model3

https://www.renault.co.uk/electric-vehicles/twizy/specifications.html
https://www.tesla.com/model3

3

86 3 Assessing Safety Reqirements for Connected Driving

study, our results merely point to the missing implementations as unfulfilled FSRs in the
vehicle perspective. Future iterations of the demonstrator11 can use this list of unfulfilled
FSRs from both the vehicle and the connected perspective to improve the i-CAVE technical
architecture.

In summary, our case study found unfulfilled FSRs from the connected perspective
showing the viability and applicability of the proposed method. The results of our case
study show better coverage of safety goals by providing additional FSRs as compared to the
ISO 26262 process [5]. The current safety engineering methods to derive FSRs are outlined
by ISO 26262 standard [5, 80] which lacks the connected perspective. It provided valuable
insights in the context of i-CAVE project. In our case study, we found 15 FSRs from the
connected perspective, making up 48% of all FSRs. Yet it is still a mere illustration of our
method. Clearly, replications are required to verify the generalizability and scalability of
our method. Nonetheless, our results corroborate the existing body of knowledge [78,80,81]
in showing that the current safety standard misses FSRs from the connected perspective.

The results of our case study show better coverage of safety goals by providing ad-
ditional FSRs as compared to the ISO 26262 process [5]. The current safety engineering
methods to derive FSRs are outlined by ISO 26262 standard [5,80] which lacks the connected
perspective. In our case study, we found 15 FSRs from the connected perspective, making
up 48% of all FSRs. Our results corroborate the existing body of knowledge [78, 80, 81] in
showing that the current safety standard misses FSRs from the connected perspective.

3.4 Discussion
We present a deeper exploration into the proposed method in terms of implicit assumptions.
We describe how our solution is likely to apply to connected driving scenarios in real-life.
Below we discuss the implicit assumptions in our method, the scalability, generalizability,
and the scope of our method.

3.4.1 Assumptions
The proposed method borrows some assumptions applicable to single-vehicle and applies
them to connected driving. These assumptions are derived from the safety engineering
domain as well as the software architecture domain. For example, it is assumed that
proper functional separation of the system is always possible. This results in every FSR
being mapped to exactly one functional component. Such a functional separation is a
standard practice in the safety engineering domain and has been followed for at least five
decades [42]. This separation is also underlined by the product development standard in
the automotive domain—ISO26262 [5, 101] and automotive architecture frameworks [93].
Nonetheless, the applicability of this assumption in connected driving is not established.
11https://www.nwo.nl/en/cases/i-cave-five-years-research-cooperative-and-
autonomous-driving

https://www.nwo.nl/en/cases/i-cave-five-years-research-cooperative-and-autonomous-driving
https://www.nwo.nl/en/cases/i-cave-five-years-research-cooperative-and-autonomous-driving

3.4 Discussion

3

87

Similarly, the second part of our method relies on two assumptions: (𝑖) it is possible to
map functional components to implementations in the technical software architecture; and
(𝑖𝑖) every FSR can be fulfilled by a combination of safety tactics. Our first assumption comes
from the architecture frameworks in the automotive domain [93]. The assumption about
safety tactics stems from the architecture domain, which considers safety tactics as design
primitives, and architectures are formed by the combination of design primitives [85].
Mature architecture assessment methods like ATAM also rely on this assumption, albeit
in the context of tactics for the quality attributes they focus on [84, 85]. Nonetheless, the
applicability of this assumption in the automotive domain is not established.

3.4.2 Applicability
Our case study presents a simplified version of connected driving use cases. In real-life, the
proposed method should work on a bigger scale and apply to connected driving systems
with various entities. The potential factors limiting the scalability and generalizability of a
method include the complexity of the system, heterogeneity of participating systems (e.g.,
different types of vehicles (car and truck) and/or vehicles from different manufacturers), and
inclusion of entities other than participating vehicles, like the cloud, to enable connected
driving functionalities.

Scalability: Our method is modular, which means that it is likely to scale to complex
systems. The method uses two levels of abstraction at the architecture level. The functional
architecture view separates functionalities such that each component performs one unique
function and collectively performs a connected driving function. This ensures that the
safety requirements for connected driving functions can be allocated to individual vehicular
components without entering into their implementation details. In the second part of the
method, all the FSRs pertaining to one component are assessed against their implementation
details. Segregation of safety requirements pertaining to each component and handling
each component separately, ensures the applicability of our approach to complex systems.

Heterogeneity: The functional architecture view acts as a black box separating functional
components and interaction among functional components from their implementation,
making our approach agnostic of vehicle type and brand. As a result, we believe that
our approach can assess the safety of connected driving systems that involves different
kinds of vehicles (for example, platoon containing both trucks and cars) as well as different
automotive brands (for example, platoon containing cars from BMW and GM) as long as
the functional architectures of the participating entities are provided.

Entities other than vehicles: Entities enabling connected driving functionalities can
be beyond participating vehicles. One such example is cloud communication. The con-
nected architecture and corresponding item definition in the first phase of our approach
are specifically introduced to ensure that all the entities involved in enabling connected
functionalities are systematically considered in the safety analysis. For example, in the

3

88 3 Assessing Safety Reqirements for Connected Driving

use cases that include cloud communication, the cloud will be a part of the connected
architecture.

Fail-operational and fail-safe designs: Our work is designed for connected systems
irrespective of their operational design domain and whether they are designed to be fail-
operational or fail-safe [106,107]. The proposed method is generic for both fail-operational
as well as fail-safe systems. Our method ensures that both connected and vehicular
perspectives are covered while deriving FSRs.

3.5 Related work
The proposed method has two parts: (i) deriving FSRs for connected driving and (ii) check
whether each FSR is fulfilled in the technical software architecture of the vehicle. These
two aspects are addressed separately in the literature, and the related research primarily
stems from two domains: software architecture and safety engineering.

Software architecture
A variety of architecture assessment techniques has emerged from the software archi-
tecture research community in the past three decades. These architecture assessment
techniques assess the “goodness" [85] of an architecture(s) with respect to some property
(or a set of properties). Such properties are termed as quality attributes. Quality attributes
can be divided into two broad categories: operational (e.g., reliability, performance) and
development (e.g., maintainability, re-usability) [90]. This chapter focuses on functional
safety as an operational quality attribute.

The software architecture assessment techniques proposed for operational quality
attributes [82, 83] mainly use mathematical modeling & analysis and scenarios of system
operation (also known as scenario-based techniques) to uncover whether the architecture
achieves the intended quality attributes sufficiently [108]. The assessment techniques
that use mathematical modeling mainly focus on reliability and performance as quality
attributes [109]. Some studies have shown that these techniques are not scalable and hence
not suitable for complex systems of systems like connected driving systems that are built
by multiple inter-disciplinary teams [109].

The prominent scenario-based architecture assessment methods for operational quality
attributes are the Architecture Trade-off Analysis Method (ATAM) [84, 85], Scenario-Based
software Architecture Re-engineering (SBAR) [86], Software architecture Comparison
Analysis Method (SCAM) [87], Domain Specific software Architecture comparison Model
(DoSAM) [88], and Pattern-Based Architecture Reviews (PBAR) [89].

PBAR is designed for light weight evaluation, primarily performed on small projects
with some case studies on projects with at most 10 developers [89, 110]. It is not suitable
for evaluation of complex safety-critical systems that we assess in this chapter [89]. SCAM
and DoSAM are designed for comparing different architectures rather than assessing an

3.5 Related work

3

89

individual architecture [87, 88]. These methods grades each of the architectures under
comparison on a normalized scale, typically from 0 to 100, and use this to characterize
the fitness of a candidate architecture in contrast to others. SBAR is an iterative method
for re-engineering of architectures for functionality based re-design [86] including for
architectures that might not properly separate functional concerns. We assume that the
automotive architectures for our analysis are designed based on separation of functional
concerns since this is a standard practice in the automotive domain, enforced by safety
engineering [5, 101]. Moreover, SBAR suggests scenario-based techniques for development
quality attributes and simulation based assessment for operational quality attributes [83]. In
contrast we consider scenario-based methods for the operational quality attribute functional
safety.

ATAM is the most mature and widely used architecture assessment method in prac-
tice [85]. ATAM, in its current form, is primarily used to analyze trade off among different
quality attributes and to identify stress points and sensitivity points in the architecture
under assessment. ATAM facilitates usage of existing knowledge in the form of tactics,
which we take inspiration from and reuse in our proposed method.

ATAM considers six quality attributes, however, functional safety is not one of them [85].
Note that case studies of ATAM’s application to safety critical domains like avionic sys-
tems [111] do not stress safety as a primary quality attribute either. Even though ATAM
provides some methods for scenario elicitation, it does not provide a systematic method for
scenario decomposition to generate requirements for individual architecture components.
This is crucial in the context of systems of systems since a scenario may lead to a multitude
of requirements affecting different systems which are to interact with each other to perform
the intended action(s).

In summary, within the field of software architecture, none of the software architecture
assessment methods that we found are applicable for analyzing the functional safety of
connected automotive systems.

Safety engineering
Now, we present related research on the application of safety engineering concepts in
automotive software and system evaluation. We primarily present related research on (𝑖)
identifying FSRs in automotive settings and (𝑖𝑖)methods to check or ensure that a technical
architecture realizes FSRs.

Identifying FSRs: Studies on deriving FSRs largely focused on the perspective of indi-
vidual vehicle as a system while just a few explored the perspective of a set of vehicles as a
system. Studies to derive FSRs from the vehicle perspective present different mechanisms
to generate safety goals and map these to the functional architecture using safety analysis
methods. For instance, Beckers et al. [112] presents a model-based method to define FSRs
given safety goals.

3

90 3 Assessing Safety Reqirements for Connected Driving

Studies on connected driving systems try to replicate themechanisms from an individual
vehicle perspective. For example, Oscarsson et al. [113] uses system theory for the safety
analysis from the perspective of set of vehicles as a system. Another study proposed an
alternative safety analysis technique, using possible accidents as a starting point to identify
FSRs [114]. Our study closely follows the study by Saberi et al. [81] in deriving FSRs from
connected driving scenarios.

Checking or ensuring architecture realizes FSRs: Studies on a single vehicle perspective
use many different approaches to ensure that systems satisfy FSRs. One approach uses
an architecture description language for safety verification [115]. Martin et al. [116] uses
architecture patterns to incorporate FSRs in the design phase. Sljivo et al. [117] presents a
method for fulfillment of FSRs at design time using design patterns and contracts. Other
approaches use formal methods to verify that systems satisfy FSRs, although the solutions
do not scale [118–120].

Ensuring fulfillment of FSRs as part of a connected system is challenging [77]. A
majority of works on connected systems proposes a reference architecture from a system
of systems viewpoint [77]. Some other solutions look at specific architecture components
in specific connected scenarios, thereby missing high-level insights [78].

To the best of our knowledge these studies, with their scope of complete system
architecture, focus on fulfilling FSRs during the design phase. This chapter, in contrast,
focuses on checking for the fulfillment of FSRs on existing architectures or when designing
architectures.

3.6 Threats to validity
Our proposed method and the findings from the case study are susceptible to threats
relating to human participation and choice of techniques. Below, we present potential
threats and our attempts at mitigating them.

Cognitive bias: Several steps of our proposed method and the related case study rely on
the expert opinions of architects. This step may have resulted in cognitive bias [121] in
relation to human judgment. To mitigate this threat, for every step that required human
judgment, we consulted at least three experts (in addition to the first two authors), who
performed the steps independently. For example, (𝑖) the connected functional architecture
was created from the vehicle architecture and scenario descriptions, in consultation with
four expert system architects, independently (𝑖𝑖) two of the authors independently checked
for conflicts among FSRs; and (𝑖𝑖𝑖) The validity of the safety goals depends on the decompo-
sition of a scenario description to functions. The decomposition of the scenario description
to functions was validated by the third author, who is an expert in functional decomposition
with over five years of industry experience in the functional safety domain and a participant
in the development of the automotive industry’s functional safety standards ISO 26262 and
ISO 21448.

3.7 Future work

3

91

Technical bias: To generate FSRs, we chose fault tree analysis [42] as the safety analysis
technique. The choice of other techniques, like failure mode effect analysis [43], may
influence the outcome. We need empirical studies to check whether the choice of safety
analysis technique introduces differences in findings.

Choice of safety tactics: In our case study, we checked whether the FSRs are fulfilled in
the i-CAVE demonstrator using 13 safety tactics. The safety tactics are chosen based on
their use in the 15 most widely used safety patterns [92,99]. This list of safety tactics is not
complete and defines the scope of our case study.

3.7 Future work
Our work is an initial step in the direction of functional safety assessment for connected
driving. This section presents potential future directions.

Cyber-security alongside functional safety: Cyber-security is a prominent directions
to explore in connected driving alongside functional safety. The connected nature of
connected driving increases the potential attack surfaces and can compromise the system’s
functional safety. Integral approaches that consider safety and security together are a
potential future research direction.

Hardware topology: Functional safety is often achieved via hardware architecture or a
combination of hardware and software. The second part of our method focused only at
the software level. Extending the second part of the approach to address functional safety
requirements that are fulfilled specifically in hardware topology and the combination of
hardware and software is the logical next step of the proposed approach.

ASILs for safety tactics: Currently, safety tactics are not associated with ASIL levels. This
means that, from the current taxonomy of safety tactics, we can only conclude whether a
tactic addresses an FSR rather than whether it addresses the FSR at the specific level of
ASIL. Augmenting safety tactics with ASILs is a potential future research direction. This
will allow prioritizing FSRs based on the risk associated with them. This may also be a step
towards a trade-off analysis where each FSR can be traded off with other requirements
based on the risk associated.

Alternative architecture abstraction levels: Currently, the second part of our approach,
checking fulfillment of FSRs, uses the technical architecture view. It can be argued that a
higher level of architecture abstraction than the technical architecture view can be used
instead. We plan to evaluate this in the future.

Finally, our method adapts existing solutions for addressing functional safety in the
context of connected driving scenarios. Alternative methods to check for unfulfilled FSRs
will be an interesting direction to explore.

3

92 3 Assessing Safety Reqirements for Connected Driving

3.8 Conclusion
This chapter investigated whether the architecture of a single vehicle meets the functional
safety requirements for connected driving. We proposed a method to ensure that an
automotive architecture is functionally safe to operate in given scenarios. The proposed
method derives functional safety requirements for a connected driving scenario and checks
whether they are fulfilled in the technical architecture of a vehicle. The method is a
combination of methods adapted from the safety engineering and software architecture
domains. We show the usability of our method for a connected driving scenario, platooning,
on an academic prototype, resulted in uncovering functional safety requirements that were
not fulfilled by the software architecture. Our method is motivated by and reinforces the
notion that functional safety should not be an afterthought in the design of automotive
architectures rather be used for defining the architecture of the automotive system.

4

93

4
Safety of

Perception Systems
for Automated Driving:
A Case Study on Apollo

The automotive industry is now known for its software-intensive and safety-critical nature.
The industry is on a path to the holy grail of completely automating driving, starting from
relatively simple operational areas like highways. One of the most challenging, evolving, and
essential parts of automated driving is the software that enables understanding surroundings
and the vehicle’s own as well as surrounding objects’ relative position, otherwise known as the
perception system. Current generation perception systems are formed by a combination of
traditional software and machine learning-related software. With automated driving systems
transitioning from research to production, it is imperative to assess their safety.

We assess the safety of Apollo, the most popular open-source automotive software, at the design
level for its use on a Dutch highway. We identified 58 safety requirements, 38 of which are
found to be fulfilled at the design level. We observe that all requirements relating to traditional
software are fulfilled, while most requirements specific to machine learning systems are not.
This study unveils issues that need immediate attention; and directions for future research to
make automated driving safe.

This chapter is based on
 S. Kochanthara, T. Singh, A. Forrai, L. Cleophas. Safety of Perception Systems for Automated Driving: A Case
Study on Apollo, Under revision at a journal

4

94
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

T he automotive industry has transitioned from an electro-mechanical to a software-
intensive industry. Current and future vehicles are characterized by immense use of

software to enable automated (a.k.a. self-) driving. Today, industry players like Waymo
and Baidu have shown the capability of completely automating driving (i.e., without the
need of a human driver for emergency takeover) in relatively simple situations like specific
geographic locations and restricted weather and illumination conditions.1 Likewise, many
software companies, including Apple, Sony, and Uber, are reportedly developing their
automated driving frameworks.2

This chapter focuses on perception systems in automated driving frameworks. Per-
ception refers to sensing surroundings for semantic understanding, such as identifying
traffic signs and locating the vehicle’s own position and the relative position of objects
around [14]. This information is used for planning and executing the next driving decision.
Perception systems are arguably the most evolving and relevant part of any automated
driving framework [12].

Software engineering research on perception systems has explored multiple aspects,
including their development [122], complexity [123], and use of machine learning (ML)
models in perception systems of existing automated driving frameworks [13,15]. Withmany
automated driving frameworks transitioning from research to production, one challenge
that the automotive industry, regulatory bodies, and legal authorities experience today
is the safety of automotive software, which is imperative for its public acceptance [124].
Relating to safety, recent software engineering literature primarily focuses on validation
& verification; with most of the studies on testing [125–127] and related aspects [128].
Bridging a gap in the literature, this chapter presents a case study assessing the safety of
perception systems at the design level.

We study Apollo 7.0’s [11] perception system software for its use in a segment of the
Dutch highway A270.3 Existing studies show that Apollo is the most popular open-source
automotive repository [12], with its development history in GitHub dating back to 2017. It
is currently one of the most advanced automated driving frameworks [13], embraced by
many world’s top automakers, and is used to offer automated driving services to the public
in parts of the world.1

This study makes two contributions. One, eliciting safety requirements, and two,
design assessment of the elicited safety requirements. We focus on three aspects of safety
requirement elicitation (a) system or sub-system failures [5]; (b) data corruption [5];
(c) insufficient situational awareness arising from limitation of sub-systems on specific
conditions (e.g., due to weather) [6]. There are more dimensions to safety requirement
elicitation like deficiencies in specified driving behavior [7]; and incorrect and inadequate
1https://www.engadget.com/baidu-apollo-go-robotaxi-shenzhen-141727050.html
2https://bwnews.pr/3KRZwYS
3https://www.openstreetmap.org/directions?engine=fossgis_osrm_car&route=51.4564%
2C5.5408%3B51.4657%2C5.5865#map=15/51.4610/5.5636

https://www.engadget.com/baidu-apollo-go-robotaxi-shenzhen-141727050.html
https://bwnews.pr/3KRZwYS
https://www.openstreetmap.org/directions?engine=fossgis_osrm_car&route=51.4564%2C5.5408%3B51.4657%2C5.5865#map=15/51.4610/5.5636
https://www.openstreetmap.org/directions?engine=fossgis_osrm_car&route=51.4564%2C5.5408%3B51.4657%2C5.5865#map=15/51.4610/5.5636

4

95

human-machine interface design leading to inappropriate or incorrect user situational
awareness (e.g., confusion, overload, or inattentiveness to users) [6, 8]; which are not
considered in this study.

For safety requirement elicitation on failures and data corruption we use the industry
standards and traffic authority guidelines [5, 16, 17, 129] based on its high adoption [12],
compliance requirements [129], and proven applicability in automotive domain1. To the
best of our knowledge, no existing case study in the scientific literature that elicits these
three kinds of safety requirements for a real-life highway and a mature software stack
from the industry.

The resulting requirements can be divided into two categories: (1) requirements that
can be assessed in the traditional software and (2) requirements specific to ML systems. An
example of traditional software requirement is “a failure of the camera sensor in the camera-
based perception system shall not lead to an incorrect estimation of the state of vehicles or
other obstacles." An example of an ML system requirement is “the performance deterioration
of a camera-based perception system due to low light in the night shall not lead to an incorrect
estimation of the state of vehicles or other obstacles." 4

For traditional software safety requirements, we use existing frameworks to assess
Apollo’s design [70, 71, 85]. Since there is no similar framework for assessing safety
requirements specific to ML systems, we systematically prepare a curated list of ML specific
design choices relating to safety and use them for design assessment. Our assessment uses
publicly available data like documentation, architecture, code, datasets and related artifacts,
and scientific papers linked to the documentation. An overview of the entire elicitation
and assessment process is depicted in Figure 4.1.

In summary, our study contributes the following:

• We present a case study of a mature, automated driving software stack from industry
for its real-life highway use, the first in the scientific literature. For transparency
and replicability, in addition to the safety requirements, we provide results from all
intermediate steps [130].

• We identify 58 safety requirements, specific to a Dutch highway segment of A270,
that can enable safe automated driving on highways.

• We present a curated list of 10 ML specific design choices for assessing the quality
attribute safety at design level.

4Note that these are hypothetical examples similar to the ones from this case study, which does not demand
knowledge of the detailed architecture of the perception system for comprehension. Original requirements
might require some knowledge of the perception system architecture to comprehend. These actual requirements
and how they are systematically derived are presented in Section 4.2.

4

96
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

Section 2: Overview & Context

Section 4: Design assessment

Section 3: Safety requirements
elicitation

Safety
requirements

elicitation

Architecture of apollo
automated driving platform

Sa
fe

ty

re
qu

ire
m

en
ts

Design
assessment

Machine learning
design choices

Traditional software
design choices

(non) fulfilled
safety requirements

and design evidences

Operational design domain
description

Physical
Infrastructure

Operation
constraints

ObjectsEnvironmental
Conditions

Connectivity Zones

Figure 4.1: Overview of the design assessment process

• Our study shows that there exists design evidence for the fulfillment of 38 out of
58 safety requirements. A detailed description of how and where to find them is
available as a part of the replication package [130].

The rest of the chapter is organized as follows. Section 4.1 presents an overview of safety
assessment along with a brief introduction to the architecture of Apollo automated driving
framework and a description of our operational area—a Dutch highway segment. Section 4.2
and Section 4.3 describe how we elicit and assess safety requirements, respectively, and
our findings. Section 4.4 discusses our findings and their implications for research and
practice. Threats to validity and related work are presented in Section 4.5 and Section 4.6,
respectively. We present concluding remarks in Section 4.7.

4.1 Overview and context
This section presents an overview of the safety assessment process and outlines the assess-
ment context. The entire process can be divided into three parts, as shown in Figure 4.1.

4.1 Overview and context

4

97

The first part is systematically identifying the necessary information needed to conduct
safety requirements elicitation. This includes Apollo’s detailed architecture [11] and a
systematic description of the intended operational area [16, 17]. There did not exist a
detailed architecture or a operational area description. A detailed description of both and
how we created them is presented in Sections 4.1.1 and 4.1.2.

The second part is deriving safety requirements for Apollo’s perception system. In this
work, we focus on safety requirements relating to three aspects: (1) failure of a component;
(2) data corruption; (3) limitations to the intended functionality (leading to insufficient
situational awareness). For the limitations in the functionality of ML components, we
concentrate on different weather and illumination conditions of the operational area that
can lead to the limitations. Section 4.2 presents the method we used for eliciting safety
requirements and the resulting requirements.

The third part is assessing the perception system, where we focus on the design
decisions and how they (do not) fulfill the safety requirements. The perception system
relies on multiple ML models along with traditional software. We assess the requirements
related to failure and data corruption in the architecture of the traditional software. ML
models have different design choices since they are fundamentally different from traditional
software. For ML models, the logic is automatically deducted from the training data, while
logic is manually programmed for traditional software. Requirements on limitations to the
intended functionality (specific to ML components) are assessed in the sub-systems that
rely on ML components. We explain the method and the results in Section 4.3.

4.1.1 Apollo: an open autonomous driving platform
Apollo is an open-source, automated driving platform from the Chinese search engine
company, Baidu. Our choice of Apollo is motivated by its popularity [12], prominence of
usage [12], continuous development since 2017, prior usage in research articles (e.g., [13]),
and industry ownership. We use the current version, Apollo 7.0, for this study. The
information used in this study is derived from publicly available documents, including
Apollo’s documentation on Github [11].

To create a detailed architecture, we started with the documentation available in GitHub.
While an abstract outline is available in the documentation, the detailed architecture as
shown in Figure 4.2 did not exist. To create this architecture, we combined information from
the source articles pointed by the documentation as well as prior research article [13] that
discusses the platform. Each individual module is identified from the documentation and
folder structure of the repository. The architecture of the individual modules is identified
based on the code, referenced (scientific) articles, and associated documentation. For
example, the module for localization and its overall role in perception is found using the
overall documentation5 and the organization of the repository. Then the next level of
5https://github.com/ApolloAuto/apollo#readme

https://github.com/ApolloAuto/apollo#readme

4

98
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

details is identified from the module documentation6 and code7. The next level of details is
derived from the source article [131] (pointed at by the module documentation) which dives
deeper into the architecture and implementation of the different localization techniques.
The rest of this section presents an overview of Apollo’s architecture with a focus on its
perception system.

The components in Apollo’s architecture can be grouped into four categories: percep-
tion, decision & control, interface to vehicle platform, and safety systems, as indicated with
the dotted rectangles in Figure 4.2. The dotted arrows in Figure 4.2 (inside the perception
system) indicate information processing pipelines. The pipelines and components consist-
ing of ML systems are shown in light green.
The perception system is responsible for understanding the surroundings, identifying obsta-
cles, and giving all information needed for components in decision & control. In Figure 4.2,
the dotted arrows inside the perception system indicate information processing pipelines.
The pipelines and components consisting of ML systems are shown in light green.
The decision & control part is formed by the following 4 sub-parts: (a) prediction, which
predicts the trajectory of moving objects surrounding the automated driving vehicle; (b)
routing, which identifies a path from source to destination to be followed by the vehicle;
(c) planning, which plans the next maneuver of the vehicle based on the inputs from pre-
diction, routing, and perception; and (d) control, which takes its inputs from the planning
and various sensors to identify the current pose (a combination of position and orientation
including yaw, roll, and pitch8) of the vehicle and generate messages to the vehicle platform
for executing automated driving through the trajectory obtained from planning.
The vehicle interface is responsible for two kinds of functions: (a) conveying commands like
steering angle and throttle to execute the desired maneuver of the vehicle (or simulation
system) on top of which the Apollo framework operates; and (b) dealing with other parts
like lights and turn signals.
The safety system is responsible for monitoring (primarily) the perception and decision &
control parts to identify potential faults and failures and maintain the automated driving
system in a safe state. For instance, in the event of partial failure of the perception system,
the safety system is responsible for making the vehicle reach a safe stop.
We exclude some components from the architecture that are not required for the perception
system’s safety requirement elicitation—e.g., human-machine interface. In the rest of this
chapter, we focus on the perception system.

The perception system in Apollo primarily uses three kinds of sensors to sense the
environment: camera, Light Detection And Ranging (LiDAR), and radar. The information

6https://github.com/ApolloAuto/apollo/tree/master/modules/localization#readme
7https://github.com/ApolloAuto/apollo/tree/master/modules/localization/proto
8Yaw, roll, and pitch three different kinds of motions of a vehicle based on three different axes. For a pictorial
view and details see https://www.liskeforensics.com/blog/title/vehicle-pitch-roll-and-
yaw/id/249/

https://github.com/ApolloAuto/apollo/tree/master/modules/localization#readme
https://github.com/ApolloAuto/apollo/tree/master/modules/localization/proto
https://www.liskeforensics.com/blog/title/vehicle-pitch-roll-and-yaw/id/249/
https://www.liskeforensics.com/blog/title/vehicle-pitch-roll-and-yaw/id/249/

4.1 Overview and context

4

99

Pe
rc

ep
tio

n
sy

st
em

Im
ag

e
pr

ep
ro

ce
ss

po
ly

no
m

ia
l c

ur
ve

 a
nd

la

ne
 ty

pe
La

ne
 d

et
ec

tio
n

O
bs

ta
cl

es
 a

nd
 th

ei
r

 tr
ac

ki
ng

 in
fo

rm
at

io
n

C
am

er
a

ob
st

ac
le

de
te

ct
io

n,
 c

la
ss

ifi
ca

tio
n

an
d

tra
ck

in
g

Tr
af

fic
 li

gh
t

de
te

ct
io

n
Tr

af
fic

 li
gh

t
re

co
gn

iti
on

bo
un

di
ng

bo

xe
s

Tr
af

fic
 li

gh
t

po
st

pr
oc

es
s

Tr
af

fic
 li

gh
t r

es
ul

tTr
af

fic
 li

gh
t

La
ne

po
st

pr
oc

es
s

Tr
af

fic
 li

gh
t m

es
sa

ge

C
am

er
a

po
st

pr
oc

es
s

fin
al

 la
ne

 re
su

lt

C
am

er
a

ca
lib

er
at

io
n

La
ne

 li
ne

La
ne

 m
es

sa
ge

C
am

er
a

Li
D

AR

Po
in

t c
lo

ud
s

pr
ep

ro
ce

ss
Li

D
AR

 o
bs

ta
cl

e
de

te
ct

io
n,

 c
la

ss
ifi

ca
tio

n
an

d
tra

ck
in

g

O
bs

ta
cl

es
 a

nd
 th

ei
r

 tr
ac

ki
ng

 in
fo

rm
at

io
n

Li
D

AR

po
st

pr
oc

es
s

R
ad

ar

R
ad

ar
pr

oc
es

si
ng

R
ad

ar
 o

bs
ta

cl
e

de
te

ct
io

n
an

d
tra

ck
in

g

O
bs

ta
cl

es
 a

nd
 th

ei
r

 tr
ac

ki
ng

 in
fo

rm
at

io
n

Fi
na

l o
bj

ec
t r

es
ul

t
w

ith
 ty

pe
,

di
st

an
ce

, a
nd

 v
el

oc
ity

Fu
si

on

pe
de

st
ria

n

By
ci

cl
e

ve
hi

cl
e

G
PS

/G
N

SS

Lo
ca

liz
at

io
n

Fu
si

on
H

D
 m

ap

Li
D

AR
 b

as
ed

lo
ca

liz
at

io
n

3D
 p

oi
nt

 c
lo

ud
s

Li
D

AR
 m

ap

G
PS

/G
N

SS
ba

se
d

lo
ca

liz
at

io
n

R
aw

 o
bs

er
va

tio
ns

In
er

tia
l

M
ea

su
re

m
en

t
U

ni
t (

IM
U

)

Sp
ec

ifi
c

fo
rc

e
an

d
ro

ta
tio

n
ra

te

Fi
na

l l
oc

al
iz

at
io

n
es

tim
at

es
 w

ith

w
ith

 p
os

iti
on

, v
el

oc
ity

, a
nd

 a
lti

tu
de

 re
la

te
d

in
fo

rm
at

io
n

Pe
rc

ep
t o

bs
ta

cl
e

m
es

sa
ge

Decision & Control Interface to vehicle platform

Safety system

Tr
af

fic
 li

gh
t d

et
ec

tio
n

an
d

re
co

gn
iti

on
 p

ip
el

in
e

La
ne

 d
et

ec
tio

n
pi

pe
lin

e

C
am

er
a

ob
st

ac
le

 d
et

ec
tio

n,

cl
as

si
fic

at
io

n
an

d
tra

ck
in

g
pi

pe
lin

e

R
ad

ar
 o

bs
ta

cl
e

de
te

ct
io

n
an

d
tra

ck
in

g
pi

pe
lin

e

Li
D

AR
 o

bs
ta

cl
e

de
te

ct
io

n,

cl
as

si
fic

at
io

n
an

d
tra

ck
in

g
pi

pe
lin

e

Li
D

AR
 lo

ca
liz

at
io

n
pi

pe
lin

e

G
PS

/G
N

SS
 lo

ca
liz

at
io

n
pi

pe
lin

e

O
bs

ta
cl

e
fu

si
on

 p
ip

el
in

e

Lo
ca

liz
at

io
n

fu
si

on
 p

ip
el

in
e

Figure 4.2: Relevant parts of Apollo’s architecture workflow.

4

100
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

from these sensors is augmented with details from a High Definition (HD) map. The data
from each of these sensors is processed individually for obstacle classification (camera
and LiDAR) and obstacle detection and tracking (camera, LiDAR, and radar) as shown in
Figure 4.2. The camera is also used for traffic light detection, traffic light color recognition,
and lane detection and tracking. The information from the individual object perception
and detection sub-systems is further fused to have an overall view of all the objects
surrounding the vehicle and allow their tracking. For the self-localization and pose (a
combination of the position and orientation of the vehicle) estimation, data from GPS/GNSS,
Inertial Measurement Unit (IMU), LiDAR, and HD map are used. Localization is performed
individually using data from LiDAR and GPS/GNSS. Further, this data is combined with
HD map and IMU data to identify the automated driving vehicle’s position, velocity, and
altitude-related information. Note that the following details of the architecture are not
shown in Figure 4.2 for simplicity. (1) The information from the HDmap is used in (a) traffic
light detection and recognition pipeline; (b) LiDAR obstacle detection, classification, and
tracking pipeline; and (c) radar obstacle detection and tracking pipeline. (2) The output of
the localization fusion pipeline is used in (a) radar obstacle detection and tracking pipeline
and (b) traffic light detection and recognition pipeline.

This entire suite of sensors and software around them are organized as 5 (kinds of)
sensors (camera, radar, LiDAR, GPS/GNSS, and IMU), HD map, and their 9 pipelines that
use the data from the sensors (as highlighted in dotted arrows in Figure 4.2). Each of these
pipelines forms a module or a cluster of modules in Apollo 7.0.

4.1.2 Operational design domain description
This study is on complete automated driving with no human supervision9 in a Dutch
highway segment. For this level of automation, the current automotive safety standards [5,
6], industry consortiums [16], and regulatory bodies [17] recommend that the operational
area of the automated vehicle should be taken into account to identify safety requirements.
Moreover, specifying an operational area reduces the complexity and overall set of scenarios
for developing and deploying autonomous driving vehicles rather than considering every
possible scenario. Such a scoping has been shown to make it feasible to deploy automated
driving vehicles without human supervision with current technological limitations [132].

The operational area for this case study is a 3.4-kilometer segment of highway A270
in the Netherlands.10 We systematically define our operational area based on the best
practices outlined by industry consortiums and traffic regulatory bodies [16, 17]. The data

9Otherwise known as Level 4 of automation. For a brief overview, refer to https://www.sae.org/blog/
sae-j3016-update

10https://www.openstreetmap.org/directions?engine=fossgis_osrm_car&route=51.4564%
2C5.5408%3B51.4657%2C5.5865#map=15/51.4610/5.5636

https://www.sae.org/blog/sae-j3016-update
https://www.sae.org/blog/sae-j3016-update
https://www.openstreetmap.org/directions?engine=fossgis_osrm_car&route=51.4564%2C5.5408%3B51.4657%2C5.5865#map=15/51.4610/5.5636
https://www.openstreetmap.org/directions?engine=fossgis_osrm_car&route=51.4564%2C5.5408%3B51.4657%2C5.5865#map=15/51.4610/5.5636

4.2 Safety reqirements elicitation

4

101

for specification of the operational area are extracted from maps11, Google Street View12,
and guides from Dutch authorities [129, 133]. Our operational area definition consists of
the following six aspects:

1. Physical infrastructure, i.e. characteristics of the traffic infrastructure including road
types, surfaces, markings, and geometry;

2. Operational constraints which include speed limits and traffic conditions;

3. Objects that can be present on the road, including signage and types of road users;

4. Environmental conditions that include weather, weather-induced road conditions,
particulate matter on the road due to weather, and illumination;

5. Connectivity including possible (wireless) networking options and data provided via
these networks;

6. Zones that include different traffic related zone classification.

A detailed specification of the operational area, individual variables considered in each of the
above six categories, and their range of values is provided in the replication package [130].

4.2 Safety reqirements elicitation
4.2.1 Method
In the automotive domain, methods for safety requirement (also referred to as functional
safety requirement) elicitation of software systems is described in two domain-specific
safety standards: ISO 26262 [5] and ISO 21448 [6]. ISO 26262 covers the safety requirements
relating to the malfunction of components, while ISO 21448 describes the limitations in
achieving the intended functionality of ML based components. We use the two standards
to derive safety requirements for situations when (a) components of the perception system
become non-operational; (b) components are operating as intended, but the output is lost
or corrupted before reaching the destination; and (c) limitations arise in achieving the
intended functionality of ML based components due to unsuitable weather and illumination
conditions.

For the first two cases, safety requirement elicitation methods are described in ISO
26262 standard [5]; and for the last case, in ISO 21448 [6]. A framework combining the two
standards for eliciting the safety requirements can be described in three steps: (1) hazard
analysis, (2) risk assessment, and (3) safety analysis.

11https://www.openstreetmap.org/
12https://www.google.com/streetview/

https://www.openstreetmap.org/
https://www.google.com/streetview/

4

102
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

(1) Hazard analysis focuses on identifying potentially hazardous situations to the
traffic participants or infrastructure. The hazard analysis step results in system-wide
safety goals to prevent harm in those situations. We use the hazard and operability
analysis (HAZOP) [44] technique which uses systematic brainstorming to identify such
situations. HAZOP identifies all possible situations based on the environment, functions of
the automated driving vehicle, and the possible behavior of other traffic participants. Then,
the technique associates a situation with possible harm to generate hazardous events using
guide words. For example, the harm (otherwise known as a hazardous event) “does not avoid
collision with a decelerating vehicle in front, in the driving lane” is formed by combining:
the guide word no with the situation “avoid collision with a decelerating vehicle in front,
in the driving lane". We used the guide-words: no, more, less, as well as, part of, reverse,
other than, early, late, before, and after, which are widely used in literature [70, 71]. The
situation is a combination of function (“avoid collision”), the behavior of traffic participant
(“decelerating vehicle in front"), and the operational area (“in the driving lane”). The latter
two parts forming the situation, i.e., (a) all possible situations and (b) behaviors of traffic
participants, are directly from the operational area description (detailed in Section 4.1.2).
Next, each hazardous event is converted into a system-wide safety goal to prevent, avoid,
or reduce its impact.
(2) Risk assessment estimates the risk associatedwith a safety goal. Since every situation does
not lead to the same level of harm, we need to prioritize situations based on their potential
for harm. The safety standard’s [5] framework proposes four risk levels (‘A’ through ‘D’
in increasing order of importance) for a safety goal, also referred to as Automotive Safety
Integrity Levels (ASILs). These ASIL levels are identified based on qualitative levels of three
parameters: (a) exposure, relating to the frequency of occurrence of a hazardous situation [5];
(b) controllability, relating to the level of control a vehicle has of the situation [5]; (c) severity,
relating to the severity of the potential harm in a situation [5]. The safety goals without a
reasonable risk are classified as a different risk level, QM (or quality management), and are
removed from further consideration. The assumptions we have taken to arrive at a specific
risk score are described in Section 4.2.1.
(3) Safety analysis translates the system-wide goals to the requirements on individual
components. Broadly, there are two types of approaches for safety analysis: (a) deductive
or top-down analysis, where a top-level event (such as a system-wide safety goal) is divided
into requirements for lower-level components of the perception system; (b) inductive or
bottom-up analysis where the analysis starts from the bottom-level events to identify its
possible impact [19].

We use fault tree analysis [42], a deductive analysis technique, to translate system-wide
safety goals to the safety goals specific to components (pipelines, sensors, HD map, or
safety system). The choice of fault tree analysis is based on its prominence and use in
literature in similar contexts [19]. We further subdivide each safety goal (specific to a

4.2 Safety reqirements elicitation

4

103

component) into requirements for (a) failure of a component and (b) corruption or loss of
messages during communication among components. We need two pieces of information
to perform fault tree analysis: (1) system-wide safety goals and (2) detailed architecture of
the system. The system-wide safety goals resulted from the first step–hazard analysis; and
we created the detailed architecture of Apollo as described in Section 4.1.1.

We also consider weather and illumination conditions that can limit individual compo-
nents in achieving their safety goals for the components that use ML based systems. We
use inductive analysis, as specified in the ISO 21448 standard [6], for identifying external
conditions (or triggering conditions) that can violate safety goals due to the limitations of
ML systems in delivering the intended functionality and translating them into requirements.
To conduct this inductive analysis, in addition to safety goals and detailed architecture,
we need a third kind of information–the possible weather and illumination conditions
applicable to safety goals. This information is derived from the operational area description
(see Section 4.1.2).

The result is a list of safety requirements where each requirement is mapped to a (set of)
component(s). Note that the ISO 21448 standard also provides a post-design risk evaluation
for the safety requirements specific to ML based systems’ limitations. Doing so is beyond
the scope of this work since this evaluation pertains to the validation and verification (of
the measures to make risks due to the limitations of ML based systems tolerable) and not
design assessment.

The above steps are performed by the first two authors. The results are compared
until an agreement is reached. The process was supervised by the third co-author who
is a researcher from industry with more than ten years of experience in the automotive
industry and more than 15 years of experience in safety-related and safety-critical systems
development and certification according to IEC 61508 [38] and ISO 26262 [5]. Note that the
scope of this study is using existing methods to elicit safety requirements. The state-of-
the-art in automotive safety requirement elicitation involves considerable manual efforts.
Automating and reducing the amount of manual effort is its own research topic and is out of
the scope for this study. However, to ensure soundness while using the current method, two
authors performed the entire set of steps. For the first step (hazard analysis), which is the
one step with the possibility of individual interpretation, we performed an inter-researcher
agreement [35]. The result was a kappa score of 1.0 [35] showing an ideal agreement.
The ideal agreement might be the result of a clear and extensive definition of operational
area and vehicular functions. Going a step further, the entire process was supervised by
researchers from both academia and industry (the third and fourth authors), with the
researcher from industry who has more than ten years of experience in the automotive
industry and more than 15 years of experience in safety-related and safety-critical systems
development and certification according to IEC 61508 [38] and ISO 26262 [5]. For future
validation and repeatability, we have provided the entire set of intermediate results and
sources of information in the replication package [130].

4

104
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

4.2.2 Results
Hazard analysis. We identified a tractable number of scenarios for hazard analysis by
combining automated vehicle operations with driving situations. For this study, the opera-
tions of the automated vehicle can be divided into two categories: (1) avoid collision with
other road users and obstacles, and (2) follow traffic rules in the operational area. Like-
wise, we partitioned the driving situations into the following four categories: (1) driving
in the lane, (2) changing lanes, (3) location-specific behavior for an intersection, and (4)
location-specific behavior for a merging point. The scenarios for hazard analysis are then
a cross-product of the operations and driving situations.

We used guide words to identify hazardous events for the list of scenarios identified
for hazard analysis. An example of a hazardous event is the automated driving vehicle does
not avoid collision with a slower-moving vehicle in its driving lane. This way, we identified
69 potential hazardous events. Finally, we translated each potential hazardous event into
a system-wide safety goal. One such safety goal is the automated driving vehicle shall
avoid collision with obstacles or vehicles in the driving lane. The data relating to deriving
scenarios, hazardous events, and finally, system-wide safety goals is available as a part of
the replication package [130].

Risk assessment. Since not all safety goals are equal, we assign a risk score (or ASIL) to
each safety goal. We identified risk scores in terms of controllability, severity, and exposure
as mentioned before and defined in ISO 26262 standard [5]. To assign a risk score to each
safety goal, we make two assumptions: (1) no ‘controllability’ by a human driver in case of
hazard since we focus on fully automated driving; and (2) high severity levels for highway
driving speeds [134]. For example, the above-mentioned safety goal was assigned the risk
level ASIL D (highest).

Similar safety goals are aggregated to form one safety goal, inheriting the highest ASIL
level of the safety goals combined. We identified 18 distinct safety goals, aggregated from
the 69 safety goals identified above. The aggregation of safety goals was performed by com-
bining different future or current operations of the vehicle. For example, the safety goals
: “avoid collision in the scenario: decelerating vehicle in front in operational mode: driving
in the lane"; and “avoid collision in the scenario: decelerating vehicle in front in operational
mode: changing lanes"; and other similar safety goals are aggregated to – “avoid collision
with an object (obstacle or vehicle) in driving lane in all operational modes". Further, we
excluded three safety goals (since they have ASIL level QM13; as discussed in Section 4.2.1)
and explored the remaining 15 safety goals in the rest of this study. More details on risk
assessment are available in the replication package [18].

13ASIL QM–for Quality Management–is the lowest risk level [5]. According to the industry standard ISO 26262, a
safety goal with ASIL QM does not require further consideration.

4.2 Safety reqirements elicitation

4

105

Safety analysis. Using fault tree analysis, we translate the fifteen system-wide safety
goals into the safety goals relating to the nine pipelines, five sensor types in Apollo (camera,
LiDAR, radar, GPS/GNSS, IMU), and HD map (see Figure 4.2 for details). We map each
safety goal to the entire pipeline and the safety system to ensure that the design choices in
Apollo that might satisfy our safety goals will be covered in the design assessment part
described in Section 4.3. One such pipeline-specific safety goal is: LiDAR obstacle detection,
classification, and tracking shall estimate the correct state of vehicles and other obstacles.

Next, we converted each safety goal into requirements relating to failure, data corrup-
tion, and ML based systems’ limitations. For example, two requirements derived from the
above-mentioned pipeline-specific safety goal are: “if any component in LiDAR obstacle
detection, classification, and tracking pipeline becomes non-operational, then this failure shall
not lead to an incorrect estimation of the state of vehicles or other obstacles” ; and “if the
output of any component in the LiDAR obstacle detection, classification, and tracking pipeline
is corrupted or lost, then this corruption or loss shall not lead to an incorrect estimation of the
state of vehicles or other obstacles”.

We identified 30 safety requirements relating to failure and data corruption of the
different pipelines, as shown in Table 4.2. Details of individual requirements are presented
in the replication package [130].

To derive requirements on limitations of ML components, we first identified the
pipelines that use ML based systems. Similar to prior work [13], we noticed that out
of 9 pipelines, only 4 use ML based solutions (based on analysis of documentation and
code). These pipelines are (1) traffic light detection and recognition, (2) lane detection, (3)
camera obstacle detection, classification, and tracking, and (4) LiDAR obstacle detection,
classification, and tracking (as also shown in Figure 4.2). These four pipelines use two
sensors: camera and LiDAR. Therefore, we use safety goals specific to the four pipelines to
identify the limitations of ML solutions relating to the weather and illumination conditions
in the operational area. Mainly, we map the description of the known limitations of our op-
erational area to the violations of safety goals specific to the four pipelines. The limitations
of ML solutions, as identified from the literature on camera and LiDAR, are as follows:

1. Camera related limitations: low-illumination conditions [135, 136], illumination
conditions rarely captured in training data sets such as dusk and dawn [6], and
weather conditions, in particular fog [137], rain [138, 139], snow [140], and strong
sunlight [141].

2. LiDAR pipelines are not affected by low illumination conditions. However, they are
affected by strong sunlight [142] and conditions leading to light (laser) scattering
effects which include fog [143], rainy conditions [144], and snow [145].

The requirements for each of the above conditions are identified from the respective safety
goals and allocated to the corresponding pipelines. An example requirement allocated to

4

106
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

LiDAR obstacle detection, identification, and tracking pipeline is “if the performance of
LiDAR obstacle detection, classification, and tracking pipeline is deteriorated due to moderate
inclement levels of fog, then this deterioration in performance shall not lead to an incorrect
estimation of the state of vehicles or other obstacles”.

The result consists of the 28 requirements as shown in Table 4.2. The details of individual
requirements are available in our replication package [130]. A summary of results of the
entire safety requirement elicitation is presented in Table 4.3. Note that all our requirement
phrasings are based on the industry-specific standard guidelines and literature specific to
the automotive domain [5, 6, 146]

4.3 Design assessment
There are many ways to assess the safety requirements for perception system software,
including formal verification. To assess the safety requirements for perception system
software at the design level, one widely used method is to assess the software using its
underlying architecture. However, this solution alone does not work for a perception
system consisting of ML components. In addition to architecture, it also requires datasets
and ML models to describe them adequately. Excluding these artifacts is not an option
since the design decisions for these artifacts can directly impact quality attributes such as
safety [147–150]. Therefore, for the safety assessment of perception system software, we
study its (1) software architecture and (2) design choices specific to ML based systems.

Table 4.1: ML design decisions related to safety

Design choice
[secondary study]

Objective of the design choice [source papers
pointed by secondary studies]

Where is it
assessed?

Input data is
complete, balanced
and well
distributed [147]

The dataset used for training (and testing) the ML
model shall demonstrate how it covers (corner
cases of) the intended application area and
qualitative or quantitative representativeness of
different categories. [151–154]

Dataset and its
related artefacts

Design
specification [148]

The (safety specific) properties for which the ML
model is designed for shall be specified, for
example via formal specification or breaking
down ML components into smaller algorithms to
work in hierarchical structures [155–157]

ML model related
artefacts including
scientific paper or
documentation

4.3 Design assessment

4

107

Design choice
[secondary study]

Objective of the design choice [source papers
pointed by secondary studies]

Where is it
assessed?

In-distribution error
detectors [148]

Use of mechanisms like (a) run-time prediction
error detectors or monitors, (b) prediction for
high confidence samples and withholding result
otherwise, (c) employment of classification with
reject function, and (d) failure prediction through
a secondary model, to maintain the safety of the
system in case of model failure for instance due to
weak representation learning [158–160]

ML model related
artefacts including
scientific paper or
documentation, ML
(software)
architecture, code,
and documentation

Out-of-distribution
error
detectors [148]

Employment of techniques to detect outliers or
out of distribution samples (inputs outside
training distribution, for instance, input that were
not in the training set or those that the ML model
did not learn during the training process), like
using an ensemble of leaving-out
classifiers [161–163]

ML model and
related artefacts
including scientific
paper or
documentation, ML
(software)
architecture, code,
and documentation

Domain
generalization [148]

The ML model shall demonstrate its robustness to
deviations in the input data distribution in
contrast to the training set, for example, through
techniques like adversarial domain adaptation and
multi-task learning [164–166]

ML model and
related artifacts
including scientific
paper or
documentation

Robustness to
corruption and
perturbations [148]

The ML model shall demonstrate its robustness to
natural corruptions (e.g., due to camera lens flairs
and snow in contrast to an ideal situation) and
perturbations (e.g., elastic deformation due to
different viewing angles, occlusions) for instance,
by using data augmentation and style
transfer [167–169]

ML model and its
training related
artifacts including
scientific paper or
documentation

Uncertainty
estimation [148]

There shall be uncertainty estimation for ML
model, including confidence on its prediction and
uncertainty for unknown samples. This is crucial
in detecting domain shift and out of distribution
samples at run-time using techniques like deep
ensemble and Monte Carlo dropout. [170, 171]

ML model and
related artefacts
including scientific
paper or
documentation, ML
(software)
architecture, code,
and documentation

4

108
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

Design choice
[secondary study]

Objective of the design choice [source papers
pointed by secondary studies]

Where is it
assessed?

Uncertainty
monitoring [150]

There shall be mechanisms for quantifying and
monitoring uncertainty. Such mechanisms shall
identify degradation of models or silent failures
(erroneous outputs despite nominal, fault-less
operation). This can also enable detection of
domain (distribution) shift and out of distribution
samples [172–174]

ML model and
related artefacts
including scientific
paper or
documentation, ML
(software)
architecture, code,
and documentation

N-versioning [150] Rather than using a single ML model, using
ensembles of ML models, for example, using an
interpretable or rule-based model as back-up,
leading to reduced risk of over-fitting, better
approximate prediction uncertainty, and facilitate
interpretability. [172–176]

Software
architecture of the
component that
include the ML
model, ML model
and related
artefacts including
scientific paper or
documentation, ML
(software)
architecture, code,
and documentation

Metric monitoring
and alerts to detect
failure [150]

There shall be mechanisms for monitoring to
detect silent failures (errenous outputs despite
nominal, fault-less operation) of the ML
system [176–178]

Software
architecture of the
component that
include the ML
model, ML model
and related
artefacts including
scientific paper or
documentation, ML
(software)
architecture, code,
and documentation

4.3.1 Method
The software that forms the perception system of Apollo can be classified into two cate-
gories: (1) traditional software, where humans decide on the logic; and (2) ML software,
where one of the factors the logic is derived from, is the data. Since the two types of

4.3 Design assessment

4

109

software are developed differently, their design choices and considerations for safety differ
in some aspects. We assess the safety requirements of the perception system by identifying
the design decisions using its architecture and complementing it with additional artifacts
specific to ML software.

Software architecture design choices:
To identify the design choices of software, we look at its architecture. We look at the smallest
units of architecture design choices, called tactics [85]. Tactics are abstract design decisions
without an implementation structure that can influence the behavior of a system [85]. An
example of a tactic is diverse redundancy which is the introduction of redundant systems
for detecting or masking failures [92]. Tactics that address the quality attribute safety are
called safety tactics.

We use all 13 safety tactics (heartbeat, simplicity, substitution, sanity check, comparison,
replication redundancy, diverse redundancy, condition monitoring, repair, voting, degradation,
override and barrier [92]) that have been codified and presented as a framework in prior
studies [91, 92] (See Appendix A for more details on individual tactics). Prior studies have
shown the use of these safety tactics in the automotive domain for safety assessment [70,71].
For more details on the framework, we point our readers to the studies by Wu et al. [91]
and Preschern et al. [92].

ML design choices:
To the best of our knowledge, no framework exists in the literature that codifies ML design
choices that address the quality attribute safety. Therefore, we refer to prior secondary
studies that have aggregated the (best) ML design choices. These ML design choices are for
different life-cycle stages and have demonstrably direct impact on quality attributes [147–
150]. We aggregate the known (best) ML design choices from prior works and curate a list
of ML design and related choices to assess the quality attribute safety.

To identify ML design choices, we follow a two-step process. First, we create an aggre-
gated list of design choices specific to ML software. Then, we select design choices specific
to our use-case, i.e., relating to safety and applicable in the context of ML software relating
to camera, LiDAR, or object/lane/color recognition and tracking.

List of design choices. To create an aggregated list of practices or decisions specific to
ML based components, we rely on secondary studies, which are aggregations of primary
studies. To identify secondary studies, we search Google Scholar using the following
keyword: “safety" AND “software architecture" AND (“machine learning" OR “artificial
intelligence" OR “neural networks") AND (“review" OR “survey"). In this search term, we
added “software architecture" to improve the signal-to-noise ratio.

Once we identified a list of secondary studies summarizing ML practices (e.g., [147–
150]), we shortlisted studies that are (a) the most recent for the most comprehensive list of

4

110
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

practices and (b) have at least one design choice specific to ML systems and particularly
safety, and at least one design choice specific to the limitations relating to weather or
illumination conditions. We identified 4 secondary studies [147–150] which cumulatively
discuss 67 design choices or practices specific to ML based systems.

We applied another level of inclusion criteria to identify ML design choices relevant to
safety assessment. These include:

• Applicable to automated driving systems (Apollo’s perception system).

• Identifiable from architecture, model, code, dataset-related artifacts, or documenta-
tion. For example, practices like neuron coverage testing, fuzz testing, and formal
verification cannot be identified from the abovementioned artifacts.

• Applicable to ML software’s design stage (like design choices related to ML model or
dataset).

• Related to the quality attribute safety.

• Usable for countering limitations caused by weather or illumination conditions.

Note that these inclusion criteria are defined iteratively.
We found 10 ML specific design decisions that are listed in Table 4.1. These design

decisions correspond to the choices made relating to the dataset (like ensuring “input data
is complete, balanced and well distributed”), the neural network model, and other design
choices (like “monitor data quality issues") relating to the safety of ML systems.

Assessment
To identify whether the design decisions in the perception system of Apollo fulfill the safety
requirements, we use a previously demonstrated method in the automotive domain [70,
71, 85]. This method has two parts. First, identification of the applicable design choices
for each safety requirement such that the implementation of a design choice itself or in
combination with other design choices, can fulfill the safety requirement. Here we have
two categories of design choices (safety tactics and design choices specific to the limitations
of ML) and three categories of requirements (failure, data corruption, and limitations to
ML). We make a cross-product of the requirements to the selected design choices. The
requirements concerning failure and data corruption are crossed with the safety tactics
used in the prior studies [70, 71]. The rest of the requirements (regarding limitation to
ML systems) are crossed with the design choices specific to ML systems selected in the
previous step (refer to Section 4.3.1). Each combination in the cross product is checked for
validity, and invalid choices are discarded.

For example, consider the traditional software requirement “if any component in LiDAR
obstacle detection, classification, and tracking pipeline becomes non-operational, then this

4.3 Design assessment

4

111

failure shall not lead to an incorrect estimation of the state of vehicles or other obstacles”.
When crossed with the thirteen tactics, this requirement has thirteen possible choices. Of
these thirteen, two invalid choices are substitution and repair. The substitution tactic 14

is invalid in this context because LiDAR pipelines in the automotive industry are still in
their initial stages and have not yet reached wide adoption; we do not have any alternate,
well-proven option to choose from. The repair tactic 15 is invalid since manual intervention
is not an option for our use-case of fully automated driving and automatic restore is not
applicable in this context. An example of a valid choice is sanity check 16 since it is possible
to continuously monitor the state and output of the pipeline for implausible outputs or
states.

After this step, we have a list of design decisions associatedwith each safety requirement.
Each design decision in the list, either in itself or in combination with other design decisions
(from the list), can fulfill the safety requirement.

Next, we look for evidence of whether these safety requirements are fulfilled in the
artifacts relating to the perception system software of Apollo. We rely on publicly available
artifacts: architecture, code, documentation, dataset descriptions, and scientific papers
pointed to by Apollo documentation for our assessment. For efficiency, safety tactics related
to failure and data-corruption-related requirements are first checked in the architecture
description and documentation. If a safety requirement is not satisfied, we look at the
code of specific components for coverage of the requirement. To identify the parts of the
code that deal with data corruption or failure, we look for error messages and logging
statements in the code of specific components associated with the safety requirement.

For requirements relating to the limitations of ML systems, we first look at the dataset,
documentation, and the base paper for design decisions. If a requirement is not satisfied, we
analyze the specific parts of the code relating to the requirement. Table 4.1 (third column)
presents pointers to which subjects (e.g., documentation, source code) are used to identify
the usage of each of the design decisions.

For example, consider the safety requirement “if the performance of LiDAR obstacle
detection, classification, and tracking pipeline is deteriorated due to moderate inclement levels
of fog, then this deterioration in performance shall not lead to an incorrect estimation of the
state of vehicles or other obstacles”. One way to satisfy this requirement is n-versioning (see
9th design choice in Table 4.1 for details). To identify whether n-versioning is used starts
with identifying ML models used for the pipeline and then looking at the properties of
14The aim of substitution tactics is to “avoid failures though usage of more reliable components" [92]. This tactic
can be further described as “components or methods are replaced by other components or methods one has higher
confidence in. For hardware and software, this can mean usage of existing components which are well-proven in the
safety domain" [92].

15The aim of substitution tactics is to “bring a failed system back to a state of full functionality" [92]. This tactic
can be further described as “the full system functionality is manually or automatically restored if a system failure
occurs" [92]

16The aim of sanity check tactic is “detection of implausible system outputs or states" [92].

4

112
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

these models and how they are trained. The model and its properties can be identified from
the code17, the documentation18, and associated research articles [179, 180]. According to
the articles [179, 180] these models do not use n-versioning.

Another way to satisfy this requirement is to have the training and testing data being
complete, balanced, and well distributed (see first design decision in Table 4.1) concerning
moderate inclement levels of fog. In this context, Apollo has used only the neural network
architecture from a few research articles [179, 180] and trained them with custom data.
The training data and its source are not available; thus, we cannot make any conclusion
about the data. In other cases like camera obstacle detection, classification, and tracking
pipeline, datasets typically consist of meta-data (and its summary), including time of day
and place of capture. The meta-data and summary can be used to identify the distribution of
illumination and weather scenarios (the focus of this study) required to assess requirements
relating to ML systems. For example, the dataset used for training ML models in the camera
obstacle detection, classification, and tracking pipeline is captured from Phoenix, San
Francisco, and Mountain View. Therefore the dataset does not contain weather situations
like snow and sleet while our operational design domain can. Thus, the dataset does not
represent our context’s weather and illumination conditions.

We followed a conservative approach of marking requirements to be fulfilled at the
design level only if we found conclusive design evidence in the specific components relating
to a requirement.

Note that design evidence is not a guarantee that a safety requirement is fulfilled in
the final product (similar to passing the testing phase does not show the absence of bugs).
Instead, it indicates that the requirement is considered at the design level. Without such
consideration, the requirement will not be fulfilled when the design is implemented. In
our context, we are looking at the final product architecture and, thus, what exactly is
implemented in the final product. Therefore, if the results do not point to any design
consideration for a requirement, it shows with high confidence that the final product does
not satisfy the specific safety requirement.

Similar to safety requirement elicitation (detailed in Section 4.2), The state-of-practice
in design (safety) assessment is still manual effort heavy. Therefore, two authors perform
the above processes under the supervision of researchers from academia and industry, as
detailed in Section 4.2.1.

For selecting the ML specific design choices, the inclusion criteria and the search terms
were defined iteratively. For the selection of the ten ML-design choices and their feasibility
for each requirement, an inter-researcher agreement was calculated using Cohen’s kappa
coefficient [35]. We got a score of 1.0 and 0.84, respectively, indicating an ideal agreement in
the first case and a very good agreement in the second case. The ideal agreement in the first
17https://github.com/ApolloAuto/apollo/tree/master/modules/perception/lidar
18https://github.com/ApolloAuto/apollo/tree/master/modules/perception/lidar#
readme

https://github.com/ApolloAuto/apollo/tree/master/modules/perception/lidar
https://github.com/ApolloAuto/apollo/tree/master/modules/perception/lidar#readme
https://github.com/ApolloAuto/apollo/tree/master/modules/perception/lidar#readme

4.3 Design assessment

4

113

case might be due to the clarity and systematic nature of secondary studies [147, 148, 150].
The second score (0.84) shows (relative) difficulty mapping design choices to ML specific
requirements.

Table 4.2: Components and count of associated requirements. Every requirement is assessed
in the safety system (refer to Figure 4.2 for details) in addition to the component itself.
Further, the requirements relating to sensors (IMU, LiDAR, Radar, Camera, GPS/GNSS) and
HD map (last 6 rows in this table) are assessed in all modules that use their output.

Component Req.s related to
failure or data
corruption
(fulfilled)

Req.s specific to ML
(fulfilled)

Traffic light detection and recognition pipeline 2 (2) 8 (8)
Lane detection pipeline 2 (2) 7 (0)
Camera obstacle detection, classification, and
tracking pipeline

2 (2) 7 (0)

Radar obstacle detection and tracking pipeline 2 (2) n/a
LiDAR obstacle detection, classification and
tracking pipeline

2 (2) 6 (0)

Obstacle fusion pipeline 2 (2) n/a
LiDAR localization pipeline 2 (2) n/a
GPS/GNSS localization pipeline 2 (2) n/a
Localization fusion pipeline 2 (2) n/a
HD Map 2 (2) n/a
IMU 2 (2) n/a
LiDAR 2 (2) n/a
Radar 2 (2) n/a
Camera 2 (2) n/a
GPS/GNSS 2 (2) n/a

4.3.2 Results
We identified 58 safety requirements for the different subsystems of the perception system,
covering the failure of a module or data corruption (30) and limitations of ML systems in
adverse weather and illumination conditions (28). The cross-product of these requirements
with 23 design choices relating to safety (thirteen architecture tactics crossed with 30
requirements pertaining to the failure of a component or data corruption, and ten ML
specific design choices crossed with 28 requirements relating to ML based systems) led to
698 design choices. After removing infeasible design choices, we had 477 design choices.

4

114
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

A detailed list of the feasible design decisions for each requirement is presented in our
replication package [130].

Table 4.3: Summary table

Stage and intermediate or final result # or status

Safety requirements elicitation
Hazardous events 69
Aggregated safety goals 18
Discarded safety goals (risk level ASIL QM) 3
Safety requirements 58

on failure or data corruption 30
on limitation of ML components 28

Design assessment
Feasible design choices 477

on traditional software 225
on ML components 252

Status of safety requirements 38 fulfilled
20 unknown

on traditional software 30 fulfilled

on ML components 8 fulfilled
20 unknown

We search for design choices associated with each requirement in the components
related to the requirement (also presented in our replication package). For each safety
requirement, we reach one of the following three conclusions: (1) there exists evidence that
a requirement is fulfilled; (2) there does not exist evidence that a requirement is fulfilled;
and (3) unknown. We reach the second conclusion when despite searching all the associated
components, the evidence is non-conclusive. We arrive at the third conclusion if a resource
is not found or we cannot comprehend the code or its structure. For example, the dataset
or the description of dataset characteristics is required to assess choices related to a dataset
used for training an ML model. If the dataset or its characteristics are not specified, we
reach the third conclusion.

We found evidence that Apollo’s design fulfilled 38 out of 58 safety requirements. We
noticed that all the requirements relating to architecture are fulfilled in the design. The
status of the rest 20 requirements was concluded to be unknown, and all the 20 requirements
were specific to ML components and related explicitly to three pipelines: (1) lane detection;

4.4 Discussion

4

115

(2) camera obstacle detection, classification, and tracking; and (3) LiDAR obstacle detection,
classification, and tracking pipeline. The only pipeline that contains ML components and is
found to satisfy ML specific safety requirements is the traffic light detection and recognition
pipeline. We identified 180 design choices for the 20 requirements with unknown status.
Out of these 180 choices, 119 were concluded as not used. The other 61 were concluded
as unknown primarily due to the non-availability of the dataset or its characteristics and
no comments, and unknown structure of the code. An overview of the number of (un-
)fulfilled requirements, and related components are shown in Table 4.2. More details on how
Apollo’s design decisions do (not) fulfill each requirement are available in the replication
package [130]. A summary of the results of the entire design assessment is presented in
Table 4.3.

4.4 Discussion
This section presents interpretations of our findings, their potential use and implications,
the role of the choice of methods, and the applicability of our findings to other contexts.

Interpretation of our findings. It might be obvious to some readers that all requirements
related to failure and data corruption are satisfied, especially since this is the seventh (major)
version of the Apollo stack. This points out the maturity of the stack from a traditional
software safety standpoint. However, the same is not valid for ML based components.
Our study shows that 20 out of 28 safety requirements specific to ML systems are not
found satisfied in Apollo’s design (7.0) [11]. The lack of data relating to ML systems (e.g.,
specification of datasets on which the ML models are trained and documentation of the ML
models and their code) has rendered the decision-making inconclusive, thus making the
satisfaction of these requirements unknown. If these requirements are not met, it can point
to an acute shortage of research related to the safety assessment at the design level for
ML based systems. This corroborates with the literature suggesting that quality attribute
safety is not yet one of the highest priorities in developing ML systems [150].

Understanding unfulfilled safety requirements in design is the first step to safety. If
design issues are not corrected in time, they transfer to implementation. Since design
deficiencies cannot be fixed in implementation, they can cause catastrophe, risking the lives
of passengers and other traffic participants. For example, the infamous Uber self-driving
car accident leading to the death of a pedestrian was caused by the decision system failing
to act after the perception system identified a pedestrian well before safety margins. Also,
fixing a design issue later in the product life cycle is orders of magnitude costlier than in
the design or early prototype stage.

To the best of our knowledge, this study is the first one in the scientific literature
to present the safety design assessment for the perception system of a mature software
stack for automated driving in a real-life setting. Nonetheless, based on the insights
derived from our study, we suggest the industry to provide their ML models’ and datasets’

4

116
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

characteristics, like their representatives in different situations, training and test data, and
resultant accuracy. Specifically, our study identifies areas that might need more work that
can inform the planning of tech leads and managers. For example, the LiDAR obstacle
detection, classification, and tracking pipeline may require more work than the traffic light
detection and recognition pipeline. Further, the industry can use our list of requirements
and our curated list of practices to generate documentation relating to ML components.

Recommendations & Future directions: This study brings the high amount of human
effort required to elicit safety requirements to the limelight. In its current form, each
automotive stakeholder that plans to sell an automated driving stack directly or indirectly
to an end user has to perform requirements elicitation. Then ideally, safety certification
bodies in respective countries have to examine the entire process. One key takeaway
that we saw in this case study (which might already be known in the community) is that
many steps (e.g., hazard analysis, risk assessment) of requirement elicitation are common
irrespective of the underlying stack, given the end functionality (in our context, automated
highway driving) is the same. Instead of each entity performing the same steps separately,
we recommend all the entities, especially safety certification bodies in respective places,
to perform such common steps together and make the results available to all interested
parties. Such a practice can not only remove the unnecessary waste of resources but also
update those steps consistently in the future. Note that such common steps (due to their
very nature as “common") will not affect the exposure of the intellectual property and
any related advantages of any of the stakeholders involved. We also believe that vehicle
users have the right to an unbiased understanding of the safety of the vehicles’ software,
especially in automated driving settings.

Another important part we noticed is the lack of clarity and the highly distributed
nature of documentation and associated resources. To make a detailed architecture, we
(and similar prior research [13]) have to create a detailed architecture using a multitude
of resources and code spread across multiple domains (e.g., image recognition, neural
networks, localization methods). Yet, many details are missing; in our case leading to
the fulfillment status unknown for 20 requirements. This not only hampers the safety
requirement elicitation and assessment but also the idea of open sourcing, which is to
elicit community participation, and overall under-stability, usability, and maintenance.
We strongly recommend updating the missing details (see our replication package for
details [130]).

This study is primarily qualitative, while future studies can consider the analysis on the
impacts of the obtained results in a quantitative way. Another future direction studies can
explore is safety requirement elicitation on other automated driving stacks and how they
compare to Apollo. Techniques to reduce the human effort (and the resulting subjectivity)
of the requirement elicitation and assessment are another dimension to explore.

Applications. We foresee many applications of our findings for industry, research,
education, traffic authorities, and lawmakers. Currently, every company that develops or

4.4 Discussion

4

117

uses an automated driving framework for a specific location has to repeat its own safety
requirements elicitation due to the current proprietary nature. Then the authorities will
need to assess each of them (if this is required for certification for use on the road for
automated vehicles). Open sourcing safety requirement elicitation can reduce this rework
(by both companies and traffic authorities), attract community participation, make the
process more transparent, easier, and reduce cost and effort.

The research community can use our results as a first step to identify weak points in
automotive perception systems and identify directions for future research from a safety
perspective. For education, including safety in a curriculum might avoid catastrophic
events19 resulting from considering safety as an afterthought.

For lawmakers and traffic authorities, one major challenge is identifying who is respon-
sible in case of a catastrophic event involving an automated driving vehicle: the automotive
company, the software suppliers, tool vendors, or the users themselves?20 A publicly
available safety analysis can be the first step to ensure that basic steps are taken to avoid
such situations.

Method. As the first study on assessing safety in the design of Apollo, we chose the
de-facto method in the automotive domain for safety requirement elicitation and banked
on literature for design assessment. However, alternative techniques, for instance, failure
mode effect analysis [43] or system-theoretic process analysis [37], can be used instead of
fault tree analysis. Future research should validate whether the choice of a method can
influence findings and, if so, how.

Generalizability. This study is on a 3.4 km stretch of a Dutch highway and Apollo’s
perception system. Since the highways in the Netherlands are relatively standardized
with minor variations and similar weather and illumination conditions, our findings are
more likely to generalize to highways in the Netherlands than a similar study in a higher
variability country like the United States of America. We suggest investigating other
highway segments before exploring an entire highway-wide safety requirement elicitation.
This also means a similar generalization may not hold across Europe or beyond Europe
since the traffic environment, traffic rules, weather, and illumination conditions can vary
drastically. We also expect similar results if other automated driving frameworks were to
be used instead of Apollo. More research is required to test these scenarios.

In retrospect, the validity should improve when independent researchers replicate our
work. For reproducibility, data and step-by-step results are publicly available [130].

19https://www.bbc.com/news/business-50312340
20https://www.theguardian.com/technology/2022/jan/26/self-driving-car-users-
should-have-immunity-from-offences-report

https://www.bbc.com/news/business-50312340
https://www.theguardian.com/technology/2022/jan/26/self-driving-car-users-should-have-immunity-from-offences-report
https://www.theguardian.com/technology/2022/jan/26/self-driving-car-users-should-have-immunity-from-offences-report

4

118
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

4.5 Threats to validity
Construct validity. Many steps in our case study rely on human judgment, which can
introduce researcher bias. For instance, many steps in requirement elicitation require
brainstorming and manual inspection. While researcher bias remains a valid threat; we
tried to mitigate it by using systematic methods and inter-researcher agreements where
possible (e.g., using HAZOP for hazard analysis). Two authors performed each step that
required manual analysis under the broad supervision of a subject matter expert from
the industry. The industry expert (and co-author) has more than 10 years of experience
in the automotive industry and more than 15 years of experience in safety-related and
safety-critical systems development and certification according to IEC 61508 [38] and ISO
26262 [5].

We identified ML specific design practices from secondary studies. So, if these studies
systematically missed a subset of design practices (e.g., linked to their scope), they are
missing from our study too. To minimize this threat, we selected the most recent secondary
studies for the latest and most comprehensive list of design practices. We also noticed that
these studies used systematic and mixed methods approaches, reinforcing our belief that
the aggregated list of practices is comprehensive.

Note that we followed the current state of practice in requirement elicitation and
architecture assessment, which is human effort intensive. At the same time, we have
employed systematic methods and qualitative evaluation to improve reproducibility and
soundness. Another way to reduce human effort and improve reproducibility might have
been automating the entire process. However, it is out of the scope of this work and a
research direction on its own.

Internal Validity. Many steps in our design assessment make assumptions (e.g., assump-
tions for risk assessment). As long as these assumptions hold, our results are likely accurate.
To limit the risk of introducing unjustified assumptions, we only made assumptions that
are grounded in literature.

Our design assessment relies on publicly available documents. While we tried to be as
comprehensive as possible, the results in this chapter are as sound as the documentation,
code structure, error and logging code, and pointers to the base papers.

External validity. Our case study uses Apollo’s automated driving framework on a
Dutch highway segment. While Apollo is one of the most advanced automated driving
frameworks available in the open-source and the highway scenarios we choose are generic,
our findings may not generalize. To improve the external validity of our findings, our
solution should be tried on other Dutch highway segments, other highways, and automated
driving frameworks.

4.6 Related work

4

119

4.6 Related work
There is an industry-wide consensus on the importance of the safety of automated driving
systems, especially after the catastrophic uber automated driving vehicle crash, which led
to the death of a pedestrian.20 Nowadays, every manufacturer and software vendor, who
tests their vehicles on public roads, releases a safety report for the public [181–183], further
acknowledging the relevance of safety. Unfortunately, these reports neither disclose safety
requirements nor how they are assessed, making it hard to gauge their usefulness. Our
study is an attempt to bring safety assessment into the public domain. Making the safety
assessment available publicly will be a first step in showing that the basic steps to avoid
potential catastrophic events are taken right from the design stage.

The safety of automated driving systems can be assessed in many stages of product
development including design [70, 71], development [184], validation & verification [125–
127], and deployment [185]. Currently, the vast majority of literature focus on safety
assessment in validation & verification stage including testing [125–127], particularly for
ML based systems [128]. While coding standards [184], design patterns [85,91,92], and best
practices [186] to address safety during the design and development stages of traditional
software exists, a similar set of guidelines are still in their inception phase for ML-based
systems. Given automated driving systems are being used in highly dynamic settings with
proximity to other traffic participants, without operator (human driver) supervision, and
in safety-critical settings, their safety assessment at every product life-cycle stage requires
immediate attention.

Literature has shown the cost of fixing any issue in software increases exponentially
with every product life-cycle stage [187]. The design is likely a better stage to start making
automated driving safe. While relatively unexplored, studies on design assessment for safety
offered methods to elicit and assess requirements in settings such as connected driving [70,
71, 81]. To the best of our knowledge, the scientific literature on safety assessment in the
design of a mature automated driving framework for complete automated driving has not
been explored, nor has the design assessment of limitations of ML-systems considering
environmental factors [188]. Note that environmental factors, including adverse weather
and illumination conditions, have been shown to cause functional limitations for ML
systems that process data from various sensors [188]. Building on the prior works, this
study presents a design safety assessment of an automated driving system for its use in a
Dutch highway segment.

4.7 Conclusions
This chapter presents a case study assessing the safety of the Apollo automated driving
framework’s perception system in design. We elicited 58 safety requirements to enable
automated driving in a Dutch highway segment. For the assessment of safety requirements,
we used 23 design choices; thirteen relating to traditional software and the other ten

4

120
4 Safety of Perception Systems for Automated Driving:

A Case Study on Apollo

specific to ML based systems. We found design evidence that 38 out of 58 requirements are
met. While all requirements relating to traditional software systems are satisfied, many
requirements specific to ML based systems are not found satisfied. This points to the
higher maturity of the stack from a safety standpoint of traditional software than ML based
software.

To the best of our knowledge, this study is the first study in the scientific literature
to present the safety design assessment for the perception system of a mature software
stack for automated driving in a real-life setting. Our study opens up a multitude of future
research directions, including safety requirement elicitation on other automated driving
stacks and their comparison to Apollo, and techniques to reduce the human effort (and
the resulting subjectivity) of the requirement elicitation and assessment. For practitioners,
our contributions include the parts of Apollo which need more work and possible design
choices to consider for closing the safety gap. We have shared our data, including results
from its intermediate steps for transparency, replicability, and reusability of our work for
research and practice.

5

121

5
Painting the Landscape of

Automotive Software
in GitHub

The automotive industry has transitioned from being an electro-mechanical to a software-
intensive industry. A current high-end production vehicle contains 100 million+ lines of code
surpassing modern airplanes, the Large Hadron Collider, the Android OS, and Facebook’s
front-end software, in code size by a huge margin. Today, software companies worldwide,
including Apple, Google, Huawei, Baidu, and Sony are reportedly working to bring their
vehicles to the road. This chapter ventures into the automotive software landscape in open
source, providing a first glimpse into this multi-disciplinary industry with a long history of
closed source development. We paint the landscape of automotive software on GitHub by
describing its characteristics and development styles.

This chapter is based on
 S. Kochanthara, Y. Dajsuren, L. Cleophas, M. van den Brand. Painting the Landscape of Automotive Software in
GitHub, MSR’22 [12]

5

122 5 Painting the Landscape of Automotive Software in GitHub

T oday, automotive is a software-intensive industry [96, 189]. The latest innovations in
this 5 trillion dollar industry1 (including automated driving, intuitive infotainment,

and electrification) depend less on mechanical ingenuity and more on software innovations.
In 2020, the software in a car and hardware it runs on is estimated to cost from $4,800 up to
$10,650.2 By 2030, this cost is expected to double to an estimated 50% of the total car cost.3

The recent entry of the automotive industry in Open Source Software (OSS) is a land-
marking change for an industry primarily driven commercially and dependent heavily
on protecting their intellectual property. This exposes the automotive software industry,
consisting of original equipment manufacturers (or car makers in short), their different tiers
of suppliers, and tool vendors to a wide network of contributors worldwide, in addition
to interesting and relevant projects. To understand what exists and what opportunities
this landmark change can offer, this study explores the landscape of automotive software
projects in OSS, as seen on GitHub.

Many studies have explored the landscape of OSS, albeit for different domains. There
are studies on AI-ML software [190], software from large tech companies [191], and
even specific application domains like video games [192] and bots [193]. To this, we add
automotive software with its distinctive and unique blend of non-safety critical, safety
critical, and infotainment software, bunched together into a single system. We investigate:

What characterizes automotive software projects in open source?

We explore the following two dimensions:
(1) Categories & characteristics: We identify what types of automotive software projects are
open sourced and compare them to each other. We also compare the automotive projects
to non-automotive projects. Further, we explore the characteristics of automotive projects
(e.g., size and maturity of the field) and their stakeholders (e.g., key players and affiliations).
(2) Software development styles: We investigate different aspects of software development
like collaboration (e.g., types of contributors, their contributions and interactions) and
contribution style (e.g., independent vs. dependent).

Our analyses are based on ≈600 automotive and a similar count of non-automotive
projects on GitHub created in a span of 12 years from 2010 to 2021.
Our main contributions are:

1https://www.carsguide.com.au/car-advice/how-many-cars-are-there-in-the-world-70629
2https://www.eetimes.com/projections-for-rising-auto-software-cost-for-carmakers/
3https://www.statista.com/statistics/277931/automotive-electronics-cost-as-a-share-of-total-car-cost-
worldwide/

5.1 Study design

5

123

• A manually curated, first of its kind dataset of actively developed automotive soft-
ware and their classification along four popular dimensions including safety-critical
software and tools [18]. This dataset facilitates the replication of this study and
future explorations into automotive software.

• A characterization of automotive software including its temporal trends, popularity,
programming languages, user distributions, and development activities.

To the best of our knowledge, this study is the first in presenting the automotive software
landscape in open source. Insights presented in this study are relevant for the field growing
at a fast pace and yet little is known from a software engineering perspective.

The rest of the chapter is organized as follows: Section 5.1 presents our design choices
for data collection and analysis. Section 5.2 and 5.3 present our findings and insights along
with our approach to derive these insights. Section 5.4 presents the implication of this study
for automotive and software engineering research and practice. We review the threats
to validity in Section 5.5, describe the related research in Section 5.6, and conclude the
chapter in Section 5.7.

5.1 Study design
Our choice of GitHub for the exploration of the automotive software landscape is motivated
by the sheer volume of open source software projects hosted on the platform, and its
prevalence worldwide. In 2021 alone, 64 million new repositories were created, with more
than 73 million contributors from over 200 countries around the globe and 84% of the
Fortune 100 companies using GitHub.4

There are three parts to this investigation. First, we define automotive software and
propose criteria to distinguish automotive software from general software systems; and
criteria to identify general repositories serving as the baseline for comparison. Themetadata
of the two sets of selected repositories are used for the second and third part. In the second
part, we present descriptive statistics of the repositories (in Section 5.2) while in the third
part we explore user statistics as well as contribution patterns (in Section 5.3). For the
second and third parts, we derive insights from the automotive domain and compare it
against the baseline. Particularly, wemine archival data via the GitHub API (using PyGithub
- a python wrapper for GitHub API search5) for the second part. We further enrich this
data with the GHTorrent data [194] for the third part. Generally, our study design takes
inspiration from recent landscape studies relating to OSS (e.g., [190, 191]).

4https://octoverse.github.com/
5https://pygithub.readthedocs.io/en/latest/introduction.html

5

124 5 Painting the Landscape of Automotive Software in GitHub

5.1.1 What is automotive software?
There are many definitions of automotive software prevalent in different scientific com-
munities (e.g., [97, 189, 195]). Some common elements of these definitions are: (a) the
software that forms part of a vehicle, (b) the software that interacts with a vehicle via APIs
or other similar mechanisms, and (c) the software specifically used for creating (a) and
(b) [40, 189, 195, 196]. A more detailed characterization of automotive software is presented
in Section 5.2.

5.1.2 Identify automotive software projects
To identify a specific type of software projects on GitHub, conventional methods like topic
modelling [197, 198] are found to be inefficient [190]. Another approach uses the ‘topics’
feature on GitHub.6 Topics are labels defined by a project or suggested to a project (by
GitHub) that can be used to discover a network of similar repositories.7 Our preliminary
manual analysis showed that unlike previous study [190], several automotive repositories
did not use GitHub’s ‘topics’ feature. Therefore, in addition to looking at ‘topics’ to identify
repositories, we searched GitHub for specific keywords which if found in the ‘README’
file are likely to identify an automotive software repository.

To identify automotive software using the ‘topics’ feature of GitHub, first we defined
seed terms. We choose ‘automotive’, ‘automobile’, ‘drive’, ‘driving’, ‘vehicle’, ‘vehicular’,
and ‘car’ as the seed terms. To capture a range of related terms, we transformed the seeds
terms to their base terms. For example, ‘automo’ for automobile and automotive. Likewise,
the other keywords became: driv, vehic, and car. Using these base terms, we composed a
search string excluding the terms that are not related to automotive software. Examples
are google-drive, e-commerce, and device-driver related topics. Our final (4) search queries
were:

• automo,
• vehic,
• driv NOT driven NOT drives NOT license NOT google-drive NOT linux-driver,
• car NOT cart NOT card NOT caro NOT carp NOT care

Using these search queries we identified topics which collectively defined the search
space for automotive software repositories. In total, we identified 2,797 topic labels. We
manually analyzed each topic to decide whether it is related to automotive software or not.
If a topic label was not informative, we looked at the name and description of the top 10
repositories linked to the topic to make the decision. Ultimately, we identified 286 topics
and selected all their linked repositories. A complete list of the topics (along with its search
term) is available as a part of our replication package [18].
6https://github.blog/2017-01-31-introducing-topics/
7https://github.com/topics

5.1 Study design

5

125

Further, to identify relevant repositories that do not use topics, we selected the top five
topic results based on repository count (from the 286 topics in the prior step), from each
of the four search queries, that are selected in the prior step (yielding a total of 20). For a
better signal-to-noise ratio in the search results, we removed the most common terms (e.g.,
car, cars) which resulted in 12 terms. We searched for these terms in the ‘README‘ file
of repositories which do not use ‘topic’ labels, in order to identify additional repositories.
Notably, only up to 50% of the repositories relating to automotive were found using the
‘topics’ feature and 301 out of 585 selected automotive repositories did not use this feature.
Note that in each of the above manual analysis steps, a random sample and borderline
cases were analyzed by two researchers independently, to ensure rigor and repeatability.

5.1.3 Selection and elimination criteria
To curate a representative sample of active projects, we apply the following filtering criteria
(inspired by [190]):

Size: The size of a repository should be greater than 0 KB.

Popular: Stars and forks are indicators of the popularity of a repository. To collect a represen-
tative sample of repositories (and not just the popular ones), we select repositories
with at least 5 forks OR 5 stars.

Activity: We use commits as a proxy of development activities and select repositories where
the last commit was in 2021, a criterion for selecting actively developed projects.

Data: The repository data should be available via the GitHub API. The above four criteria
when applied to the shortlisted software repositories, resulted in a subset of 1981
repositories.

Content: To gauge whether a repository is an automotive software one or not, the first author
manually examined the project title, description, and README file based on the
following inclusion and exclusion criteria.
Inclusion criteria

• Select automotive-specific software

• Select software that aids in the development of automotive-specific software

• Select software related to on-road vehicles only

• The text is written in English and has a README file

Exclusion criteria

5

126 5 Painting the Landscape of Automotive Software in GitHub

• Repositories that are not automotive related or relate to (automotive) sales and
marketing, tutorials, course projects, bachelor and master theses, documenta-
tions, data-sets, toy cars, games, traffic infrastructure, maps, and ones that do
not directly interact with vehicles.

We adopted a conservative approach for selecting repositories. This means that cases
which fall in a grey area were excluded. For the repeatability of the procedure, another
researcher with experience in conducting empirical software engineering independently
classified a subset of randomly selected repositories (approximately 100) using the above
inclusion and exclusion criteria. The inter-rater agreement between the two classifications
was 0.83 as calculated using Cohen’s Kappa [199] indicating an almost perfect agreement.
The two researchers discussed their disagreements until a decision was reached. In the
end, we identified 585 active and popular automotive software repositories.

5.1.4 Identify baseline repositories
To compare our insight against a baseline, we needed actively developed repositories
that are not automotive-related. Our first choice was reusing the baseline from a related
prior study [190]. This dataset, however, had three issues: (1) does not contain recent
repositories (created after mid-2019), (2) systematically excludes AI-ML repositories, and
(3) represents most popular repositories which are not necessarily representative of general
software projects. To mitigate these concerns, we created our baseline with the following
characteristics. First, we identified actively developed projects using the same criteria (size,
popularity, activity, and data availability) as for the automotive software projects (refer to
Section 2.3). The only deviation wemade is selecting repositories with five or more stars and
forks. This decision was made to mitigate the practical implementation limits of the search
API. Then, for each year (from 2010 until 2021), we sub-sampled repositories proportional to
the percentage distribution of all the actively developed GitHub repositories over the years,
and selected based on most recent activity from each sub-sample. We selected repositories
such that their aggregate count is closer to 600 repositories. To avoid overlap with the
automotive software, we excluded repositories with the terms automotive, car, and vehicle.
Our resulting dataset had 566 repositories as baseline.

5.1.5 Data analysis
There are two parts to our data analysis: (1) We report descriptive statistics on the selection
of automotive and baseline repositories. We describe the types of automotive software
systems and how they relate to baseline software systems. This part of our analyses is
based on the meta-data extracted using PyGithub. For details, refer to Section 5.2. (2) We
offer deeper insights into development styles by combining insights from PyGithub and
GHTorrent [194]. Since GHTorrent dataset contained developement data only upto July
2021 (we collected data using PyGitHub in December 2021), some of the repositories from

5.2 Categories and characteristics

5

127

PyGitHub based data was not available in GHTorrent. Consequently, we were left with
436 out of 585 automotive repositories and 503 out of 565 the baseline repositories. Refer
to Section 5.3 for deeper implementation details along with obtained insights.

5.2 Categories and characteristics
This section presents the types of automotive software available on GitHub and their
characteristics. First, we introduce the different ways to classify automotive software. The
next subsection presents our findings and the distinctive characteristics of automotive
software with reference to the comparison set of general software systems. This analysis is
based on the 584 automotive repositories (extracted using PyGitHub) created in a span of
12 years between 2010 and 2021. The most recent one was created on 30th December 2021.

5.2.1 Approach
Informally, automotive software can be defined as: (1) the software that runs or interacts
with a vehicle; and (2) the tools to support different life cycle stages (e.g., development,
validation & verification) of the software that runs or interacts with a vehicle. We refer to
the above two categories as in-vehicle software and tools, respectively.

In-vehicle software: In literature, there are many ways to categorize in-vehicle software.
We use the following two schemes:
(1) Safety critical & safety critical based on application: Safety critical software is defined as
the software that carries out tasks, which if not properly performed, could lead to human
injury, death, or harm to the environment [200–205]. During the manual classification of
automotive software, we noticed that in addition to safety critical and non-safety critical
software systems, there is a third type of software systems: safety critical based on applica-
tion. These software systems can be safety critical depending on the (intended) application
context. For instance, a software system for perception is safety critical when used in
fully automated driving (i.e., without an active human driver). In this case, any failure,
malfunction, or unintended function of the perception software system can lead to a crash,
injury to the traffic participants, and harm to its surroundings. The same system when
used as a driver-warning system, in which human driver is in charge, can be classified
as non-safety critical. In this scenario, the responsibility of maneuvering the vehicle is
with the human driver. We classified such software repositories as safety critical based on
application.
(2) Broy’s classification: In 2007, Broy et al. [40] classified automotive software into the
following 5 categories: (a) Human Machine Interface (HMI), multimedia, and telematics re-
lated software; (b) Body/comfort software, for instance, the software for controlling various
aspects of car doors; (c) Software for safety electronics, that are hard real-time, discrete
event-based software with strict safety requirements; (d) Powertrain and chassis control

5

128 5 Painting the Landscape of Automotive Software in GitHub

software, which include control algorithms and software for controlling the engine; and (e)
Infrastructure software, like software for diagnosis and software updates.

Since 2007, the field of automotive software and software systems in general has evolved.
For example, highly accurate image recognitionwith (relatively) lower computational power
was demonstrated using neural networks in 2012 [206]. Automotive software has advanced
in perception systems and automated decisionmaking whichmakes fully automated driving
possible. While other aspects of automated driving like drive-by-wire are captured in the
current classification, this aspect of perception and decision making, however, is not. We
extend Broy’s classification by adding a sixth category: (f) perception and decision software.
Perception and decision software includes any software that contributes to the perception
(understanding the surroundings of a vehicle) and decision making (e.g., deciding actuation,
steering, and brake), for any level of automated driving (i.e., driver assistance, partially
automated, and fully automated).

Tools: Industry standards (e.g., ISO26262 [5]) define multiple stages, such as validation
& verification, in the automotive life-cycle. We consider all software repositories that offer
tools for one or more stages of an automotive life-cycle, in this category. For brevity, we
exclude from this classification, the stages (and hence the corresponding tool) for which we
had exactly one repository. The selected repositories fall into the following four categories:
(1) tools for development, (2) tools related to simulation or emulation, (3) tools for validation
& verification, and (4) tools for diagnostics.

Please note that traditionally tools relating to simulation (and emulation) are considered
part of validation & verification. However, with the advent of neural networks, many
simulation tools are used in training (developing) neural networks. Therefore, we study
these tools separately here.

To ensure a rigorous and repeatable classification of automotive repositories into the
above-mentioned categories, the first author and another researcher with experience in
empirical software engineering, independently classified a subset of randomly selected
repositories and borderline cases.

In the subsequent subsection, we report the distribution of automotive software based
on the above classification to offer an overview of the types of automotive software open
sourced on GitHub. We continue venturing into these popular and prominent classes of
automotive software throughout the chapter.

To characterize automotive software, we report descriptive statistics on automotive
software repositories and compare them against the comparison set of non-automotive
repositories, also from GitHub. Our analyses highlights four key areas, starting with the
temporal trends and evolution of the repositories on GitHub. This analysis indicates the
maturity and growth of the field. Next, we discuss the ownership of the automotive software
(users versus organization) indicating the key players of the field and how they are shaping
the landscape of automotive software. Along the same lines, we continue exploring popular

5.2 Categories and characteristics

5

129

automotive software in terms of development activities (inferred from fork count) and in
general (using stars and subscribers). We conclude with an exploration into the choice of
primary programming languages used by different categories of automotive software.

5.2.2 Findings
Genesis - The beginning & temporal trends: In 2010, the first still actively developed
automotive project, Veins, was created in GitHub (26th-April-2010). This vehicular network
simulation framework defined the entry of automotive software development into GitHub,
marking a turning point for an industry traditionally closed source in the past 50 years of
its software use.

Since then more repositories are added each year to a total of 584 (actively developed)
automotive software repositories in a span of 12 years. Figure 5.1 presents the percentage
distribution of the automotive software repositories (based on their creation year) with
reference to the total actively developed repositories in GitHub. The temporal trend suggests
that from 2018 to 2019 the percentage growth of automotive software has doubled which
again doubled from 2019 to 2020. In comparison to the actively developed repositories
across GitHub (which peaked in 2014), automotive software is still in its infancy and
expected to grow in the future.

Origin & temporal trends

Veins - a simulation tool, is the first automotive software repository created by a user
in 2010 that is still actively developed. This study witnesses open source automotive
software boom in its infancy.

The dawn of new opportunities - Ownership: In 2010, no organization was developing
any automotive software in GitHub that is still actively developed. In the next 6 years
(2011-2016), small organizations, enthusiast groups, and non-profits organizations ventured
into open source; owning 14 software projects. The first organization owned (still actively
developed) project is Open-Vehicle-Monitoring-System, an in-vehicle software from the
enthusiast group Open Vehicles.

The year 2017 marked the entry of big players to open source. This year Baidu, the
Chinese search engine company, created project Apollo - a full software stack for fully
automated driving. The other big players, namely, Amazon, Intel, Microsoft, and Udacity
joined soon after, each of which open sourced one of their tools to build automated driving
solutions. In our data set, one in three (or 194 out of 584) automotive software repositories
is owned by an organization. Cumulatively, we are looking at 163 organizations and 343
users owning at least one repository.

5

130 5 Painting the Landscape of Automotive Software in GitHub

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Automotive
GitHub

Pe
rc

en
ta

ge
 re

po
si

to
ry

 c
ou

nt

0

5

10

15

20

25

30

35

Figure 5.1: Temporal evolution of actively developed automotive software repositories with
reference to all actively developed repositories in GitHub, between 2010 and 2021.

The development of automotive OSS today is spearheaded by tool vendors, academic,
and industrial research labs with more than 30 repositories owned by academic research
groups.

The only car maker in automotive software on GitHub is Toyota with two repositories,
a tool and an in-vehicle software. Please note that we might have missed the different tiers
of suppliers to car makers since there is no straightforward way to identify suppliers from
the GitHub meta-data.

Currently, the top 5 organizations working on automotive software (in terms of reposi-
tory count) are: VITA lab at EPFL (5 repositories), LG Silicon Valley Lab (4), MathWorks
Open Source and Community Projects (4), AutonomouStuff (3), and CARLA (3).

Repository ownership

One in three automotive software repositories is owned by an organization. The field
witnesses high participation from academic and industrial (tool vendors) research labs
with only one car maker (Toyota) at the forefront.

In the catbird seat - Popularity: The top 5 popular automotive projects from orga-
nizations based on the three indicators of popularity (stars, forks, and subscribers; see
Table 5.1) are simulation tools (4 in count), followed by in-vehicle software on perception
and decision systems (fizyr/keras-retinanet) and the automated driving stack Apollo.

The popular user repositories on automotive software are more diverse, including
both in-vehicle software and tools. The in-vehicle software in the top 5 relate to (a) HMI

5.2 Categories and characteristics

5

131

and telematics and (b) perception and decision. The tools in the top 5 relates to (a) the
development of perception and decision-related software and (b) diagnostics.

Figure 5.2 presents the distribution of stars, forks, and subscribers across automotive
software along with the baseline repositories. Generally, projects have more stars, than
forks and subscribers. This is the same for automotive and baseline repositories. Notably,
automotive software is far less popular than the baseline software systems, further re-
inforcing the notion of infancy of the field. The differences in the distribution among
the automotive and baseline repositories are statistically significant as calculated using
the Mann-Whitney-Wilcoxon Test [207], a non-parametric test for two independent data
samples, calculated at p-value<0.05. The median numbers of stars, forks and subscribers
for automotive repositories are 24, 9, and 4 respectively, while the median for baseline
repositories are 297, 121, and 36, respectively. Here, we would like to remind the readers
that despite our attempts at selecting a representative sample of projects as baseline, our
dataset might be somewhat biased towards more popular repositories (see threats to valid-
ity in Section 5.5 for details), skewing the distribution further. Even within automotive
repositories, organization-owned repositories is at least twice as popular as user-owned
software projects.

Popularity

Automotive software as a field is less popular than general software on GitHub. Apollo,
Baidu’s automated driving software stack, is currently the most popular automotive
repository. Generally, organization-owned software projects are twice as popular as
user-owned projects.

Genera - Types of automotive software: Broadly, there is an abundance of in-vehicle
software (375) in comparison to tools (233). A detailed distribution of the types of auto-
motive software (both in-vehicle software and tools) is presented in Table 5.2. Note that a
repository can belong to multiple categories. Therefore, the sum of the repository count
in all the categories can be greater than the actual repository count. More details on the
classification of individual repositories is available in the replication package [18].

Within in-vehicle software, most repositories relate to perception and decision related
software. Notably, Broy’s classification [40] for in-vehicle software is a small part (108 out
of 375) of the whole. Of these 108, HMI (71) and infrastructure (38) are the top categories,
and are primarily developed by users.

The development of safety-critical software in open source is still in its initial stages
(21 repositories). Although, many software repositories belong to safety-critical based
on application category (approximately 60% of in-vehicle software). Most of the safety-
critical software relates to perception and decision-based software intended for use in fully

5

132 5 Painting the Landscape of Automotive Software in GitHub

Table 5.1: Top 5 popular organization and user repositories (based on subscribers, forks,
and stars) and their count

Organization User

Top 5 repositories based on subscriber count
1 ApolloAuto/apollo (1103) stanleyhuangyc/ArduinoOBD (175)
2 microsoft/AirSim (597) timdorr/tesla-api (119)
3 carla-simulator/carla (236) Smorodov/Multitarget-tracker (110)
4 udacity/self-driving-car-sim (231) cedricp/ddt4all (81)
5 autoas/as (145) fr3ts0n/AndrOBD (68)

Top 5 repositories based on fork count
1 ApolloAuto/apollo (8013) MaybeShewill-CV/lanenet-lane-detection (772)
2 microsoft/AirSim (3557) Smorodov/Multitarget-tracker (569)
3 carla-simulator/carla (2128) stanleyhuangyc/ArduinoOBD (486)
4 fizyr/keras-retinanet (1964) timdorr/tesla-api (474)
5 udacity/self-driving-car-sim (1414) karlkurzer/path_planner (355)

Top 5 repositories based on star count
1 ApolloAuto/apollo (19954) MaybeShewill-CV/lanenet-lane-detection (1707)
2 microsoft/AirSim (12590) Smorodov/Multitarget-tracker (1636)
3 carla-simulator/carla (7100) timdorr/tesla-api (1549)
4 fizyr/keras-retinanet (4252) poodarchu/Det3D (1220)
5 udacity/self-driving-car-sim (3595) yangyanli/PointCNN (1200)

8

128

2048

32768

Stars Forks Subscribers

C
ou
nt

Automotive
Baseline

Figure 5.2: Distribution of the popularity of automotive repositories (in terms of stars,
forks, and subscribers) with reference to the comparison set (outliers removed)

5.2 Categories and characteristics

5

133

automated driving systems. These include neural-network based semantic segmentation,
path planning, and object, pedestrian, and intent detection related software.

Table 5.2: Types of automotive software on GitHub and their distribution.

Category Org User Total

In-vehicle software 97 278 375

Safety-critical 11 10 21

Safety-critical based on application 57 167 224

Extended Broy’s classification
HMI, multimedia, & telematics 17 54 71
Body/comfort software 10 8 18
Software for safety electronics 8 4 12
Power train and chassis control software 10 7 17
Infrastructure software 9 29 38
All Broy’s categories combined 23 85 108

Perception and decision software 68 180 248

Tools 100 133 233

For development 32 31 63
For validation & verification 18 22 40
Related to Simulation (and emulation) 48 52 100
For diagnostics 5 28 33

The category ‘tools’ in automotive software is dominated by simulators and related
software. This is evident in the top five automotive software from industry (see Table 5.1),
three of which are simulators. For tools overall, there is near to equal ownership from
users (100) and organizations (133). We see a similar trend in the ownership of development
tools (32 from organization and 31 from users) and validation & verification tools (18 from
organizations and 22 from users). The only exception is diagnostic tools which are five times
more prominent among users (28) than organizations (5). Other than the above, we also
notice a small number of automotive software repositories (32) relating to (driver) safety
(like drowsiness detection) and security (tools for security testing or in-vehicle software
for the security of the vehicle).

5

134 5 Painting the Landscape of Automotive Software in GitHub

Types of automotive software

The most popular type of automotive software developed open-source is in-vehicle
software (375 repositories) followed by tools (233 repositories). Within in-vehicle
software, perception and decision software are most popular while in tools, simu-
lations are prominent. Traditional vehicle software and safety critical software are
underrepresented in open source.

Two worlds; two languages - Languages: Automotive software is developed in 33
primary languages and 96 languages when considering all the languages for development.
The most popular programming language is Python with 291 projects using it as a primary
language and up to 415 projects using it as one of the languages. The top 5 primary
programming languages are Python (291), C++ (98), C (33), Jupyter Notebook (33), and
MATLAB (30). Technically Jupyter Notebook is not a programming languages, rather a
blend of text and code. We do not make any assumptions in the programming languages
used inside the Notebooks rather considered them according to the tagging by GitHub.
Organizations generally prefer (based on repository count) Python (82), C++ (37), C (16),
MATLAB (10), and Jupyter Notebook (7) for their projects. Notably, users also prefer the
same languages but in slightly different order: Python (209), C++ (61), Jupyter Notebook
(26), MATLAB (20), and C (17). Most safety critical software is written in C++ (14), followed
by Python (4), MATLAB (1), and C (1).

The distribution of programming languages across projects shows a shift fromMATLAB
as preferred language of development [208] to Python. Likewise, traditionally most safety
critical software were developed in C or Ada which has now shifted to C++ in GitHub [209].

Languages

The preferred language for open source automotive software development has shifted
to Python (291 repositories) from MATLAB (30 repositories). Similarly, safety critical
software development has moved from C or Ada to C++.

5.3 Software development style
Building on the insights derived in the previous section, this section delves into the user
distribution, types of development activities, and the choice of development models in
automotive software. We compare it against the baseline to understand the unique char-
acteristics of automotive software, if any. Note that since this analysis combines data
acquired using PyGithub (in December 2021) with GHTorrent’s data (data available until

5.3 Software development style

5

135

July 2021), we missed repositories which do not exist on GHTorrent. Further, depending
on the development activities of individual repositories and missing data in GHTorrent
dataset, the total count of the repositories may vary across different analyses.

5.3.1 Approach
User distribution: In this section, we explore the types and distribution of users across
projects. We study two types of users: external and internal [190], based on their activities
in automotive software. Internal users contribute directly to the development of a project
by making changes to the actual software (commits) and moderating the decision to
include/exclude the proposed changes (like merging and closing pull requests and closing
issues). External users, on the other hand, contribute indirectly by requesting features,
reporting issues, and commenting. We believe that investigating the distribution of internal
and external users across projects indicates how a community works. For deeper insights,
we also explore changes in contribution patterns, if any, across organization and user
projects.

A natural next step to understand developer contribution and collaboration patterns is
to examine developer roles (e.g., maintainer, or reporter) and their distribution. However,
given the small community size and limited development activities, it is infeasible to
offer meaningful insights and conclusive statistical analyses. Therefore, we do not report
collaboration patterns.

Development activities: Development activities on GitHub can be broadly classified into
commits, issues, and pull requests. Issue events indicate participation from the broader
user base (beyond contributors) requesting additional features or indicating problems. Par-
ticipation in issue events indicate how the users of the software interact with developers,
influencing its development. The next group of development activities are pull requests
which indicate a relatively stronger influence on the software by proposing changes for in-
clusion into the software system or its associated artifacts. These activities log the decisions
to include or exclude proposed changes. Finally, a commit is an even more involved activity
dealing with the technical aspects of creating desired changes in the software.8 Here too,
we explore whether project ownership influences the development activity patterns across
projects.

Development models & autonomy: Finally, we analyze the choice of development model
in automotive software. There are two types of development models in GitHub: (1) shared
repository model and (2) fork & pull model.9 The two models are different in the level
of autonomy of contributors. In the shared repository model, an author can merge their
8https://docs.github.com/en/get-started/quickstart/github-flow
9https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-started/about-collaborative-
development-models

5

136 5 Painting the Landscape of Automotive Software in GitHub

Au
to
m
ot
ive

Ba
se
lin
e

1 5 10 50 100 500

Figure 5.3: User distributions across repositories compared with baseline (outliers omitted)

proposed code changes themselves, indicating their autonomy. The fork & pull model
implies that the changes proposed by an author are reviewed by a maintainer. In this
model, an author is dependent on the actions of a reviewer for the decision to include or
exclude the proposed changes. To study the level of autonomy or dependence in a project,
we aggregate the distribution of pull requests and commits for which the author merged
the changes (self-merge) versus other contributor (other-merge). We refer to the projects
with more self-merges as practicing a shared-repository model and fork and pull model
otherwise.

5.3.2 Findings
The real stars - Users & their distribution: All the automotive repositories cumulatively
have 15,260 unique users where as the baseline set of repositories have 439,032 unique users.
In automotive software, the median count of users per repository is 5 while 115 for general
projects from our baseline (refer to Figure 5.3 for distribution). The two distributions are
significantly different as calculated using the Mann-Whitney-Wilcoxon test at p-value<0.05.
Here again, we warn our readers that our baseline is somewhat skewed towards actively
developed and popular software systems. Therefore, the differences may appear larger
than they are. Note that our identification of individual contributors relies on unique user
identifiers from GitHub. However, one individual can have several unique identities [210].
Consequently, the actual number of users might be lower than the reported count.

Looking at the distribution of users in automotive software, each project has a median
count of 3 internal and 5 external users. When we further segregated the user distribution
on the ownership type (see Figure 5.4), we observe that organizations have more users
per repository. The two distributions are different as calculated using the Mann-Whitney-
Wilcoxon test at p-value<0.05. Organizations recorded a median of 6 internal and 8 external
users in comparison to 3 and 5 respectively for the user owned automotive repositories.

5.3 Software development style

5

137

0

10

20

30

Internal user External user

C
on

tri
bu

to
r c

ou
nt

Organization owned
User owned

Figure 5.4: Internal and external users across automotive repositories owned by users and
organizations (outliers omitted)

User distribution across repositories

Open source automotive software has a small developer community with a median
of 5 users per repository. Notably organization repositories solicit more participation
internally and externally in comparison to the user repositories.

Abiogenesis - Development activities: We notice that most common development
activities (based on the median count of activities) in automotive software are in the form of
commits (32), followed by issues (9), and then pull requests (6). We further investigated the
distribution of development activities based on the ownership and the types of automotive
software.

Figure 5.5 presents the development activities of automotive software repositories
owned by organizations in comparison with the repositories owned by users. Generally,
organization projects have more development activities (in terms of median) than user
projects do, although there are a few user projects where the commit activity level matches
that of the organizational repositories. This indicates variability among user projects with
extremes in the distribution of development activities. Please note that the two distributions
are different as calculated using the Mann-Whitney-Wilcoxon test (p-value<0.05).

A comparison of the development activities across in-vehicle software and tools is
shown in Figure 5.6. Here, the development activities across issues (p-value = 0.29) and pull
requests (p-value = 0.40) are comparable with major differences in the commits (p-value =
0.0013). These p-values are calculated using the Mann-Whitney-Wilcoxon test such that
a p-value<0.05 indicates differences in the distribution and no differences otherwise. We
notice that there are more commit activities in tools in comparison to in-vehicle software.
We believe that this difference is attributed to the higher participation of tool vendor

5

138 5 Painting the Landscape of Automotive Software in GitHub

0

100

200

Commit Issue Pull request

C
ou

nt

Organization owned
User owned

Figure 5.5: Development activities in organization owned automotive repositories versus
user owned repositories (outliers omitted)

0

100

200

Commit Issue Pull request

C
ou

nt

In−vehicle
Tools

Figure 5.6: Development activities for in-vehicle software versus tools (outliers omitted)

organizations in automotive software. To remind, there are 100 out of 233 organization
owned repositories in the tools category versus 97 out of 375 in the in-vehicle software
category.

We also explored the distribution of development activities in perception and decision
related software, which form a majority of the in-vehicle software (with sizable number
of repositories for statistical comparison) with respect to the development activities with
the rest of repositories in in-vehicle software. Figure 5.7 shows that traditional software is
more actively developed in terms of commits, issues, and pull requests than perception and
decision related software. The differences in the distribution of development activities on
repositories belonging to all the Broy’s categories combined versus repositories belonging
to perception and decision software, are significantly different as measured using the Mann-
Whitney-Wilcoxon test at p-value<0.05. This means that while perception and decision
related software are more in count, they have fewer development activities than traditional
software.

5.4 Implications

5

139

0

100

200

300

400

Commit Issue Pull request

C
ou

nt

All Broy's categories combined
Perception and decision

Figure 5.7: Development activities for perception and decision related in-vehicle software
versus other in-vehicle software (outliers omitted)

Development activities

The organization-owned repositories attract more contribution across all categories.
However, there are smaller number of user owned repositories matching the level of
development activities as in organization owned repositories. Tools are more actively
developed than in-vehicle software. Within in-vehicle software, traditional in-vehicle
software is more actively developed than perception related software.

Guardians - Development model: We classified each project as a shared repository or
fork-and-pull development model by looking at their collaboration patterns. We noticed
that while 41 repositories followed the shared repository model, 182 repositories practice
the fork-and-pull model. This indicates that fewer projects are autonomously developed and
a majority of the development teams (contributors of a repository) do not have autonomy.
This observation matches the baseline with fork-and-pull being the most prominent model
and also prior work on other software sub-communities [190].

Development model

Automotive software—despite being a small development community—mostly follows
the fork-and-pull model for its development activities.

5.4 Implications
While automotive open source software is still in its infancy (in comparison to our baseline),
the field is 584 repositories and 15,260 contributors strong. With industry players entering
the field and choosing to open source their projects, we believe that automotive software

5

140 5 Painting the Landscape of Automotive Software in GitHub

is the next promising area with an expected multi-fold growth in the next decade. In this
section, we discuss how the insights from this study can be applied to research and practice.

5.4.1 Research
Academia is a prominent contributor of automotive software in GitHub with one of the top
5 organizations in terms of count of repositories owned. We also identified 108 repositories
linked to scientific articles in automotive software. Given the close link of automotive
software and academic research, in this section, we present the ways in which our study
can inspire future research.

Manually curated automotive software. To the best of our knowledge this chapter is the
first in presenting a manually curated dataset of automotive software in open source. We
have classified each repository using four categorization schemes namely (1) safety critical,
(2) safety-critical based on application, (3) Broy’s classification extended with perception
and decision related software, and (4) tools. One immediate future research direction is
strengthening the classification with inputs from experts in the automotive and related
domains. Also, our manually curated dataset along with the classification can be used (in
training and testing) to automate the process of identifying and classifying automotive
software by automated (algorithmic) approaches. Further, we believe that future research
can use this classification for the characterization of automotive software and in-depth
explorations into prominent software systems.

Motivation to open source. Relating to the types of automotive software open-sourced
by companies, we noticed that organizations mostly open source their tools and some
experimental projects. It will be interesting to see what types of companies come to open
source and their motivation (similar to a recent study exploring motivations of Chinese
companies to open source [191]). While our results show that one in three automotive
software repositories is owned by an organization, it is possible that at least some of the
GitHub projects in large organizations might have started as personal projects because
there was not yet a company policy on how to open source projects. Given the entry of
organizations to open source in the automotive domain is still in its infancy, it is possible
that some individual projects might actually belong to organizations and the transfer of
ownership to the organization has yet to be made. This phenomenon in itself and the
subsequent changes in our results form another direction to explore for future research.

Safety-critical. Most automotive software in open source relates to perception and deci-
sion and tools. These software systems can be safety-critical depending on the application.
Given the limited attention to safety-critical software in open source, it remains a future
work to see whether the current and future automotive software in these categories are
developed and/or tested according to safety critical standards. Also, our study forms a
guide and baseline for future studies on open source software in (other) safety critical
domains.

5.4 Implications

5

141

Multi-disciplinary software versus general software. Automotive software developed
in GitHub is multi-disciplinary in nature. We observed repositories that model vehicle
dynamics;10 develop firmware and drivers for sensors like LiDARs and Camera; develop
algorithms for perception and motion control; and repositories on complete operating
systems integrating the above. It will be interesting to see differences in the contribution
and collaboration patterns of such multi-disciplinary software projects in comparison to
general software systems.

5.4.2 Practice
This study shows that the industry is more interested in open sourcing tools (43% or|-gani-
zation-owned) in comparison to in-vehicle software (26%). Three possible explanations
for this observation are: (1) the revenue stream for the tools is dominated by car-makers
or their suppliers who will pay for their support irrespective of open-sourcing; (2) tools
might be less intellectual property intensive than in-vehicle software and thus easier to
open source without losing the edge to competition; and (3) in-vehicle software typically
runs on less-standardized hardware (application-specific embedded hardware for various
in-vehicle functionality) than tools. These explanations however, cannot be derived from
the data used in this study and need to be validated.

In addition, our list of automotive repositories and their categorization can aid future
research into identifying the stakeholders in each category, their motivations to participate
in open source, and other domains where these tools are used. Our study also provides
the first list of automotive software tools and in-vehicle software in open source, with the
former available for practitioners to use (and contribute to) and the latter to learn from.
Further, our data and insights can be used to identify (a) software for reuse, (b) attract talent
and/or increase the adoption of software and standards, and (c) new directions, companies,
and trends in the automotive domain. Three potential implications of our findings for
practice are discussed below.

Language of choice. Automotive software in open source is now developed mostly in
Python, replacing MATLAB as reported in prior studies (see Table 12 in [208]). A similar
trend of C++ domination replacing C or Ada for safety critical software development [209]
is seen. Our advice to the readers interested in venturing into automotive software is to
consider these findings while choosing programming languages.

Companies. Prior study has shown that one reason for companies to open source
their software is to attract talent and internationalization [191]. We believe that start-up
automotive companies can benefit by open sourcing their projects.

Safety certification & car makers. Safety certification of vehicles is obligatory to allow
them on road. The current trend of more software dependent functionalities in vehicles is
challenging for certification bodies. These bodies can benefit from open software stacks.
10https://github.com/TUMFTM/velocity_optimization

https://github.com/TUMFTM/velocity_optimization

5

142 5 Painting the Landscape of Automotive Software in GitHub

Such a change can subsequently encourage carmakers to contribute to open source software.
Our study can be used by the certification bodies to get insights on the characteristics of
automotive software developed in open source. To car makers our study offers trends in
the open source automotive software.

5.5 Threats to validity
Construct Validity: There are threats to the representativeness of the automotive software
systems selected for analyses. To mitigate this concern, we identified automotive software
repositories using two approaches (using topics and keyword search in README files)
and adopted best practices for selecting actively developed software systems [211–213].
That being said, we might have systematically missed the repositories that do not use the
search terms, uses different topic labels, misses README file, or a meaningful description.
Also, in case of doubt, we discarded a repository, i.e. we followed a conservative approach.
The same threat applies to the categories of automotive software systems presented in
Section 5.2.

For counting unique contributors, we used their GitHub identifier and counted every
user with a distinct identifier as a unique user. However, prior studies have shown that
one individual can have several identities [210], thus the actual number of users might be
lower than the reported count.

Our baseline set of repositories might be skewed towards more popular repositories. For
representativeness, we sub-sampled repositories based on the number of actively developed
repositories created every year. However, given the smaller size of automotive repositories
as compared to the total number of actively developed repositories in GitHub, the random
selection from each sub-sample based on recent activity might have resulted in the selection
of popular repositories as the baseline.

Another threat is the introduction of researcher bias in the manual selection of repos-
itories and the classification of the automotive software. While these threats cannot be
eliminated, we tried to minimize them by (a) clearly documenting the inclusion-exclusion
criteria for the selection of repositories, and (b) using an independent rater for a subset
of the repositories. For the classification of software, we borrowed the definitions from
literature for reference.

Our insights into development styles rest on the GHTorrent dataset. The activities that
are not present in the dataset are systematically excluded from our analyses [214].

External Validity: This chapter is based on the publicly available software repositories
on Github. While GitHub is a popular and widely used platform, there are other platforms
(e.g., Gerrit and Phabricator) with their distinctive characteristics, private projects hosted
on GitHub, and closed source systems. They might add a different perspective to the
automotive software landscape. We leave it to future research to pick these topics to
improve the generalizability of the findings here.

5.6 Related work

5

143

5.6 Related work
Related studies around automotive software landscape in GitHub can be divided into two
parts. The first part focuses on the literature on automotive software and its engineering. In
the second part we explore studies offering characterization of other software communities.

5.6.1 Automotive software
There are many studies on automotive software, exploring the different dimensions of the
topic. Some areas focused in the last five years (as identified using Google Scholar search)
include automotive software architecture [70–72, 96, 215], AI-based solutions [216, 217],
model-based solutions [218–220] and blockchain [221]. These studies touch on aspects such
as complexity [222], safety [222], security [220, 223], privacy [221], and testing [223, 224]
that are relevant for automotive software.

Another line of research on automotive software is in terms of their development
and development processes [96, 97, 225]. These studies focus on the different steps in
automotive software development [96, 97] and applicability of process models like agile
development [225] to automotive industry. That said, to the best of our knowledge, there is
little to no study characterizing automotive software development and its process in terms
of its development activities (like pull requests, issues, and commits) on closed or open
source software systems.

5.6.2 Non-automotive software landscape
Even though the software development process or its characterization is not studied for
automotive domain, characterization of other software engineering communities has been
presented in literature. The software engineering communities whose characteristics are
explored in the past can be classified based on application domain [190, 192, 193] and those
based on other factors like geography and closed source [191,191]. We present four studies
that have explored software landscape from different perspectives and inspired our study.

The most recent exploration is on the open source software systems developed by
large Chinese technology companies namely Baidu, Alibaba, and Tencent [191]. Unlike
the open source software studied in general, this exploration is regional. It presents a
characterization of open source software developed by Chinese technology companies,
their objectives for open sourcing, and a comparison to other software systems [191].

The second study explores a decade of ML and AI software systems developed in open
source [190]. The study characterizes the trend of ML/AI evolution in addition to their
collaboration and autonomy, and contrasts it against the general software systems [190].
These two studies are our primary inspirations.

Another study characterizes video game development and how it is different from
traditional software development [192]. Based on interviews, the study identifies differences
between the two types of software system and how researcher can help [192].

5

144 5 Painting the Landscape of Automotive Software in GitHub

Finally, studies on bots explore its use, and how these special software systems can
help the development of other software systems [193].

Along these lines, this study offers an exploration into the landscape of open source
automotive software projects. Open sourcing is a recent phenomina in automotive industry
as shown in the temporal trends in Section 5.2. Taking inspiration from the previous studies
and combining elements from many sources, we quantitatively analyze the repository data.
We hope that like the previous studies, the findings from our study inspires future research
and improve the state of automotive software development.

5.7 Conclusions
This chapter presents a landscape of automotive software projects publicly available on
GitHub. We identified and categorized ≈600 automotive repositories grounded in definitions
from literature and well-defined empirical methods. We also identified a similar number
of non-automotive projects for comparison. We analyzed the origin, temporal trends,
key players, popularity of projects, languages for development, user distribution across
repositories, and development activities. We also present, a first of its kind, manually
curated dataset of automotive projects and a comparison set of non-automotive projects,
for replication and future research.

For an industry traditionally being in closed source in its half a century history of
software use, open sourcing software projects marks a landmark change. This chapter
shows that automotive domain is undergoing a shift in multiple dimensions including the
prevalence of automated driving software development, change in preferred language from
MATLAB to Python, and entry of software companies and startups to the domain.

We foresee that the recent developments in software engineering, that enables auto-
mated driving, will further accelerate open source automotive software development. We
believe that the software stacks for automated driving will benefit from perception and
decision software currently developed in open source. Since these systems are developed
independent of car makers, involving the open source community for the acceleration of
their development, is a logical step.

6

145

6
Conclusions

I n this chapter, we revisit the research questions presented in Section 1.3 and summarize
the main contributions of this thesis. This thesis discusses how to ensure safety in the

requirement elicitation and design stages of automotive systems and software, focusing
on automated and connected driving systems. The thesis also discovered a new landscape
shift in the automotive industry with the open-source development of automotive software
and presented the first characterization of this trend. In the rest of this section, we present
the research questions and corresponding conclusions.

RQ1.1: What processes are used for or applicable to safety requirement elicitation
in the automotive domain?

RQ 1.2: What techniques are used for safety requirement elicitation in the
automotive domain?

We addressed these two research questions in Chapter 2. We characterized the safety
requirement elicitation in the automotive domain through a systematic literature review.
We taxonomized the processes and techniques (techniques are different alternatives to
conduct individual steps in processes) creating an overview of the current landscape of
safety requirement elicitation. This systematic literature review was based on 102 primary
studies published between 2014 and 2020.

We identified nine distinct safety requirement elicitation processes and 38 distinct
techniques. We observed that the process outlined in the ISO 26262 standard forms the
basis for the automotive industry. Other processes are proposed to complement, extend, or

6

146 6 Conclusions

replace the process outlined in the standard. Chapter 2 offered an overview, comparison, and
taxonomy of processes and techniques for safety requirement elicitation in the automotive
domain. Based on this information, temporal adoption trend, usage context, and scope, we
presented research gaps and discussed upcoming domain trends.

RQ 2.1: How to derive safety requirements for connected driving?

RQ 2.2: How to assess safety requirements in the software architecture of con-
nected driving vehicles?

Chapter 3 investigated whether the architecture of a single-vehicle meets the functional
safety requirements for cooperative driving. We proposed a method to ensure that an
automotive architecture is functionally safe to operate in given scenarios. The proposed
method derives functional safety requirements for a cooperative driving scenario and checks
whether they are fulfilled in the technical architecture of a vehicle. The method combines
methods adapted from the safety engineering and software architecture domains. We show
the usability of our method for a cooperative driving scenario, platooning, on an academic
prototype; and how this resulted in uncovering functional safety requirements not fulfilled
by the software architecture. Our method is motivated by and reinforces the notion that
functional safety should not be an afterthought in the design of automotive architectures,
but that it should rather be used for defining the architecture of the automotive system.

RQ 3.1: What safety requirements shall be fulfilled by a vehicle’s perception
system for autonomous driving on a Dutch highway?

RQ 3.2: How to assess the safety requirements in the design of a perception
system?

Chapter 4 presented a case study assessing the safety of the Apollo automated driving
framework’s perception system in design. We elicited 58 safety requirements for a Dutch
highway segment with a focus on its weather and illumination conditions. For the assess-
ment of safety requirements, we used 23 design choices; 13 relating to traditional software
and the other ten specific to ML based systems. We found design evidence that 38 out of
58 requirements are met. While all requirements relating to traditional software systems
are satisfied, many requirements specific to ML based systems are not found satisfied.

6.1 Future work

6

147

RQ 4: What characterizes automotive software projects in open source?

Chapter 5 presented a landscape of automotive software projects publicly available on
GitHub. We identified and categorized ≈600 automotive repositories grounded in definitions
from literature and well-defined empirical methods. We also identified a similar number
of non-automotive projects for comparison. We analyzed the origin, temporal trends,
key players, popularity of projects, languages for development, user distribution across
repositories, and development activities. Based on this analysis, we also present a first-
of-its-kind manually curated dataset of automotive projects and a comparison set of non-
automotive projects for replication and future research.

For an industry traditionally closed source in its half-a-century history of software
use, open sourcing software projects marks a landmark change. Chapter 5 showed that
the automotive domain is undergoing a shift along multiple dimensions, including the
prevalence of automated driving software development, change in preferred language from
MATLAB to Python, and entry of software companies and startups into the domain.

We foresee that recent developments in software engineering, which enable automated
driving, will further accelerate open-source automotive software development. We believe
that the software stacks for automated driving will benefit from perception and decision
software currently developed in open source. Since these systems are developed indepen-
dent of car makers, involving the open-source community for the acceleration of their
development is a logical step.

6.1 Future work
The last decade marks arguably the most significant paradigm shift in the automotive
industry since its inception. Four dimensions of this shift are the transition from internal
combustion to electrification, automated and connected driving, the ongoing shift to open
source software development, and start-ups entering the field and finding success bringing
disruptive ideas and new business models. This means profound changes in almost all
dimensions of automotive software, its development, and the electronics that run them.

While we empirically showed (in Section 2.5) that safety requirement elicitation of
the traditional components like the steering system has matured, the safety requirement
elicitation of newer age concepts and components like ML based perception systems are
not. Future research focusing on these newer concepts and components is of immediate
importance, especially since such systems are on the verge of entering production.

Relatedly, whether the safety requirements elicitation is catching up to the developments
of newer concepts and components is still an open question. The open-sourcing trend
is still unfolding [12] and its safety (requirement elicitation) side might be too early to
research. However, the safety of communication-side that enables connected driving and

6

148 6 Conclusions

the ML based components that will allow automated driving, might already be at a stage
that needs immediate research.

There can be three kinds of communications that enable connected driving: vehicle-to-
vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-road user (V2R). The first two
kinds are more established than the third kind. As we mentioned in Section 2.3, there is a
lack ofmethods that integrates V2I alongwith the traditional automotive safety requirement
elicitation. There are at least two challenges here, (1) safety requirement elicitation for
communication intermediaries like cloud, for connected driving and (2) requirements
spanning across multiple vendors (e.g., the manufacturers for smart traffic infrastructure
and vehicles might be different). Further research is needed in these directions.

Cyber-security is another prominent direction to explore in connected driving alongside
safety. The communications part that enables connected driving increases the potential at-
tack surfaces and can compromise the system’s safety. Integral approaches for requirement
elicitation considering both safety and security are a potential future research direction.
On the architecture assessment side, this thesis focused on software architecture. How-
ever, safety is often achieved via hardware architecture or a combination of hardware and
software. The second part of our method focused only at the software level. The logical
next step is to extend our software architecture assessment approach (from Section 3.2) to
address safety requirements that are fulfilled specifically in hardware and the combination
of hardware and software.

Also, the current research in architecture assessment does not account for different risk
levels across different requirements. This means that with current assessment techniques,
we can only conclude whether a safety requirement is addressed but not whether the
specific level associated with the requirement is addressed. Augmenting the assessment
method with risk levels is a potential future research direction. This will allow prioritizing
safety requirements based on the risk associated with them. This may also be a step
towards a trade-off analysis where each safety requirement can be traded off with other
requirements based on the risk associated.

Our case studies, especially on the Apollo stack, are the first studies in the scientific
literature to present the safety design assessment for the perception system of a mature
software stack for automated driving in a real-life setting. This opens up a multitude of
future research directions, including safety requirement elicitation on other automated
driving stacks and their comparison to Apollo; and techniques to reduce the human effort
(and the resulting subjectivity) of the requirement elicitation and assessment. Our case
studies also provide practitioners with the parts which need more work and possible design
choices to consider for closing safety gaps. For all of our case studies, we have shared
our data, including results from its intermediate steps for transparency, replicability, and
reusability of our work for research and practice.

Regarding the open sourcing trend in automotive, we noticed that organizations mostly
open source their tools and some experimental projects. It will be interesting to see what

6.1 Future work

6

149

types of companies come to open source and their motivation (similar to a recent study
exploring motivations of Chinese companies to open source [191]). Given the entry of
organizations to open source in the automotive domain is still in its infancy, it is possible
that some individual projects1 might actually belong to organizations and the transfer of
ownership to the organization has yet to be made. This phenomenon in itself and the
subsequent changes in our results form another direction to explore for future research.
Further, our data and insights from Chapter 5 can be used to identify (a) software for
reuse, (b) attract talent and/or increase the adoption of software and standards, and (c) new
directions, companies, and trends in the automotive domain.

From an education perspective, in the context of software engineering, most curricula
do not focus on safety, let alone the safety of the newer types of systems.Since software
systems are becoming more safety-critical, this trend needs to change, and safety has to
be incorporated as a topic. We believe it is equally important to educate on the caveats
and limitations of current techniques since it is crucial to understand the scope of existing
processes and techniques for their correct usage in real-life. Also, in typical software
engineering curricula, a systems view is seldom included but is crucial in the context of
safety requirements. We strongly encourage including this in the curricula for educating
future software engineers.

We firmly believe that every stakeholder involved, including car makers, safety cer-
tification bodies, automotive software developers, and vehicle users, has the right to an
unbiased understanding of the safety of the vehicles’ software, especially in automated
driving settings. This thesis is a step in that direction.

1While our results show that one in three automotive software repositories is owned by an organization, it is
possible that at least some of the GitHub projects in large organizations might have started as personal projects
because there was not yet a company policy on how to open source projects.

A

151

A
Appendix: Safety tactics

Table A.1: Safety tactics used in Chapters 3 and 4; verbatim from the work of Preschern et
al. [92].

Tactic Aim Description

Simplicity Avoid failures
through keeping
the system as
simple as possible.

Simplicity reduces the system complexity. It
includes structuring methods or cutting
unnecessary functionality and organizes system
elements or reduces them to their core safety
functionality, thus, eliminating hazards. An
example for the application of the Simplicity tactic
is an emergency stop switch system which is
usually kept as simple as possible.

Substitution Avoid failures
though usage of
more reliable
components.

Components or methods are replaced by other
components or methods one has higher
confidence in. For hardware and software this can
mean usage of existing components which are
well-proven in the safety domain.

A

152 A Appendix: Safety tactics

Tactic Aim Description

Sanity Check
(Checking)

Detection of
implausible system
outputs or states.

The Sanity Check tactic checks whether a system
state or value remains within a valid range which
can be defined in the system specification or
which is based on knowledge about the internal
structure or nature of the system. An example for
a Sanity Check is a stuck-at fault RAM-test which
checks the proper functionality of the memory
during system runtime. The test is based on the
understanding of the memory behavior (if we
write data to the memory, we should later on be
able to read the same data). Faults are detected if
the memory behaves differently.

Condition
Monitoring
(Checking)

Detect deviations
from the intended
system outputs or
states.

Condition Monitoring checks whether a system
value remains within a reasonable range
compared to a more reliable, but usually less
accurate, reference value. The reference value is
computed at runtime by a redundant part in the
implementation which can be based on system
input values and is not pre-known from the
specification (like it would be the case for Sanity
Check). An example for Condition Monitoring is a
system which has to be time-synchronized via the
Internet and which checks if the synchronized
time is feasible by comparing it to an internal
clock.

Comparison Detection of
discrepancies of
redundant system
outputs.

Comparison tests if the outputs of fully redundant
subsystems are equal in order to detect failures.
The Comparison tactic usually implies the usage of
a redundancy tactic. An example for the
application of the Comparison tactic is a dual-core
processor running in lockstep mode. The
processor runs the same software on both cores
and compares their outputs after each cycle.

A

153

Tactic Aim Description

Diverse
Redundancy
(Redundancy)

Introduction of a
redundant system
which allows
detection or
masking of failures
in the specification
or implementation
as well as random
hardware failures.

Diverse Redundancy can be applied to the
specification or to the implementation level. In a
system using Diverse Redundancy on the
implementation level, redundant components use
different implementations which were developed
independently from the same specification.
Diverse Redundancy on a specification level goes
one step further and additionally requires that
even the requirement specifications for the
redundant components have to be set up by
individual teams.

Replication
Redundancy
(Redundancy)

Introduction of a
redundant systems
which allows
detection or
masking of random
hardware failures
(not systematic
failures).

Replication Redundancy means introduction of a
redundant system of the same implementation.
The redundant systems maintain the same
functionality, use identical hardware, and run the
same software implementation. An example for
Replication Redundancy is the RAID1 data storage
technology.

Repair (Recovery) Bring a failed
system back to a
state of full
functionality.

The full system functionality is manually or
automatically restored if a system failure occurs.

Degradation
(Recovery)

Degradation brings
a system with an
error into a state
with reduced
functionality in
which the system
still maintains the
core safety
functions.

Degradation systems define a core safety
functionality. The systems maintain this safety
functionality and additional non-critical functions.
In case of an error, the system falls back into a
degraded mode in which it just maintains the core
safety functionality. An example where the
Degradation tactic is often applied are automation
systems. These systems control safety-critical
processes and often visualize these processes in a
GUI. If the system has too few resources (e.g.
processing time), then the system stops the GUI
service and just focuses on its core functionality
to control the safety-critical processes.

A

154 A Appendix: Safety tactics

Tactic Aim Description

Voting (Masking) Mask the failure of
a subsystem so that
the failure does not
propagate to other
systems.

Voting makes a failure transparent. The tactic
does not try to repair the failure, but it hides the
failure through choosing a correct result from
redundant subsystems. It decides for the majority
of the output values.

Override (Masking) Mask the failure of
a subsystem so that
the failure does not
propagate to other
systems.

The Override tactic forces the system output to a
safe state. For example, if we have a system which
is in a safe state when shut off, we can apply the
Override tactic to shut off the system if we have
doubt about the system output (e.g. if an output
validity check fails). In this scenario overriding
the system output with a safe output value
decreases the availability of the system. Another
form of the Override tactic, which does not
decrease the availability and is closely related to
the Voting tactic, chooses the output of redundant
subsystems by preferring one subsystem or one
output state over another.

Barrier Protect a subsystem
from influences or
influencing other
subsystems.

The Barrier tactic provides a mechanism to
protect from unintentional influences between
subsystems. To apply Barrier, the interfaces
between subsystems have to be analyzed and
specified. These interfaces are controlled at
runtime by a trustworthy component (the Barrier)
which often is an already existing reliable
mechanism. An example for a Barrier is a memory
protection unit which controls and restricts the
communication between different tasks.

155

Bibliography

[1] Robert N. Charette. How software is eating the car. https://spectrum.ieee.org/
software-eating-car, 2021. Accessed: 06 September 2022.

[2] Ralph W. Carp, Harold E. Weissler, and Paul R. Kudlaty. Hybrid electronic control unit
for fuel management systems, 1980. US Patent 4,212,066.

[3] Joe Barkai. The Fallacy Behind Counting Lines of Code. http://joebarkai.com/
fallacy-behind-counting-lines-of-code/, 2015. Accessed: 06 September 2022.

[4] Erwin Schoitsch. Autonomous vehicles and automated driving status, perspectives
and societal impact. In Proceedings of the Information Technology, Society and Economy
Strategic Cross-Influences - 24th Interdisciplinary Information Management Talks, pages
405–424, 2016.

[5] ISO. ISO 26262:2018 – Road vehicles – Functional safety. Standard, International
Organization for Standardization, 2018. https://www.iso.org/standard/68383.
html.

[6] ISO. ISO/PAS 21448:2019 – Road vehicles – Safety of the intended functionality.
Standard, International Organization for Standardization, 2019. https://www.iso.
org/standard/70939.html.

[7] Krzysztof Czarnecki. Automated driving system (ADS) high–level quality requirements
analysis–driving behavior safety. Technical report, University of Waterloo, Canada,
2018. https://doi.org/10.13140/RG.2.2.23280.76800.

[8] Commission of the European Communities. Commission recommendation of
22 December 2006 on safe and efficient in-vehicle information and communica-
tion systems: update of the European statement of principles on human ma-
chine interface. Technical report, The Commission of the European Communi-
ties, 2006. https://op.europa.eu/en/publication-detail/-/publication/
00e7ffec-49e3-492b-8e8e-8839cae806bc/.

[9] SAE. SAE J3061_202112 – Cybersecurity Guidebook for Cyber-Physical Vehicle
Systems. Standard, Society of Automotive Engineers, 2021. https://www.sae.org/
standards/content/j3061_202112/.

https://spectrum.ieee.org/software-eating-car
https://spectrum.ieee.org/software-eating-car
http://joebarkai.com/fallacy-behind-counting-lines-of-code/
http://joebarkai.com/fallacy-behind-counting-lines-of-code/
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/70939.html
https://www.iso.org/standard/70939.html
https://doi.org/10.13140/RG.2.2.23280.76800
https://op.europa.eu/en/publication-detail/-/publication/00e7ffec-49e3-492b-8e8e-8839cae806bc/
https://op.europa.eu/en/publication-detail/-/publication/00e7ffec-49e3-492b-8e8e-8839cae806bc/
https://www.sae.org/standards/content/j3061_202112/
https://www.sae.org/standards/content/j3061_202112/

156 Bibliography

[10] SAE. ISO/SAE 21434:2021 Road vehicles – Cybersecurity engineering. Standard,
Society of Automotive Engineers & International Organization for Standardization,
2021. https://www.iso.org/standard/70918.html.

[11] Apollo Auto. Apollo automated driving platform. https://github.com/
ApolloAuto/apollo. Accessed: 06 September 2022.

[12] Sangeeth Kochanthara, Yanja Dajsuren, Loek Cleophas, and Mark van den Brand.
Painting the landscape of automotive software in GitHub. In Proceedings of the 2022
Mining Software Repositories Conference, pages 215–226, 2022.

[13] Zi Peng, Jinqiu Yang, Tse-Hsun Chen, and Lei Ma. A first look at the integration of
machine learning models in complex autonomous driving systems: A case study on
apollo. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 1240–1250,
2020.

[14] Sagar Behere and Martin Torngren. A functional architecture for autonomous driving.
In Proceedings of the First International Workshop on Automotive Software Architecture,
pages 3–10, 2015.

[15] Jinhan Kim, Jeongil Ju, Robert Feldt, and Shin Yoo. Reducing DNN labelling cost
using surprise adequacy: An industrial case study for autonomous driving. In Proceed-
ings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1466–1476, 2020.

[16] Automated Vehicle Safety Consortium (AVSC). AVSC best practice for describing
an operational design domain: Conceptual framework and lexicon. Technical report,
SAE Industry Technologies Consortia, 2020. https://www.sae.org/standards/
content/avsc00002202004/.

[17] Eric Thorn, Shawn C. Kimmel, Michelle Chaka, Booz Allen Hamilton, et al. A
framework for automated driving system testable cases and scenarios. Tech-
nical report, US DOT National Highway Traffic Safety, United States of Amer-
ica, 2018. https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/13882-
automateddrivingsystems_092618_v1a_tag.pdf.

[18] Sangeeth Kochanthara, Yanja Dajsuren, Loek Cleophas, and Mark van den Brand.
Replication package: Painting the landscape of automotive software in GitHub. https:
//doi.org/10.5281/zenodo.5885013, 2022. Accessed: 06 September 2022.

[19] Luiz Eduardo G. Martins and Tony Gorschek. Requirements engineering for safety-
critical systems: A systematic literature review. In Information and Software Technology,
volume 75, pages 71–89. Elsevier, 2016.

https://www.iso.org/standard/70918.html
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://www.sae.org/standards/content/avsc00002202004/
https://www.sae.org/standards/content/avsc00002202004/
https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
https://doi.org/10.5281/zenodo.5885013
https://doi.org/10.5281/zenodo.5885013

Bibliography 157

[20] Tarcísio Pereira, Deivson Albuquerque, Aêda Sousa, Fernanda M. R. Alencar, and
Jaelson Castro. Retrospective and Trends in Requirements Engineering for Embedded
Systems: A Systematic Literature Review. In Proceedings of the 20th Ibero-American
Conference on Software Engineering, pages 427–440, 2017.

[21] Jessyka Vilela, Jaelson Castro, Luiz Eduardo G. Martins, and Tony Gorschek. Integra-
tion between requirements engineering and safety analysis: A systematic literature
review. In Journal of Systems and Software, volume 125, pages 68–92. Elsevier, 2017.

[22] Darko Bozhinoski, Davide Di Ruscio, Ivano Malavolta, Patrizio Pelliccione, and Ivica
Crnkovic. Safety for mobile robotic systems: A systematic mapping study from a
software engineering perspective. In Journal of Systems and Software, volume 151,
pages 150–179. Elsevier, 2019.

[23] Stephan Baumgart and Joakim Froberg. Functional Safety in Product Lines - A
Systematic Mapping Study. In Proceedings of the 42nd Euromicro Conference on Software
Engineering and Advanced Applications, pages 313–322, 2016.

[24] Barbara Kitchenham and Stuart Charters. Guidelines for performing system-
atic literature reviews in software engineering. Technical report, Keele Univer-
sity, United Kingdom, 2007. https://www.elsevier.com/__data/promis_misc/
525444systematicreviewsguide.pdf.

[25] Paul Garner, Sally Hopewell, Jackie Chandler, Harriet MacLehose, Elie A. Akl, Joseph
Beyene, Stephanie Chang, Rachel Churchill, Karin Dearness, Gordon Guyatt, et al.
When and how to update systematic reviews: consensus and checklist. In British
Medical Journal, volume 354, pages 1–10. British Medical Journal Publishing Group,
2016.

[26] Mark Petticrew and Helen Roberts. Systematic reviews in the social sciences: A practical
guide. John Wiley & Sons, 2008.

[27] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for conducting
systematic mapping studies in software engineering: An update. In Information and
Software Technology, volume 64, pages 1–18. Elsevier, 2015.

[28] Saurabh Tiwari and Atul Gupta. A systematic literature review of use case specifi-
cations research. In Information and Software Technology, volume 67, pages 128–158.
Elsevier, 2015.

[29] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Requirements engi-
neering paper classification and evaluation criteria: a proposal and a discussion. In
Requirements engineering, volume 11, pages 102–107. Springer, 2006.

https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf

158 Bibliography

[30] Emilia Mendes, Claes Wohlin, Katia Felizardo, and Marcos Kalinowski. When to
update systematic literature reviews in software engineering. In Journal of Systems
and Software, volume 167, pages 1–24. Elsevier, 2020.

[31] Vahid Garousi and João M. Fernandes. Highly-cited papers in software engineering:
The top-100. In Information and Software Technology, volume 71, pages 108–128.
Elsevier, 2016.

[32] Lutz Bornmann. How are excellent (highly cited) papers defined in bibliometrics?
A quantitative analysis of the literature. In Research Evaluation, volume 23, pages
166–173. Oxford University Press, 2014.

[33] Claes Wohlin. Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, pages 1–10, 2014.

[34] Jacob Cohen. Weighted kappa: nominal scale agreement provision for scaled disagree-
ment or partial credit. In Psychological bulletin, volume 70, pages 213–220. American
Psychological Association, 1968.

[35] Jacob Cohen. A coefficient of agreement for nominal scales. In Educational and
psychological measurement, volume 20, pages 37–46. Sage Publications, 1960.

[36] J. Richard Landis and Gary G. Koch. The measurement of observer agreement for
categorical data. In Biometrics, volume 33, pages 159–174. JSTOR, 1977.

[37] Nancy G. Leveson and John P. Thomas. STPA handbook. , 2018. https://psas.
scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf.

[38] IEC. IEC 61508:2010 – Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems. Standard, International Electrotechnical Commission,
2010. https://webstore.iec.ch/publication/5515.

[39] Stephan Baumgart, Joakim Fröberg, and Sasikumar Punnekkat. Analyzing hazards in
system-of-systems: Described in a quarry site automation context. In Proceedings of
the 2017 Annual IEEE International Systems Conference, pages 1–8, 2017.

[40] Manfred Broy, Ingolf H. Kruger, Alexander Pretschner, and Christian Salzmann.
Engineering automotive software. In Proceedings of the IEEE, volume 95, pages 356–373.
IEEE, 2007.

[41] Emil Gracic, Fredrik Svensson, Jesko Ehrich, Oliver Beck, and Maximilian Jansen.
Concept for Safety-Related Development of Deep Neural Networks in the Automo-
tive. In Proceedings of the Fourth International Conference on Multimedia Computing,
Networking and Applications, pages 10–15, 2020.

https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://webstore.iec.ch/publication/5515

Bibliography 159

[42] Wen-Shing Lee, Doris L. Grosh, Frank A. Tillman, and ChangH. Lie. Fault tree analysis,
methods, and applications a review. In IEEE transactions on reliability, volume 34, pages
194–203. IEEE, 1985.

[43] Diomidis H. Stamatis. Failure mode and effect analysis: FMEA from theory to execution.
Quality Press, 2003.

[44] Trevor A. Kletz. HAZOP–past and future. In Reliability Engineering & System Safety,
volume 55, pages 263–266. Elsevier, 1997.

[45] Terje Aven and Bjørnar Heide. Reliability and validity of risk analysis. In Reliability
Engineering & System Safety, volume 94, pages 1862–1868. Elsevier, 2009.

[46] B.D. Johnston. A structured procedure for dependent failure analysis (DFA). In
Reliability Engineering, volume 19, pages 125–136. Elsevier, 1987.

[47] W. M. Goble and A.C. Brombacher. Using a failure modes, effects and diagnostic
analysis (FMEDA) to measure diagnostic coverage in programmable electronic systems.
In Reliability engineering & system safety, volume 66, pages 145–148. Elsevier, 1999.

[48] Anjali Joshi, Mats P.E. Heimdahl, Steven P. Miller, and Mike W. Whalen. Model-based
safety analysis. Technical report, University of Minnesota, United States of America,
2006. https://shemesh.larc.nasa.gov/fm/Model-BasedSafetyAnalysis.pdf.

[49] Marc Wilikens, Marcelo Masera, and Davide Vallero. Integration of safety require-
ments in the initial phases of the project lifecycle of hardware/software systems. In
Safe Comp 97, pages 83–97. Springer, 1997.

[50] Amer Saeed, Rogério de Lemos, and Tom Anderson. On the safety analysis of require-
ments specifications for safety-critical software. In ISA Transactions, volume 34, pages
283–295. Elsevier, 1995.

[51] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. A survey of
accelerator architectures for deep neural networks. In Engineering, volume 6, pages
264–274. Elsevier, 2020.

[52] Michael J. Maloni, Craig R. Carter, and Amelia S. Carr. Assessing logistics maturation
through author concentration. In International Journal of Physical Distribution &
Logistics Management, volume 39, pages 250–268. Emerald Group Publishing Limited,
2009.

[53] Myun J. Cheon, Varun Groven, and Rajiv Sabherwal. The evolution of empirical
research in IS: A study in IS maturity. In Information & Management, volume 24, pages
107–119. Elsevier, 1993.

https://shemesh.larc.nasa.gov/fm/Model-BasedSafetyAnalysis.pdf

160 Bibliography

[54] Andy Neely. The evolution of performance measurement research: developments in
the last decade and a research agenda for the next. In International journal of operations
& production management, volume 25, pages 1264–1277. Emerald Group Publishing
Limited, 2005.

[55] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in software engineering. Springer Science & Business
Media, 2012.

[56] Paulo Gabriel Gadelha Queiroz and Rosana Teresinha Vaccare Braga. Development
of critical embedded systems using model-driven and product lines techniques: A
systematic review. In Proceedings of the Eighth Brazilian Symposium on Software
Components, Architectures and Reuse, pages 74–83, 2014.

[57] Sunil Nair, Jose Luis De La Vara, Mehrdad Sabetzadeh, and Lionel Briand. An ex-
tended systematic literature review on provision of evidence for safety certification. In
Information and Software Technology, volume 56, pages 689–717. Elsevier, 2014.

[58] Rajwinder Kaur Panesar-Walawege, Mehrdad Sabetzadeh, Lionel Briand, and Thierry
Coq. Characterizing the chain of evidence for software safety cases: A conceptual
model based on the IEC 61508 standard. In Proceedings of the Third International
Conference on Software Testing, Verification and Validation, pages 335–344, 2010.

[59] Jose Luis de la Vara and Rajwinder Kaur Panesar-Walawege. Safetymet: A metamodel
for safety standards. In Proceedings of the ACM/IEEE 16th International Conference on
Model Driven Engineering Languages and Systems, pages 69–86, 2013.

[60] Jose Luis De la Vara, Alejandra Ruiz, Katrina Attwood, Huáscar Espinoza,
Rajwinder Kaur Panesar-Walawege, Ángel López, Idoya del Río, and Tim Kelly. Model-
based specification of safety compliance needs for critical systems: A holistic generic
metamodel. In Information and software technology, volume 72, pages 16–30. Elsevier,
2016.

[61] Victor Bolbot, Gerasimos Theotokatos, Luminita Manuela Bujorianu, Evangelos
Boulougouris, and Dracos Vassalos. Vulnerabilities and safety assurance methods
in Cyber-Physical Systems: A comprehensive review. In Reliability Engineering &
System Safety, volume 182, pages 179–193. Elsevier, 2019.

[62] Johann Thor Mogensen Ingibergsson, Ulrik Pagh Schultz, and Marco Kuhrmann. On
the use of safety certification practices in autonomous field robot software development:
A systematic mapping study. In Proceedings of the 16th International Conference on
Product-Focused Software Process Improvement, pages 335–352, 2015.

Bibliography 161

[63] S. Manoj Kannan, Yanja Dajsuren, Yaping Luo, and Ion Barosan. Analysis of ISO 26262
Compliant Techniques for the Automotive Domain. In Proceedings of the International
Workshop on Modelling in Automotive Software Engineering co-located with ACM/IEEE
18th International Conference on Model Driven Engineering Languages and Systems,
pages 1–10, 2015.

[64] Mukul Anil Gosavi, Benjamin B. Rhoades, and James M. Conrad. Application of
functional safety in autonomous vehicles using ISO 26262 standard: A survey. In
Proceedings of the 2018 SoutheastCon, pages 1–6, 2018.

[65] Youcef Gheraibia, Sohag Kabir, Khaoula Djafri, and Habiba Krimou. An Overview of
the Approaches for Automotive Safety Integrity Levels Allocation. In Journal of Failure
Analysis and Prevention, volume 18, pages 707–720. Springer Science and Business
Media LLC, 2018.

[66] Markus Borg, Cristofer Englund, Krzysztof Wnuk, Boris Duran, Christoffer
Levandowski, Shenjian Gao, Yanwen Tan, Henrik Kaijser, Henrik Lönn, and Jonas
Törnqvist. Safely entering the deep: A review of verification and validation for ma-
chine learning and a challenge elicitation in the automotive industry. In Journal of
Automotive Software Engineering, volume 1, pages 1–19. Springer Nature, 2019.

[67] Jakob Axelsson. Safety in vehicle platooning: A systematic literature review. In IEEE
Transactions on Intelligent Transportation Systems, volume 18, pages 1033–1045. IEEE,
2016.

[68] Guoqi Xie, Yanwen Li, Yunbo Han, Yong Xie, Gang Zeng, and Renfa Li. Recent
Advances and Future Trends for Automotive Functional Safety Design Methodologies.
In IEEE Transactions on Industrial Informatics, volume 16, pages 5629–5642. IEEE, 2020.

[69] Alessandra Nardi, Samir Camdzic, Antonino Armato, and Francesco Lertora. Design-
For-Safety for Automotive IC Design: Challenges and Opportunities. In Proceedings of
the Custom Integrated Circuits Conference, pages 1–8, 2019.

[70] Sangeeth Kochanthara, Niels Rood, Loek Cleophas, Yanja Dajsuren, and Mark van den
Brand. Semi-automatic architectural suggestions for the functional safety of coopera-
tive driving systems. In Companion proceedings of the 2020 IEEE International Conference
on Software Architecture, pages 55–58, 2020.

[71] Sangeeth Kochanthara, Niels Rood, Arash Khabbaz Saberi, Loek Cleophas, Yanja
Dajsuren, and Mark van den Brand. A functional safety assessment method for
cooperative automotive architecture. In Journal of Systems and Software, volume 179,
pages 1–14. Elsevier, 2021.

162 Bibliography

[72] Sangeeth Kochanthara, Niels Rood, Arash Khabbaz Saberi, Loek Cleophas, Yanja
Dajsuren, and Mark van den Brand. Summary: A functional safety assessment method
for cooperative automotive architecture. In Companion proceedings of the 15th European
Conference on Software Architecture, pages 1–5, 2021.

[73] Pablo Alvarez, Iosu Lerga, Adrian Serrano, and Javier Faulin. Considering congestion
costs and driver behaviour into route optimisation algorithms in smart cities. In
Proceedings of the 14th International Conference on Smart Cities, pages 39–50, 2017.

[74] Todd Trego and Dan Murray. An analysis of the operational costs of trucking. In
Proceedings of the Transportation Research Board 2010 Annual Meetings, pages 20–22,
2010.

[75] Jeroen Ploeg. Analysis and design of controllers for cooperative and automated
driving. PhD thesis, Eindhoven University of Technology, The Netherlands,
2014. https://research.tue.nl/en/publications/analysis-and-design-of-
controllers-for-cooperative-and-automated-.

[76] Kuo-Yun Liang, Jonas Mårtensson, and Karl H Johansson. Heavy-duty vehicle platoon
formation for fuel efficiency. In IEEE Transactions on Intelligent Transportation Systems,
volume 17, pages 1051–1061. IEEE, 2015.

[77] Patrizio Pelliccione, Eric Knauss, S Magnus Ågren, Rogardt Heldal, Carl Bergenhem,
Alexey Vinel, and Oliver Brunnegård. Beyond connected cars: A systems of systems
perspective. In Science of Computer Programming, volume 191, pages 1–21. Elsevier,
2020.

[78] Yanja Dajsuren and Guido Loupias. Safety analysis method for cooperative driving sys-
tems. In Proceedings of the 2019 IEEE International Conference on Software Architecture,
pages 181–190, 2019.

[79] Piergiuseppe Mallozzi, Patrizio Pelliccione, Alessia Knauss, Christian Berger, and
Nassar Mohammadiha. Autonomous vehicles: State of the art, future trends, and
challenges. In Automotive Systems and Software Engineering, pages 347–367. Springer,
2019.

[80] Josef Nilsson, Carl Bergenhem, Jan Jacobson, Rolf Johansson, and Jonny Vinter. Func-
tional safety for cooperative systems. Technical report, Society of Automotive Engi-
neers, 2013. https://www.sae.org/publications/technical-papers/content/
2013-01-0197/.

[81] Arash Khabbaz Saberi, Eric Barbier, Frank Benders, and Mark van den Brand. On
functional safety methods: A system of systems approach. In Proceedings of the 2018
Annual IEEE International Systems Conference, pages 1–6, 2018.

https://research.tue.nl/en/publications/analysis-and-design-of-controllers-for-cooperative-and-automated-
https://research.tue.nl/en/publications/analysis-and-design-of-controllers-for-cooperative-and-automated-
https://www.sae.org/publications/technical-papers/content/2013-01-0197/
https://www.sae.org/publications/technical-papers/content/2013-01-0197/

Bibliography 163

[82] Muhammad Ali Babar, Liming Zhu, and Ross Jeffery. A framework for classifying
and comparing software architecture evaluation methods. In Proceedings of the 2004
Australian Software Engineering Conference, pages 309–318, 2004.

[83] Liliana Dobrica and Eila Niemela. A survey on software architecture analysis methods.
In IEEE Transactions on software Engineering, volume 28, pages 638–653. IEEE, 2002.

[84] Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff, Howard Lipson, and Jeromy
Carriere. The architecture tradeoff analysis method. In Proceedings of the Fourth IEEE
International Conference on Engineering of Complex Computer Systems, pages 68–78,
1998.

[85] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. Addison-
Wesley Professional, 2012.

[86] PerOlof Bengtsson and Jan Bosch. Scenario-based software architecture reengineering.
In Proceedings of the Fifth International Conference on Software Reuse, pages 308–317,
1998.

[87] Christopher Stoermer, Felix Bachmann, and Chris Verhoef. SACAM: the software
architecture comparison analysis method. Technical report, CarnegieMellon University,
United States of America, 2003. https://resources.sei.cmu.edu/asset_files/
TechnicalReport/2003_005_001_14219.pdf.

[88] Klaus Bergner, Andreas Rausch, Marc Sihling, and Thomas Ternité. DoSAM–Domain-
specific Software Architecture comparison Model. In Quality of Software Architectures
and Software Quality, pages 4–20. Springer, 2005.

[89] Neil Harrison and Paris Avgeriou. Pattern-based architecture reviews. In IEEE
Software, volume 28, pages 66–71. IEEE, 2010.

[90] Jan Bosch and Peter Molin. Software architecture design: evaluation and transfor-
mation. In Proceedings of the 1999 IEEE Conference and Workshop on Engineering of
Computer-Based Systems, pages 4–10, 1999.

[91] WeihangWu and Tim Kelly. Safety tactics for software architecture design. In Proceed-
ings of the 28th Annual International Computer Software and Applications Conference,
pages 368–375, 2004.

[92] Christopher Preschern, Nermin Kajtazovic, and Christian Kreiner. Building a safety
architecture pattern system. In Proceedings of the 18th European Conference on Pattern
Languages of Program, pages 1–55, 2015.

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2003_005_001_14219.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2003_005_001_14219.pdf

164 Bibliography

[93] Manfred Broy, Mario Gleirscher, Peter Kluge, Wolfgang Krenzer, StefanoMerenda, and
Doris Wild. Automotive architecture framework: Towards a holistic and standardised
system architecture description. Technical report, Technical University of Munich,
Germany, 2009. https://mediatum.ub.tum.de/doc/1094456/file.pdf.

[94] Alessio Bucaioni and Patrizio Pelliccione. Technical architectures for automotive sys-
tems. In Proceedings of the 2020 IEEE International Conference on Software Architecture,
pages 46–57, 2020.

[95] Yanjindulam Dajsuren. On the design of an architecture framework and quality evalua-
tion for automotive software systems. PhD thesis, Eindhoven University of Technology,
The Netherlands, 2015. https://pure.tue.nl/ws/files/15934981/20160307_
Dajsuren.pdf.

[96] Miroslaw Staron. Automotive software architectures. Springer, 2021.

[97] Yanja Dajsuren and Mark van den Brand, editors. Automotive Systems and Software
Engineering: State of the Art and Future Trends. Springer International Publishing, 2019.

[98] Qi Van Eikema Hommes. Review and assessment of the ISO 26262 draft road vehicle-
functional safety. Technical report, Society of Automotive Engineers, 2012. https:
//www.sae.org/publications/technical-papers/content/2012-01-0025/.

[99] Christopher Preschern, Nermin Kajtazovic, Christian Kreiner, et al. Catalog of safety
tactics in the light of the IEC 61508 safety lifecycle. In Proceedings of the VikingPLoP
2013 Conference, pages 79–95, 2013.

[100] Andreas Riel, Christian Kreiner, Richard Messnarz, and Alexander Much. An ar-
chitectural approach to the integration of safety and security requirements in smart
products and systems design. In CIRP Annals, volume 67, pages 173–176. Elsevier, 2018.

[101] ISO. ISO 26262: 2011 – Road vehicles — Functional safety. Standard, International
Organization for Standardization, 2011. https://www.iso.org/standard/43464.
html.

[102] Yuting Fu. Fault injection mechanisms for validating dependability of automo-
tive systems. Master’s thesis, Eindhoven University of Technology, The Nether-
lands, 2018. https://research.tue.nl/en/studentTheses/fault-injection-
mechanisms-for-validating-dependability-of-automo.

[103] Sangeeth Kochanthara, Niels Rood, Arash Khabbaz Saberi, Loek Cleophas, Yanja
Dajsuren, and Mark van den Brand. A case study on ISO 26262 extension for connected
driving. https://github.com/SangeethNila/casestudy_ISO26262_extension_
connected_driving, 2021. Accessed: 06 September 2022.

https://mediatum.ub.tum.de/doc/1094456/file.pdf
https://pure.tue.nl/ws/files/15934981/20160307_Dajsuren.pdf
https://pure.tue.nl/ws/files/15934981/20160307_Dajsuren.pdf
https://www.sae.org/publications/technical-papers/content/2012-01-0025/
https://www.sae.org/publications/technical-papers/content/2012-01-0025/
https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html
https://research.tue.nl/en/studentTheses/fault-injection-mechanisms-for-validating-dependability-of-automo
https://research.tue.nl/en/studentTheses/fault-injection-mechanisms-for-validating-dependability-of-automo
https://github.com/SangeethNila/casestudy_ISO26262_extension_connected_driving
https://github.com/SangeethNila/casestudy_ISO26262_extension_connected_driving

Bibliography 165

[104] Frans Hoogeboom. Safety of automated vehicles: design, implementation, and
analysis. PhD thesis, Eindhoven University of Technology, The Netherlands,
2020. https://research.tue.nl/nl/publications/safety-of-automated-
vehicles-design-implementation-and-analysis.

[105] Alex Serban, Erik Poll, and Joost Visser. A standard driven software architecture for
fully autonomous vehicles. In Companion proceedings of the 2018 IEEE International
Conference on Software Architecture, pages 120–127, 2018.

[106] Shahriar Hasan. Fail-Operational and Fail-Safe Vehicle Platooning in the Presence of
Transient Communication Errors. PhD thesis, Mälardalen University, Sweden, 2020.
https://www.diva-portal.org/smash/get/diva2:1646357/FULLTEXT01.pdf.

[107] Oliver Sawade, Matthias Schulze, and Ilja Radusch. Robust communication for
cooperative driving maneuvers. In IEEE Intelligent Transportation Systems Magazine,
volume 10, pages 159–169. IEEE, 2018.

[108] PerOlof Bengtsson, Nico Lassing, Jan Bosch, and Hans van Vliet. Architecture-level
modifiability analysis (alma). In Journal of Systems and Software, volume 69, pages
129–147. Elsevier, 2004.

[109] Banani Roy and T.C. Nicholas Graham. Methods for evaluating software architecture:
A survey. Technical report, Queen’s University at Kingston, Canada, 2008. https:
//research.cs.queensu.ca/TechReports/Reports/2008-545.pdf.

[110] Neil B. Harrison and Paris Avgeriou. Using pattern-based architecture reviews
to detect quality attribute issues–An exploratory study. In Transactions on Pattern
Languages of Programming III, pages 168–194. Springer, 2013.

[111] Mario Barbacci, Paul C. Clements, Anthony Lattanze, Linda Northrop, and William
Wood. Using the Architecture Tradeoff Analysis Method (ATAM) to evaluate the soft-
ware architecture for a product line of avionics systems: A case study. Technical report,
Carnegie Mellon University, United States of America, 2003. https://resources.
sei.cmu.edu/asset_files/TechnicalNote/2003_004_001_14150.pdf.

[112] Kristian Beckers, Isabelle Côté, Thomas Frese, Denis Hatebur, and Maritta Heisel.
Systematic derivation of functional safety requirements for automotive systems. In
Proceedings of the 33rd International Conference on Computer Safety, Reliability, and
Security, pages 65–80, 2014.

[113] Joakim Oscarsson, Max Stolz-Sundnes, Naveen Mohan, and Viacheslav Izosimov.
Applying systems-theoretic process analysis in the context of cooperative driving. In
Proceedings of the 11th IEEE Symposium on Industrial Embedded Systems, pages 1–5,
2016.

https://research.tue.nl/nl/publications/safety-of-automated-vehicles-design-implementation-and-analysis
https://research.tue.nl/nl/publications/safety-of-automated-vehicles-design-implementation-and-analysis
https://www.diva-portal.org/smash/get/diva2:1646357/FULLTEXT01.pdf
https://research.cs.queensu.ca/TechReports/Reports/2008-545.pdf
https://research.cs.queensu.ca/TechReports/Reports/2008-545.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalNote/2003_004_001_14150.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalNote/2003_004_001_14150.pdf

166 Bibliography

[114] Max Stoltz-Sundnes. STPA–Inspired safety analysis of driver-vehicle interaction
in cooperative driving automation. Master’s thesis, KTH Royal Institute of Tech-
nology, Sweden, 2019. http://kth.diva-portal.org/smash/record.jsf?pid=
diva2%3A1371216&dswid=-9346.

[115] P. Cuenot, C. Ainhauser, N. Adler, S. Otten, and F. Meurville. Applying model based
techniques for early safety evaluation of an automotive architecture in compliance
with the ISO 26262 standard. In Proceedings of the 2014 Embedded Real Time Software
and Systems Congress, pages 1–11, 2014.

[116] Helmut Martin, Z. Ma, Ch Schmittner, Bernhard Winkler, Martin Krammer, Daniel
Schneider, Tiago Amorim, Georg Macher, and Ch Kreiner. Combined automotive safety
and security pattern engineering approach. In Reliability Engineering & System Safety,
volume 198, page 106773. Elsevier, 2020.

[117] Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina. Guiding
assurance of architectural design patterns for critical applications. In Journal of Systems
Architecture, volume 110, pages 1–11. Elsevier, 2020.

[118] Matthias Althoff and John M Dolan. Online verification of automated road vehicles
using reachability analysis. In IEEE Transactions on Robotics, volume 30, pages 903–918.
IEEE, 2014.

[119] Zeeshan E. Bhatti, Partha S. Roop, and Roopak Sinha. Unified functional safety assess-
ment of industrial automation systems. In IEEE Transactions on Industrial Informatics,
volume 13, pages 17–26. IEEE, 2016.

[120] Piergiuseppe Mallozzi, Massimo Sciancalepore, and Patrizio Pelliccione. Formal
verification of the on-the-fly vehicle platooning protocol. In Proceedings of the 8th
International Workshop on Software Engineering for Resilient Systems, pages 62–75, 2016.

[121] Andrzej Zalewski, Klara Borowa, and Andrzej Ratkowski. On cognitive biases
in architecture decision making. In Proceedings of the 11th European Conference on
Software Architecture, pages 123–137, 2017.

[122] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey
of autonomous driving: Common practices and emerging technologies. In IEEE access,
volume 8, pages 58443–58469. IEEE, 2020.

[123] Vard Antinyan. Revealing the complexity of automotive software. In Proceed-
ings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1525–1528, 2020.

http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1371216&dswid=-9346
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1371216&dswid=-9346

Bibliography 167

[124] Miltos Kyriakidis, Riender Happee, and Joost C.F. de Winter. Public opinion on
automated driving: Results of an international questionnaire among 5000 respondents.
In Transportation research part F: traffic psychology and behaviour, volume 32, pages
127–140. Elsevier, 2015.

[125] Stephanie Abrecht, Lydia Gauerhof, Christoph Gladisch, Konrad Groh, Christian
Heinzemann, and Matthias Woehrle. Testing deep learning-based visual perception for
automated driving. In ACM Transactions on Cyber-Physical Systems, volume 5, pages
1–28. ACM, 2021.

[126] Vincenzo Riccio and Paolo Tonella. Model-based exploration of the frontier of
behaviours for deep learning system testing. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 876–888, 2020.

[127] Alessio Gambi, Tri Huynh, and Gordon Fraser. Generating effective test cases for
self-driving cars from police reports. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 257–267, 2019.

[128] Alex Serban, Erik Poll, and Joost Visser. Adversarial examples on object recognition:
A comprehensive survey. In ACM Computing Surveys, volume 53, pages 1–38. ACM,
2020.

[129] Dutch Ministry of Infrastructure and the Environment. Road traffic signs
and regulations in the Netherlands. https://www.universiteitleiden.nl/
binaries/content/assets/customsites/study-abroad-exchange-students/
road_traffic_signs_and_regulations_jan_2013_uk.pdf, 2013. Accessed: 06
September 2022.

[130] Sangeeth Kochanthara, Tajinder Singh, Alexandru Forrai, and Loek Cleophas. Repli-
cation package: Safety of Perception Systems for Automated Driving: A Case Study on
Apollo. https://doi.org/10.5281/zenodo.6532255, 2022. Accessed: 06 Septem-
ber 2022.

[131] Guowei Wan, Xiaolong Yang, Renlan Cai, Hao Li, Yao Zhou, Hao Wang, and Shiyu
Song. Robust and precise vehicle localization based on multi-sensor fusion in diverse
city scenes. In Proceedings of the 2018 IEEE international conference on robotics and
automation, pages 4670–4677, 2018.

[132] Matthew Schwall, Tom Daniel, Trent Victor, Francesca Favaro, and Henning Hohn-
hold. Waymo public road safety performance data. arXiv preprint arXiv:2011.00038,
2020.

https://www.universiteitleiden.nl/binaries/content/assets/customsites/study-abroad-exchange-students/road_traffic_signs_and_regulations_jan_2013_uk.pdf
https://www.universiteitleiden.nl/binaries/content/assets/customsites/study-abroad-exchange-students/road_traffic_signs_and_regulations_jan_2013_uk.pdf
https://www.universiteitleiden.nl/binaries/content/assets/customsites/study-abroad-exchange-students/road_traffic_signs_and_regulations_jan_2013_uk.pdf
https://doi.org/10.5281/zenodo.6532255

168 Bibliography

[133] Institute for Road Safety Research (SWOV). Road design – which road cate-
gories are distinguished in the Netherlands? https://www.swov.nl/en/facts-
figures/fact/road-design-which-road-categories-are-distinguished-
netherlands. Accessed: 06 September 2022.

[134] Gerrit Bagschik, Andreas Reschka, Torben Stolte, and Markus Maurer. Identification
of potential hazardous events for an unmanned protective vehicle. In Proceedings of
the 2016 IEEE Intelligent Vehicles Symposium, pages 691–697, 2016.

[135] Christopher Becker, John C. Brewer, Larry Yount, et al. Safety of the intended
functionality of lane-centering and lane-changing maneuvers of a generic level 3
highway chauffeur system. Technical report, US DOT National Highway Traffic Safety,
United States of America, 2020. https://rosap.ntl.bts.gov/view/dot/53628.

[136] Mohamed Aladem, Stanley Baek, and Samir A. Rawashdeh. Evaluation of image
enhancement techniques for vision-based navigation under low illumination. In Journal
of Robotics, volume 2019, pages 1–16. Hindawi, 2019.

[137] Shih-Chia Huang, Trung-Hieu Le, and Da-Wei Jaw. Dsnet: Joint semantic learning
for object detection in inclement weather conditions. In IEEE transactions on pattern
analysis and machine intelligence, volume 43, pages 2623–2633. IEEE, 2020.

[138] Vishwanath A. Sindagi, Poojan Oza, Rajeev Yasarla, and Vishal M Patel. Prior-based
domain adaptive object detection for hazy and rainy conditions. In Proceedings of the
16TH European Conference on Computer Vision, pages 763–780, 2020.

[139] Georg Volk, Stefan Müller, Alexander von Bernuth, Dennis Hospach, and Oliver
Bringmann. Towards robust CNN-based object detection through augmentation with
synthetic rain variations. In Proceedings of the 2019 IEEE Intelligent Transportation
Systems Conference, pages 285–292, 2019.

[140] Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Evgenia Rusak, Oliver Bring-
mann, Alexander S. Ecker, Matthias Bethge, and Wieland Brendel. Benchmarking
robustness in object detection: Autonomous driving when winter is coming. arXiv
preprint arXiv:1907.07484, 2019.

[141] Keisuke Yoneda, Naoki Suganuma, Ryo Yanase, andMohammad Aldibaja. Automated
driving recognition technologies for adverse weather conditions. In IATSS research,
volume 43, pages 253–262. Elsevier, 2019.

[142] Alexander Carballo, Jacob Lambert, Abraham Monrroy, David Wong, Patiphon
Narksri, Yuki Kitsukawa, Eijiro Takeuchi, Shinpei Kato, and Kazuya Takeda. Libre:
The multiple 3D LiDAR dataset. In Proceedings of the 2020 IEEE Intelligent Vehicles
Symposium, pages 1094–1101, 2020.

https://www.swov.nl/en/facts-figures/fact/road-design-which-road-categories-are-distinguished-netherlands
https://www.swov.nl/en/facts-figures/fact/road-design-which-road-categories-are-distinguished-netherlands
https://www.swov.nl/en/facts-figures/fact/road-design-which-road-categories-are-distinguished-netherlands
https://rosap.ntl.bts.gov/view/dot/53628

Bibliography 169

[143] Mario Bijelic, Tobias Gruber, and Werner Ritter. A benchmark for LiDAR sensors
in fog: Is detection breaking down? In 2018 IEEE Intelligent Vehicles Symposium (IV),
pages 760–767. IEEE, 2018.

[144] Li Tang, Yunpeng Shi, Qing He, Adel W. Sadek, and Chunming Qiao. Performance
test of autonomous vehicle LiDAR sensors under different weather conditions. In
Transportation research record, volume 2674, pages 319–329. SAGE Publications, 2020.

[145] Ji-Il Park, Jihyuk Park, and Kyung-Soo Kim. Fast and accurate desnowing algorithm
for LiDAR point clouds. In IEEE Access, volume 8, pages 160202–160212. IEEE, 2020.

[146] Jonas Westman and Mattias Nyberg. A reference example on the specification of
safety requirements using ISO 26262. In Proceedings of the ERCIM/EWICS Workshop on
Dependable Embedded and Cyber-physical Systems of the 32nd International Conference
on Computer Safety, Reliability and Security, pages 1–8, 2013.

[147] Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. Adoption and
effects of software engineering best practices in machine learning. In Proceedings of
the 14th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, pages 1–12, 2020.

[148] Sina Mohseni, Mandar Pitale, Vasu Singh, and Zhangyang Wang. Practical solutions
for machine learning safety in autonomous vehicles. arXiv preprint arXiv:1912.09630,
2019.

[149] Hironori Washizaki, Hiromu Uchida, Foutse Khomh, and Yann-Gaël Guéhéneuc.
Studying software engineering patterns for designing machine learning systems. In
Proceedings of the 10th International Workshop on Empirical Software Engineering in
Practice, pages 49–495, 2019.

[150] Alex Serban and Joost Visser. Adapting software architectures to machine learning
challenges. In Proceedings of the 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering, pages 152–163, 2022.

[151] Denis Baylor, Kevin Haas, Konstantinos Katsiapis, Sammy Leong, Rose Liu, Clemens
Menwald, Hui Miao, Neoklis Polyzotis, Mitchell Trott, and Martin Zinkevich. Con-
tinuous training for production ML in the TensorFlow extended (TFX) platform. In
Proceedings of the 2019 USENIX Conference on Operational Machine Learning, pages
51–53, 2019.

[152] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D. Sculley. The ML test
score: A rubric forML production readiness and technical debt reduction. In Proceedings
of the 2017 IEEE International Conference on Big Data, pages 1123–1132, 2017.

170 Bibliography

[153] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich. Data
management challenges in production machine learning. In Proceedings of the 2017
ACM International Conference on Management of Data, pages 1723–1726, 2017.

[154] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Dennison.
Hidden technical debt in machine learning systems. In Proceedings of the 28th Interna-
tional Conference on Neural Information Processing Systems - Volume 2, page 2503–2511,
2015.

[155] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

[156] Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A. Ortega, Tom Everitt, Andrew
Lefrancq, Laurent Orseau, and Shane Legg. AI safety gridworlds. arXiv preprint
arXiv:1711.09883, 2017.

[157] Sanjit A. Seshia, Ankush Desai, Tommaso Dreossi, Daniel J. Fremont, Shromona
Ghosh, Edward Kim, Sumukh Shivakumar, Marcell Vazquez-Chanlatte, and Xiangyu
Yue. Formal specification for deep neural networks. In Proceedings of the 16th Interna-
tional Symposium on Automated Technology for Verification and Analysis, pages 20–34,
2018.

[158] Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks.
In Proceedings of the 31st International Conference on Neural Information Processing
Systems, page 4885–4894, 2017.

[159] Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an
integrated reject option. In Proceedings of the Thirty-sixth International Conference on
Machine Learning, pages 2151–2159, 2019.

[160] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q.Weinberger. On calibration of modern
neural networks. In Proceedings of the Thirty-fourth International Conference on Machine
Learning, pages 1321–1330, 2017.

[161] Sina Mohseni, Mandar Pitale, J.B.S. Yadawa, and Zhangyang Wang. Self-supervised
learning for generalizable out-of-distribution detection. In Proceedings of the Thirty-
Fourth AAAI Conference on Artificial Intelligence, pages 5216–5223, 2020.

[162] Izhak Golan and Ran El-Yaniv. Deep anomaly detection using geometric transfor-
mations. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, page 9781–9791, 2018.

Bibliography 171

[163] Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar Das, Bharat Kaul, and
Theodore L. Willke. Out-of-distribution detection using an ensemble of self supervised
leave-out classifiers. In Proceedings of the European Conference on Computer Vision,
pages 550–564, 2018.

[164] Xiaofeng Zhang, Zhangyang Wang, Dong Liu, Qifeng Lin, and Qing Ling. Deep
adversarial data augmentation for extremely low data regimes. In IEEE Transactions on
Circuits and Systems for Video Technology, volume 31, pages 15–28. IEEE, 2020.

[165] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by back-
propagation. In Proceedings of the 32nd International Conference on Machine Learning,
pages 1180–1189, 2015.

[166] Hyungtae Lee, Sungmin Eum, and Heesung Kwon. Me R-CNN: Multi-expert R-
CNN for object detection. In IEEE Transactions on Image Processing, volume 29, pages
1030–1044. IEEE, 2019.

[167] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wich-
mann, and Wieland Brendel. Imagenet-trained CNNs are biased towards texture;
increasing shape bias improves accuracy and robustness. In Proceedings of the Sixth
International Conference on Learning Representations, pages 1–22, 2018.

[168] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian
Weinberger. Multi-scale dense networks for resource efficient image classification. In
Proceedings of the Sixth International Conference on Learning Representations, pages
1–14, 2018.

[169] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve
model robustness and uncertainty. In Proceedings of the Thirty-sixth International
Conference on Machine Learning, pages 2712–2721, 2019.

[170] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. In Proceedings of the
31st International Conference on Neural Information Processing Systems, page 6405–6416,
2017.

[171] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In Proceedings of the 33rd International
Conference on Machine Learning, pages 1050–1059, 2016.

[172] Linda Northrop, Ipek Ozkaya, George Fairbanks, and Michael Keeling. Designing the
software systems of the future. In ACM SIGSOFT Software Engineering Notes, volume 43,
pages 28–30. ACM, 2019.

172 Bibliography

[173] Angela Horneman, Andrew Mellinger, and Ipek Ozkaya. AI Engineering: 11 founda-
tional practices. Technical report, CarnegieMellon University, United States of America,
2020. https://resources.sei.cmu.edu/asset_files/WhitePaper/2019_019_
001_634648.pdf.

[174] Adina Aniculaesei, Jörg Grieser, Andreas Rausch, Karina Rehfeldt, and Tim War-
necke. Toward a holistic software systems engineering approach for dependable
autonomous systems. In Proceedings of the IEEE/ACM 1st International Workshop on
Software Engineering for AI in Autonomous Systems, pages 23–30, 2018.

[175] Alex Serban, Erik Poll, and Joost Visser. Towards using probabilistic models to
design software systems with inherent uncertainty. In Proceedings of the 14th European
Conference on Software Architecture, pages 89–97, 2020.

[176] Alexandru Constantin Serban. Designing safety critical software systems to manage
inherent uncertainty. InCompanion proceedings of the 2019 IEEE International Conference
on Software Architecture, pages 246–249, 2019.

[177] Alessandro Biondi, Federico Nesti, Giorgiomaria Cicero, Daniel Casini, and Giorgio
Buttazzo. A safe, secure, and predictable software architecture for deep learning in
safety-critical systems. In IEEE Embedded Systems Letters, volume 12, pages 78–82.
IEEE, 2019.

[178] Eoin Woods. Software architecture in a changing world. In IEEE Software, volume 33,
pages 94–97. IEEE, 2016.

[179] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang,
Xiaogang Wang, and Xiaoou Tang. Residual attention network for image classification.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3156–3164, 2017.

[180] OpenMMLab. MMDetection3D: OpenMMLab next-generation platform for general
3D object detection. https://github.com/open-mmlab/mmdetection3d. Accessed:
06 September 2022.

[181] Waymo. Waymo safety report: On the road to fully self-driving.
https://assets.ctfassets.net/sv23gofxcuiz/1xAGjnH0kTxD2Vmvqsv3eS/
7da216660cbd9ee7b35eefcac1b28a2f/waymo-safety-report-2018.pdf, 2018.
Accessed: 06 September 2022.

[182] General Motors. Self-driving safety report. https://www.gm.com/content/dam/
company/docs/us/en/gmcom/gmsafetyreport.pdf, 2018. Accessed: 06 September
2022.

https://resources.sei.cmu.edu/asset_files/WhitePaper/2019_019_001_634648.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2019_019_001_634648.pdf
https://github.com/open-mmlab/mmdetection3d
https://assets.ctfassets.net/sv23gofxcuiz/1xAGjnH0kTxD2Vmvqsv3eS/7da216660cbd9ee7b35eefcac1b28a2f/waymo-safety-report-2018.pdf
https://assets.ctfassets.net/sv23gofxcuiz/1xAGjnH0kTxD2Vmvqsv3eS/7da216660cbd9ee7b35eefcac1b28a2f/waymo-safety-report-2018.pdf
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf

Bibliography 173

[183] Audi, Aptiv, Baidu, BMW, Continental, Daimler, FCA Group, Here Tech-
nologies, Infineon, Intel, and Volkswagon. Safety first for automated
driving. https://group.mercedes-benz.com/documents/innovation/other/
safety-first-for-automated-driving.pdf, 2019. Accessed: 06 September 2022.

[184] Paolo Panaroni, Giovanni Sartori, Fabrizio Fabbrini, Mario Fusani, and Giuseppe
Lami. Safety in automotive software: An overview of current practices. In Proceedings
of the 32nd Annual IEEE International Computer Software and Applications Conference,
pages 1053–1058, 2008.

[185] Donal Heffernan, Ciaran MacNamee, and Padraig Fogarty. Runtime verification
monitoring for automotive embedded systems using the ISO 26262 functional safety
standard as a guide for the definition of the monitored properties. In IET software,
volume 8, pages 193–203. IET, 2014.

[186] Sergio García, Daniel Strüber, Davide Brugali, Thorsten Berger, and Patrizio Pellic-
cione. Robotics software engineering: A perspective from the service robotics domain.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, pages 593–604,
2020.

[187] Capers Jones and Olivier Bonsignour. The economics of software quality. Addison-
Wesley Professional, 2011.

[188] Yuxiao Zhang, Alexander Carballo, Hanting Yang, and Kazuya Takeda. Autonomous
driving in adverse weather conditions: A survey. arXiv:2112.08936, 2021.

[189] Christof Ebert and John Favaro. Automotive software. In IEEE Software, volume 34,
pages 33–39. IEEE, 2017.

[190] Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan. The state
of the ML-universe: 10 years of artificial intelligence & machine learning software
development on GitHub. In Proceedings of the 17th International Conference on Mining
Software Repositories, pages 431–442, 2020.

[191] Junxiao Han, Shuiguang Deng, David Lo, Chen Zhi, Jianwei Yin, and Xin Xia. An
empirical study of the landscape of open source projects in Baidu, Alibaba, and Tencent.
In Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice, pages 298–307, 2021.

[192] Emerson Murphy-Hill, Thomas Zimmermann, and Nachiappan Nagappan. Cowboys,
ankle sprains, and keepers of quality: How is video game development different from
software development? In Proceedings of the 36th International Conference on Software
Engineering, pages 1–11, 2014.

https://group.mercedes-benz.com/documents/innovation/other/safety-first-for-automated-driving.pdf
https://group.mercedes-benz.com/documents/innovation/other/safety-first-for-automated-driving.pdf

174 Bibliography

[193] Mairieli Wessel, Bruno Mendes De Souza, Igor Steinmacher, Igor S. Wiese, Ivanilton
Polato, Ana Paula Chaves, and Marco A. Gerosa. The power of bots: Characterizing and
understanding bots in OSS projects. In Proceedings of the ACM on Human-Computer
Interaction, volume 2, pages 1–19. ACM, 2018.

[194] Georgios Gousios. The GHTorrent dataset and tool suite. In Proceedings of the 10th
Working Conference on Mining Software Repositories, pages 233–236, 2013.

[195] Alireza Haghighatkhah, Ahmad Banijamali, Olli-Pekka Pakanen, Markku Oivo, and
Pasi Kuvaja. Automotive software engineering: A systematic mapping study. In Journal
of Systems and Software, volume 128, pages 25–55. Elsevier, 2017.

[196] Dip Goswami, Martin Lukasiewycz, Reinhard Schneider, and Samarjit Chakraborty.
Time-triggered implementations of mixed-criticality automotive software. In Proceed-
ings of the 2012 Design, Automation & Test in Europe Conference & Exhibition, pages
1227–1232, 2012.

[197] Abram Hindle, Neil A. Ernst, Michael W. Godfrey, and John Mylopoulos. Automated
topic naming to support cross-project analysis of software maintenance activities.
In Proceedings of the 8th Working Conference on Mining Software Repositories, pages
163–172, 2011.

[198] Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimilano Di Penta, Denys
Poshynanyk, and Andrea De Lucia. How to effectively use topic models for software
engineering tasks? An approach based on genetic algorithms. In Proceedings of the
35th International Conference on Software Engineering, pages 522–531, 2013.

[199] Tarald O. Kvålseth. Note on Cohen’s kappa. In Psychological reports, volume 65,
pages 223–226. SAGE Publications, 1989.

[200] NASA. NASA Software Safety Standard (NASA-STD-8719.13B). Standard, Na-
tional Aeronautics and Space Administration, 2004. https://standards.nasa.gov/
standard/nasa/nasa-std-871913.

[201] Geir Kjetil Hanssen, Tor Stålhane, and Thor Myklebust. SafeScrum®-Agile Develop-
ment of Safety-Critical Software. Springer, 2018.

[202] John A. McDermid. Software engineer’s reference book. Elsevier, 2013.

[203] John C. Knight. Safety critical systems: challenges and directions. In Proceedings of
the 24th international conference on software engineering, pages 547–550, 2002.

https://standards.nasa.gov/standard/nasa/nasa-std-871913
https://standards.nasa.gov/standard/nasa/nasa-std-871913

Bibliography 175

[204] Sangeeth Kochanthara. REVERT: RuntimE VEerification for Real-Time sys-
tems. Master’s thesis, Indraprastha Institute of Information Technology Delhi,
India, 2016. https://repository.iiitd.edu.in/xmlui/bitstream/handle/
123456789/524/MT14055%20-%20Sangeeth%20K.pdf.

[205] Sangeeth Kochanthara, Geoffrey Nelissen, David Pereira, and Rahul Purandare.
REVERT: a monitor generation tool for real-time systems. In Proceedings of the 2016
IEEE Real-Time Systems Symposium, pages 365–365, 2016.

[206] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Communications of the ACM, volume 60, pages
84–90. ACM, 2017.

[207] Reinhard Bergmann, John Ludbrook, and Will P.J.M. Spooren. Different outcomes of
the Wilcoxon—Mann—Whitney test from different statistics packages. In The American
Statistician, volume 54, pages 72–77. Taylor & Francis, 2000.

[208] Harald Altinger, Franz Wotawa, and Markus Schurius. Testing methods used in
the automotive industry: Results from a survey. In Proceedings of the 2014 Workshop
on Joining Academia and Industry Contributions to Test Automation and Model-Based
Testing, pages 1–6, 2014.

[209] Daniel Kästner, Christoph Cullmann, Gernot Gebhard, Sebastian Hahn, Thomas
Karos, Laurent Mauborgne, Stephan Wilhelm, and Christian Ferdinand. Safety-critical
software development in C++. In Proceedings of the 39th International Conference on
Computer Safety, Reliability, and Security, pages 98–110, 2020.

[210] Gregorio Robles and Jesus M. Gonzalez-Barahona. Developer identification methods
for integrated data from various sources. In ACM SIGSOFT Software Engineering Notes,
volume 30, pages 1–5. ACM, 2005.

[211] Georgios Gousios and Diomidis Spinellis. Mining software engineering data from
GitHub. In Companion proceedings of the 39th IEEE/ACM International Conference on
Software Engineering, pages 501–502, 2017.

[212] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German,
and Daniela Damian. An in-depth study of the promises and perils of mining GitHub.
In Empirical Software Engineering, volume 21, pages 2035–2071. Springer, 2016.

[213] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curating
GitHub for engineered software projects. In Empirical Software Engineering, volume 22,
pages 3219–3253. Springer, 2017.

https://repository.iiitd.edu.in/xmlui/bitstream/handle/123456789/524/MT14055%20-%20Sangeeth%20K.pdf
https://repository.iiitd.edu.in/xmlui/bitstream/handle/123456789/524/MT14055%20-%20Sangeeth%20K.pdf

176 Bibliography

[214] Jorge Aranda and Gina Venolia. The secret life of bugs: Going past the errors
and omissions in software repositories. In Proceedings of the IEEE 31st International
Conference on Software Engineering, pages 298–308, 2009.

[215] Stefan Kugele, David Hettler, and Jan Peter. Data-centric communication and con-
tainerization for future automotive software architectures. In Proceedings of the 2018
IEEE International Conference on Software Architecture, pages 65–74, 2018.

[216] Fabio Falcini, Giuseppe Lami, and Alessandra Mitidieri Costanza. Deep learning in
automotive software. In IEEE Software, volume 34, pages 56–63. IEEE, 2017.

[217] Rick Salay and Krzysztof Czarnecki. Using machine learning safely in automotive
software: An assessment and adaption of software process requirements in ISO 26262.
arXiv preprint arXiv:1808.01614, 2018.

[218] Johannes Schlatow, Mischa Möstl, Rolf Ernst, Marcus Nolte, Inga Jatzkowski, and
Markus Maurer. Towards model-based integration of component-based automotive
software systems. In Proceedings of the 43rd Annual Conference of the IEEE Industrial
Electronics Society, pages 8425–8432, 2017.

[219] Philipp Obergfell, Stefan Kugele, and Eric Sax. Model-based resource analysis and
synthesis of service-oriented automotive software architectures. In Proceedings of the
2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages
and Systems, pages 128–138, 2019.

[220] Markus Zoppelt and Ramin Tavakoli Kolagari. SAM: a Security Abstraction Model
for automotive software systems. In Proceedings of the 2018 International Workshop on
Cyber Security for Intelligent Transportation Systems and 2018 International Workshop
on Interplay of Security, Safety and System/Software Architecture, pages 59–74. Springer,
2018.

[221] Ali Dorri, Marco Steger, Salil S. Kanhere, and Raja Jurdak. Blockchain: A distributed
solution to automotive security and privacy. In IEEE Communications Magazine,
volume 55, pages 119–125. IEEE, 2017.

[222] Stefan Kugele, Philipp Obergfell, Manfred Broy, Oliver Creighton, Matthias Traub,
and Wolfgang Hopfensitz. On service-orientation for automotive software. In Proceed-
ings of the 2017 IEEE International Conference on Software Architecture, pages 193–202,
2017.

[223] Dennis Kengo Oka, Toshiyuki Fujikura, and Ryo Kurachi. Shift left: Fuzzing earlier
in the automotive software development lifecycle using hil systems. In Proceedings of
the 16th Embedded Security in Cars Europe conference, pages 1–13, 2018.

Primary Studies: Chapter 2 177

[224] Dhasarathy Parthasarathy, Karl Bäckstrom, Jens Henriksson, and Sólrún Einarsdóttir.
Controlled time series generation for automotive software-in-the-loop testing using
gans. In Proceedings of the 2020 IEEE International Conference On Artificial Intelligence
Testing, pages 39–46, 2020.

[225] Brian Katumba and Eric Knauss. Agile development in automotive software develop-
ment: Challenges and opportunities. In Proceedings of the 15th International Conference
on International Conference on Product-Focused Software Process Improvement, pages
33–47, 2014.

Primary studies: Chapter 2
[P1] Daniel Aceituna, Kaushik Madala, and Hyunsook Do. Deriving functional safety

requirements using undesired combination state templates. In Proceedings - 2018 4th
International Workshop on Requirements Engineering for Self-Adaptive, Collaborative,
and Cyber Physical Systems, pages 1–8. IEEE, 2018.

[P2] Toshiaki Aoki, Kriangkrai Traichaiyaporn, Yuki Chiba, Masahiro Matsubara, Masa-
taka Nishi, and Fumio Narisawa. Modeling safety requirements of ISO26262 using
goal trees and patterns. In Communications in Computer and Information Science,
volume 596, pages 206–221. Springer, 2016.

[P3] Luís Silva Azevedo, David Parker, Yiannis Papadopoulos, Martin Walker, Ioannis
Sorokos, and Rui Esteves Araújo. Exploring the impact of different cost heuristics
in the allocation of safety integrity levels. In Lecture Notes in Computer Science,
volume 8822, pages 70–81. Springer, 2014.

[P4] Luis Silva Azevedo, David Parker, Martin Walker, Yiannis Papadopoulos, and
Rui Esteves Araujo. Assisted assignment of automotive safety requirements. IEEE
Software, 31:62–68, 2014.

[P5] Gerrit Bagschik, Andreas Reschka, Torben Stolte, and Markus Maurer. Identifica-
tion of potential hazardous events for an Unmanned Protective Vehicle. In IEEE
Intelligent Vehicles Symposium, Proceedings, volume 2016, pages 691–697. IEEE,
2016.

[P6] Gerrit Bagschik, Torben Stolte, and Markus Maurer. Safety Analysis Based on
Systems Theory Applied to an Unmanned Protective Vehicle. Procedia Engineering,
179:61–71, 2017.

[P7] Kristian Beckers, Isabelle Côté, Thomas Frese, Denis Hatebur, and Maritta Heisel.
Systematic derivation of functional safety requirements for automotive systems. In
Lecture Notes in Computer Science, volume 8666 LNCS, pages 65–80. Springer, 2014.

178 Primary Studies: Chapter 2

[P8] Kristian Beckers, Isabelle Côté, Thomas Frese, Denis Hatebur, and Maritta Heisel.
A structured and systematic model-based development method for automotive
systems, considering the OEM/supplier interface. Reliability Engineering and System
Safety, 158:172–184, 2017.

[P9] Carl Bergenhem, Mario Majdandzic, and Stig Ursing. Concepts and risk analysis
for a cooperative and automated highway platooning system. In Communications
in Computer and Information Science, volume 1279, pages 200–213. Springer, 2020.

[P10] Lucas Bressan, Andre L. de Oliveira, and Fernanda Campos. An Approach to
Support Variant Management on Safety Analysis using CHESS Error Models. In
2020 16th European Dependable Computing Conference, pages 135–142. IEEE, 2020.

[P11] Chih Chung Chiu and Kuo Sui Lin. A new design review method for functional
safety of automotive electrical systems. In ACM International Conference Proceeding
Series, ICNCC 2018, pages 318–326. ACM, 2018.

[P12] Shivakumar Chonnad, Radu Iacob, and Vladimir Litovtchenko. A Quantitative
Approach to SoC Functional Safety Analysis. In International System on Chip
Conference, volume 2018, pages 227–232. IEEE, 2019.

[P13] Yanja Dajsuren and Guido Loupias. Safety analysis method for cooperative driving
systems. In Proceedings - 2019 IEEE International Conference on Software Architecture,
ICSA 2019, pages 181–190. IEEE, 2019.

[P14] Nabarun Das and William Taylor. Quantified fault tree techniques for calculating
hardware fault metrics according to ISO 26262. In ISPCE 2016 - Proceedings: IEEE
Symposium on Product Compliance Engineering, pages 1–8. IEEE, 2016.

[P15] Veenesh Dhaked, Vrinda Gupta, and Jyoti Harmalkar. Application of Concept Phase
to Design an Electric Powertrain in Compliance with ISO 26262. In 2019 IEEE 5th
International Conference for Convergence in Technology, I2CT 2019, pages 1–5. IEEE,
2019.

[P16] Dominik Domis, Rasmus Adler, and Martin Becker. Integrating variability and
safety analysis models using commercial UML-based tools. In ACM International
Conference Proceeding Series, volume 20-24 of SPLC ’15, pages 225–234. ACM, 2015.

[P17] Adam Duracz, Ayman Aljarbouh, Ferenc A. Bartha, Jawad Masood, Roland
Philippsen, Henrik Eriksson, Jan Duracz, Fei Xu, Yingfu Zeng, and Christian Grante.
Advanced Hazard Analysis and Risk Assessment in the ISO 26262 Functional Safety
Standard Using Rigorous Simulation. In Lecture Notes in Computer Science, volume
11971 LNCS, pages 108–126. Springer, 2020.

Primary Studies: Chapter 2 179

[P18] Alessandro Frigerio, Bart Vermeulen, and Kees Goossens. A Generic Method for
a Bottom-Up ASIL Decomposition. In Lecture Notes in Computer Science, volume
11093 LNCS, pages 12–26. Springer, 2018.

[P19] Alessandro Frigerio, Bart Vermeulen, and Kees Goossens. Component-level ASIL
decomposition for automotive architectures. In Proceedings - 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshop, DSN-W
2019, pages 62–69. IEEE, 2019.

[P20] Mohamad Gharib, Paolo Lollini, Marco Botta, Elvio Amparore, Susanna Donatelli,
and Andrea Bondavalli. On the Safety of Automotive Systems Incorporating
Machine Learning Based Components: A Position Paper. In Proceedings - 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops, DSN-W 2018, pages 271–274. IEEE, 2018.

[P21] Mohamad Gharib, Paolo Lollini, Andrea Ceccarelli, and Andrea Bondavalli. Dealing
with functional safety requirements for automotive systems: A cyber-physical-
social approach. In Lecture Notes in Computer Science, volume 10707 LNCS, pages
194–206. Springer, 2018.

[P22] Mohamad Gharib, Paolo Lollini, Andrea Ceccarelli, and Andrea Bondavalli. Engi-
neering functional safety requirements for automotive systems: A cyber-physical-
social approach. In Proceedings of IEEE International Symposium on High Assurance
Systems Engineering, volume 2019, pages 74–81. IEEE, 2019.

[P23] Youcef Gheraibia, Khaoula Djafri, and Habiba Krimou. Reduction of Solution Space
in the Automotive Safety Integrity Levels Allocation Problem. In Modelling and
Implementation of Complex Systems, pages 67–76. Springer, 2016.

[P24] Youcef Gheraibia, Khaoula Djafri, and Habiba Krimou. Ant colony algorithm for
automotive safety integrity level allocation. Applied Intelligence, 48:555–569, 2018.

[P25] Gerhard Griessnig and Adam Schnellbach. Development of the 2nd edition of the
ISO 26262. In Communications in Computer and Information Science, volume 748,
pages 535–546. Springer, 2017.

[P26] Manfred Großmann, Mario Hirz, and Jürgen Fabian. Efficient application of multi-
core processors as substitute of the E-Gas (Etc) monitoring concept. In Proceedings
of 2016 SAI Computing Conference, SAI 2016, pages 913–918. IEEE, 2016.

[P27] Chao Huang and Liang Li. Architectural design and analysis of a steer-by-wire
system in view of functional safety concept. Reliability Engineering and System
Safety, 198:106822, 2020.

180 Primary Studies: Chapter 2

[P28] Benjamin Peter Jeppesen, Meenakshi Rajamani, and Kevin Mark Smith. Enhanc-
ing functional safety in FPGA-based motor drives. The Journal of Engineering,
2019:4580–4584, 2019.

[P29] Michael Kaessmeyer, David Santiago Velasco Moncada, and Markus Schurius. Eval-
uation of a systematic approach in variant management for safety-critical systems
development. In Proceedings - IEEE/IFIP 13th International Conference on Embedded
and Ubiquitous Computing, EUC 2015, pages 35–43. IEEE, 2015.

[P30] Siddartha Khastgir, Stewart Birrell, Gunwant Dhadyalla, Håkan Sivencrona, and
Paul Jennings. Towards increased reliability by objectification of Hazard Analysis
and Risk Assessment (HARA) of automated automotive systems. Safety Science,
99:166–177, 2017.

[P31] Sebastiaan Klaasse, Geert Kwintenberg, and Ion Barosan. Development of a Func-
tional Safety Software Layer for the Control of an Electric In-Wheel Motor Based
Powertrain. In Proceedings - 2018 IEEE 15th International Conference on Software
Architecture Companion, ICSA-C 2018, pages 144–147. IEEE, 2018.

[P32] Sangeeth Kochanthara, Niels Rood, Loek Cleophas, Yanja Dajsuren, and Mark Van
Den Brand. Semi-automatic Architectural Suggestions for the Functional Safety of
Cooperative Driving Systems. In Proceedings - 2020 IEEE International Conference
on Software Architecture Companion, ICSA-C 2020, pages 55–58. IEEE, 2020.

[P33] Greta Carlotta Kolln, Michael Klicker, and Stephan Schmidt. Comparison of hazard
analysis methods with regard to the series development of autonomous vehicles.
2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019, pages 2969–2975,
2019.

[P34] Birte Kramer, Christian Neurohr, Matthias Büker, Eckard Böde, Martin Fränzle,
and Werner Damm. Identification and Quantification of Hazardous Scenarios for
Automated Driving. In Lecture Notes in Computer Science, volume 12297 LNCS,
pages 163–178. Springer, 2020.

[P35] Kuen Long Leu, Hsiang Huang, Yung Yuan Chen, Li Ren Huang, and Kung Ming
Ji. An intelligent brake-by-wire system design and analysis in accordance with
ISO-26262 functional safety standard. In 2015 International Conference on Connected
Vehicles and Expo, ICCVE 2015 - Proceedings, pages 150–156. IEEE, 2016.

[P36] Hong Peng Li and Yan Wen Li. The research of electric vehicle’s MCU system
based on ISO26262. In 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems,
ACIRS 2017, pages 336–340. IEEE, 2017.

Primary Studies: Chapter 2 181

[P37] Christian Lidstrom, Carl Bondesson, Mattias Nyberg, and JonasWestman. Improved
Pattern for ISO 26262 ASIL Decomposition with Dependent Requirements. In
Proceedings - Companion of the 19th IEEE International Conference on Software
Quality, Reliability and Security, QRS-C 2019, pages 28–35. IEEE, 2019.

[P38] Boyu Liu and Yanwen Li. Research on Vehicle Control Unit based on functional
safety. In 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems, ACIRS 2017,
pages 160–164. IEEE, 2017.

[P39] R. Mader, H. Martin, R. Obendrauf, P. Prinz, B. Winkler, and G. Grießnig. A
framework for model-based safety requirements round-trip engineering. In IET
Conference Publications, volume 2015, pages 1–6. IET, 2015.

[P40] Archana Mallya, Vera Pantelic, Morayo Adedjouma, Mark Lawford, and Alan
Wassyng. Using STPA in an ISO 26262 compliant process. In Lecture Notes in
Computer Science, volume 9922 LNCS, pages 117–129. Springer, 2016.

[P41] David Marcos, Jon Perez, Pello Zubizarreta, Maitane Garmendia, Igor Perez De
Arenaza, Jon Crego, and Jose Antonio Cortajarena. A Safety Concept for an
Automotive Lithium-based Battery Management System. In 2019 Electric Vehicles
International Conference, EV 2019, pages 1–6. IEEE, 2019.

[P42] Helmut Martin, Bernhard Winkler, Stephanie Grubmuller, and Daniel Watzenig.
Identification of performance limitations of sensing technologies for automated
driving. In 2019 8th IEEE International Conference on Connected Vehicles and Expo,
ICCVE 2019 - Proceedings, pages 1–6. IEEE, 2019.

[P43] Luiz Eduardo G. Martins and Tony Gorschek. Requirements engineering for safety-
critical systems: An interview study with industry practitioners. IEEE Transactions
on Software Engineering, 46(4):346–361, 2020.

[P44] Pierre Mauborgne, Samuel Deniaud, Éric Levrat, Éric Bonjour, Jean Pierre Micaëlli,
and Dominique Loise. The Determination of Functional Safety Concept coupled
with the definition of Logical Architecture: a framework of analysis from the
automotive industry. IFAC-PapersOnLine, 50(1):7278–7283, 2017.

[P45] Richard Messnarz and Harald Sporer. Functional Safety Case with FTA and FMEDA
Consistency Approach. In Communications in Computer and Information Science,
volume 896, pages 387–397. Springer, 2018.

[P46] Helen E. Monkhouse, Ibrahim Habli, and John McDermid. An enhanced vehicle
control model for assessing highly automated driving safety. Reliability Engineering
and System Safety, 202:107061, 2020.

182 Primary Studies: Chapter 2

[P47] Helen Monkhouse, Ibrahim Habli, John McDermid, Siddartha Khastgir, and Gun-
want Dhadyalla. Why functional safety experts worry about automotive systems
having increasing autonomy. In 2017 IEEE SmartWorld Ubiquitous Intelligence and
Computing, Advanced and Trusted Computed, Scalable Computing and Communica-
tions, Cloud and Big Data Computing, Internet of People and Smart City Innovation,
SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017, pages 1–6. IEEE, 2018.

[P48] Peter Munk, Andreas Abele, Eike Thaden, Arne Nordmann, Rakshith Amarnath,
Markus Schweizer, and Simon Burton. INVITED: Semi-Automatic Safety Analysis
and Optimization. In 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2018.

[P49] Pramit Nag, Umesh Ghanekar, and Jyoti Harmalkar. A Novel Multi-Core Approach
for Functional Safety Compliance of Automotive Electronic Control Unit According
to ISO 26262. In 2019 IEEE 5th International Conference for Convergence in Technology,
I2CT 2019, pages 1–5. IEEE, 2019.

[P50] Alessandra Nardi and Antonino Armato. Functional safety methodologies for
automotive applications. In IEEE/ACM International Conference on Computer-Aided
Design, Digest of Technical Papers, ICCAD, volume 2017, pages 970–975. IEEE, 2017.

[P51] Minseok Park, Hyun Chul Koag, and Hyun Sik Ahn. Functional Safety Improvement
of Electric Power Steering System by Using Electronic Stability Control System. In
IEEE International Symposium on Industrial Electronics, volume 2018, pages 230–234.
IEEE, 2018.

[P52] Qing Rao and Jelena Frtunikj. Deep learning for self-driving cars: Chances and
challenges: Extended Abstract. In Proceedings - International Conference on Software
Engineering, SEFAIS ’18, pages 35–38. ACM, 2018.

[P53] Lena Rogovchenko-Buffoni, Andrea Tundis, Muhammed Zoheb Hossain, Mattias
Nyberg, and Peter Fritzson. An integrated toolchain for model based functional
safety analysis. Journal of Computational Science, 5(3):408–414, 2014.

[P54] Alejandra Ruiz, Alberto Melzi, and Tim Kelly. Systematic application of ISO 26262
on a SEooC: Support by applying a systematic reuse approach. In Proceedings of
the 2015 Design, Automation and Test in Europe, DATE, volume 2015, pages 393–396.
IEEE, 2015.

[P55] Ravindra Reddy Sabbella and Maheswaran Arunachalam. Functional Safety Devel-
opment of Motor Control Unit for Electric Vehicles. In 2019 IEEE Transportation
Electrification Conference, ITEC-India 2019, pages 1–6. IEEE, 2019.

Primary Studies: Chapter 2 183

[P56] Aleksandra Salikiryaki, Iliana Petrova, and Stephan Baumgart. Graphical Approach
for Modeling of Safety and Variability in Product Lines. In Proceedings - 41st
Euromicro Conference on Software Engineering and Advanced Applications, SEAA
2015, pages 410–417. IEEE, 2015.

[P57] Georg Scharfenberg, Ludek Elis, and Gerhard Hofmann. New Design Methodology
- Using VHDL-AMS Models to Consider Aging Effects in Automotive Mechatronic
Circuits for Safety Relevant Functions. In International Conference on Applied
Electronics, volume 2019, pages 1–5. IEEE, 2019.

[P58] Tobias Schmid, Stefanie Schraufstetter, and Stefan Wagner. An Approach for
Structuring a Highly Automated Driving Multiple Channel Vehicle System for
Safety Analysis. In Proceedings - 2018 3rd International Conference on System
Reliability and Safety, ICSRS 2018, pages 362–367. IEEE, 2019.

[P59] Valerij Schönemann, Hermann Winner, Thomas Glock, Stefan Otten, Eric Sax,
Bert Boeddeker, Geert Verhaeg, Fabrizio Tronci, and Gustavo G. Padilla. Scenario-
based functional safety for automated driving on the example of valet parking. In
Advances in Intelligent Systems and Computing, volume 886, pages 53–64. Springer,
2019.

[P60] Moga Natha Shankar Kumar and Karthikeyan Balakrishnan. Functional Safety
Development of Battery Management System for Electric Vehicles. In 2019 IEEE
Transportation Electrification Conference, ITEC-India 2019, pages 1–6. IEEE, 2019.

[P61] Jacopo Sini, M. D’Auria, and Massimo Violante. Towards Vehicle-Level Simulator
Aided Failure Mode, Effect, and Diagnostic Analysis of Automotive Power Elec-
tronics Items. In 21st IEEE Latin-American Test Symposium, LATS 2020, pages 1–6.
IEEE, 2020.

[P62] Jacopo Sini and Massimo Violante. A simulation-based methodology for aiding
advanced driver assistance systems hazard analysis and risk assessment. Microelec-
tronics Reliability, 109:113661, 2020.

[P63] Jacopo Sini, Massimo Violante, and Riccardo Dessi. ISO26262-Compliant Devel-
opment of a High Dependable Automotive Powertrain Item. In Lecture Notes in
Electrical Engineering, volume 604, pages 315–326. Springer, 2020.

[P64] Martin Skoglund, Hans Svensson, Henrik Eriksson, Thomas Arts, Rolf Johansson,
and Alex Gerdes. Checking verification compliance of technical safety requirements
on the AUTOSAR platform using annotated semi-formal executable models. In
Lecture Notes in Computer Science, volume 8696 LNCS, pages 19–26. Springer, 2014.

184 Primary Studies: Chapter 2

[P65] Torben Stolte, Gerrit Bagschik, and Markus Maurer. Safety goals and functional
safety requirements for actuation systems of automated vehicles. In IEEE Conference
on Intelligent Transportation Systems, Proceedings, ITSC, pages 2191–2198. IEEE,
2016.

[P66] Torben Stolte, Gerrit Bagschik, Andreas Reschka, and Markus Maurer. Hazard
analysis and risk assessment for an automated unmanned protective vehicle. In
IEEE Intelligent Vehicles Symposium, Proceedings, pages 1848–1855. IEEE, 2017.

[P67] Robert Tan. A safety concept for camera based ADAS based on multicore MCU. In
2014 IEEE International Conference on Vehicular Electronics and Safety, ICVES 2014,
pages 1–6. IEEE, 2015.

[P68] Chen Tao. Functional safety concept design of hybrid electric vehicle following ISO
26262. In IEEE Transportation Electrification Conference and Expo, ITEC Asia-Pacific
2014 - Conference Proceedings, pages 1–6. IEEE, 2014.

[P69] Sagar Sahebrao Tikar. Compliance of ISO 26262 safety standard for lithium ion
battery and its battery management system in hybrid electric vehicle. In 2017 IEEE
Transportation Electrification Conference, ITEC-India 2017, volume 2018, pages 1–5.
IEEE, 2018.

[P70] Mohamed Tlig, Mathilde Machin, Romain Kerneis, Emmanuel Arbaretier, Linda
Zhao, Florent Meurville, and Jean Van Frank. Autonomous Driving System :
Model Based Safety Analysis. In Proceedings - 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops, DSN-W 2018, pages
2–5. IEEE, 2018.

[P71] Raphael Fonte Boa Trindade, Lukas Bulwahn, and Christoph Ainhauser. Automati-
cally generated safety mechanisms from semi-formal software safety requirements.
In Lecture Notes in Computer Science, volume 8666 LNCS, pages 278–293. Springer,
2014.

[P72] Ellen van Nunen, Francesco Esposto, Arash Khabbaz Saberi, and Jan Pieter
Paardekooper. Evaluation of safety indicators for truck platooning. In IEEE Intelli-
gent Vehicles Symposium, Proceedings, pages 1013–1018. IEEE, 2017.

[P73] Yang Wang, Daniel Graziotin, Stefan Kriso, and Stefan Wagner. Communication
channels in safety analysis: An industrial exploratory case study. Journal of Systems
and Software, 153:135–151, 2019.

[P74] Yang Wang, Yanwen Li, Chunshu Li, and Xiyang Wang. Analysis and application
of functional safety based on modified FMEA method. In 2017 2nd Asia-Pacific
Conference on Intelligent Robot Systems, ACIRS 2017, pages 98–103. IEEE, 2017.

Primary Studies: Chapter 2 185

[P75] Yang Wang and Stefan Wagner. On groupthink in safety analysis: An industrial
case study. In Proceedings - International Conference on Software Engineering, pages
266–275. IEEE, 2018.

[P76] Yung Chen Wang, Chi Seng Lee, Po Chan Kuo, and Yi Ling Lin. Overcurrent
protection design, failure mode and effect analysis of an electric vehicle inverter.
In Proceedings of the IEEE International Conference on Industrial Technology, volume
2016, pages 1287–1292. IEEE, 2016.

[P77] Fredrik Warg, Martin Gassilewski, Jörgen Tryggvesson, Viacheslav Izosimov, An-
dersWerneman, and Rolf Johansson. Defining autonomous functions using iterative
hazard analysis and requirements refinement. In Lecture Notes in Computer Science,
volume 9923 LNCS, pages 286–297. Springer, 2016.

[P78] Fredrik Warg, Martin Skoglund, Anders Thorsen, Rolf Johansson, Mattias
Brannstrom, Magnus Gyllenhammar, and Martin Sanfridson. The Quantitative
Risk Norm - A Proposed Tailoring of HARA for ADS. In Proceedings - 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN-W
2020, pages 86–93. IEEE, 2020.

[P79] Ralph Weissnegger, Markus Schuß, Christian Kreiner, Markus Pistauer, Kay Römer,
and Christian Steger. Seamless integrated simulation in design and verification
flow for safety-critical systems. In Lecture Notes in Computer Science, volume 9923
LNCS, pages 359–370. Springer, 2016.

[P80] Jonas Westman and Mattias Nyberg. Providing tool support for specifying safety-
critical systems by enforcing syntactic contract conditions. Requirements Engineer-
ing, 24:231–256, 2019.

[P81] Franz Wotawa, Bernhard Peischl, Florian Klück, and Mihai Nica. Quality assurance
methodologies for automated driving. Elektrotechnik und Informationstechnik,
135:322–327, 2018.

[P82] Zhihong Wu, Xiezu Su, Yuan Zhu, and Luke. Functional safety system design on
EPS. In Lecture Notes in Electrical Engineering, volume 418, pages 647–664. Springer
Singapore, 2017.

[P83] Alison Young and Alastair Walker. Qualifying Dependent Failure Analysis Within
ISO26262: Applicability to Semiconductors. In Communications in Computer and
Information Science, volume 896, pages 331–340. Springer, 2018.

[P84] Jiyu Zhang, Giorgio Rizzoni, Andrea Cordoba-Arenas, Alessandro Amodio, and
Bilin Aksun-Guvenc. Model-based diagnosis and fault tolerant control for ensuring

186 Primary Studies: Chapter 2

torque functional safety of pedal-by-wire systems. Control Engineering Practice,
61:255–269, 2017.

[P85] Yaling Zhou, Jing Guan, and Hanwen Sun. The Functional Safety Analysis and
Design of Dual-Motor Hybrid Bus Clutch System. In Proceedings of 2018 IEEE
International Conference of Safety Produce Informatization, IICSPI 2018, pages 299–
304. IEEE, 2019.

[P86] Arash Khabbaz Saberi, Eric Barbier, Frank Benders, and Mark van den Brand. On
functional safety methods: A system of systems approach. In 12th Annual IEEE
International Systems Conference, SysCon 2018 - Proceedings, pages 1–6. IEEE, 2018.

[P87] Asim Abdulkhaleq and Stefan Wagner. A software safety verification method based
on system-theoretic process analysis. In International Conference on Computer
Safety, Reliability, and Security, volume 8696 LNCS, pages 401–412. Springer, 2014.

[P88] Asim Abdulkhaleq, Stefan Wagner, and Nancy Leveson. A comprehensive safety
engineering approach for software-intensive systems based on STPA. Procedia
Engineering, 128:2–11, 2015.

[P89] Asim Abdulkhaleq and Stefan Wagner. A controlled experiment for the empirical
evaluation of safety analysis techniques for safety-critical software. In Proceed-
ings of the 19th International Conference on Evaluation and Assessment in Software
Engineering, volume 27-29-2015, pages 1–10, 2015.

[P90] Asim Abdulkhaleq, Daniel Lammering, Stefan Wagner, Jürgen Röder, Norbert
Balbierer, Ludwig Ramsauer, Thomas Raste, and Hagen Boehmert. A systematic ap-
proach based on STPA for developing a dependable architecture for fully automated
driving vehicles. Procedia Engineering, 179:41–51, 2017.

[P91] Asim Abdulkhaleq, Markus Baumeister, Hagen Böhmert, and Stefan Wagner. Miss-
ing no interaction—Using STPA for identifying hazardous interactions of automated
driving systems. International Journal of Safety Science, 2:115–124, 2018.

[P92] Majdi Ghadhab, Sebastian Junges, Joost-Pieter Katoen, Matthias Kuntz, and
Matthias Volk. Model-based safety analysis for vehicle guidance systems. In
International Conference on Computer Safety, Reliability, and Security, pages 3–19.
Springer, 2017.

[P93] Youcef Gheraibia, Abdelouahab Moussaoui, Luis S Azevedo, David Parker, Yiannis
Papadopoulos, and Martin Walker. Can aquatic flightless birds allocate automotive
safety requirements? In 2015 IEEE Seventh international conference on intelligent
computing and information systems (ICICIS), pages 1–6. IEEE, 2015.

Primary Studies: Chapter 2 187

[P94] Joakim Oscarsson, Max Stolz-Sundnes, Naveen Mohan, Viacheslav Izosimov, and
Ninla Elmawati Falabiba. Applying systems-theoretic process analysis in the context
of cooperative driving. In 2016 11th IEEE Symposium on Industrial Embedded Systems
(SIES), pages 1–5. IEEE, 2016.

[P95] Jacopo Sini and Massimo Violante. An automatic approach to perform FMEDA
safety assessment on hardware designs. In 2018 IEEE 24th International Symposium
on On-Line Testing And Robust System Design (IOLTS), pages 49–52. IEEE, 2018.

[P96] Morayo Adedjouma, Gabriel Pedroza, and Boutheina Bannour. Representative
safety assessment of autonomous vehicle for public transportation. Proceedings -
2018 IEEE 21st International Symposium on Real-Time Computing, ISORC 2018, pages
124–129, 2018.

[P97] Stephan Baumgart, Joakim Froberg, and Sasikumar Punnekkat. A Process to
Support Safety Analysis for a System-of-Systems. Proceedings - 2020 IEEE 31st
International Symposium on Software Reliability Engineering Workshops, ISSREW
2020, pages 61–66, 2020.

[P98] Junyi Chen, ShanWang, Tangrui Zhou, Lu Xiong, and Xingyu Xing. Study on Safety
Analysis Method for Take-over System of Autonomous Vehicles. IEEE Intelligent
Vehicles Symposium, Proceedings, pages 1972–1977, 2020.

[P99] Alessio Di Sandro, Sahar Kokaly, Rick Salay, and Marsha Chechik. Querying
Automotive System Models and Safety Artifacts: Tool Support and Case Study.
Journal of Automotive Software Engineering, 1:34, 2020.

[P100] Niklas Grabbe, Anna Kellnberger, Beyza Aydin, and Klaus Bengler. Safety of auto-
mated driving: The need for a systems approach and application of the Functional
Resonance Analysis Method. Safety Science, 126:104665, 2020.

[P101] Greta Koelln, Michael Klicker, and Stephan Schmidt. Comparison of the Results of
the System Theoretic Process Analysis for a Vehicle SAE Level four and five. 2020
IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020,
2020.

[P102] Ioannis Sorokos, Luis P. Azevedo, Yiannis Papadopoulos, MartinWalker, andDavid J.
Parker. Comparing Automatic Allocation of Safety Integrity Levels in the Aerospace
and Automotive Domains. IFAC-PapersOnLine, 49:184–190, 2016.

189

Curriculum Vitæ

Sangeeth Kochanthara was born on January 14th, 1991 in Vattamkulam, Kerala, India. After
finishing secondary school in 2008 in Vattamkulam, he enrolled for a Bachelor’s in Com-
puter Science and Engineering at Calicut University in Kerala, India. After his Bachelor’s,
Sangeeth joined Indraprastha Institute of Information Technology Delhi (IIIT-Delhi) for
his Master’s in Computer Science and Engineering. During his Master’s study, Sangeeth
performed an internship at CISTER research lab, based at the School of Engineering of
the Polytechnic Institute of Porto, Portugal. He also worked in the Program Analysis
group at IIIT-Delhi. His Master’s thesis, is on a domain-specific language, a monitor gen-
eration method, and a toolchain to generate monitors for real-time systems. Sangeeth
obtained his Master’s degree in 2016 with the gold medal and the best Master’s thesis
award. His Master’s thesis was supervised by Dr. Geoffrey Nellisen, Dr. David Pereira,
and Dr. Rahul Purandare. Sangeeth has received multiple scholarships and fellowships
including the GATE scholarship by the All India Council for Technical Education, under the
Ministry of Human Resource and Development, India; and the Junior Research Fellowship
by the Council of Scientific & Industrial Research, India. In 2017, Sangeeth started his
Ph.D. at Eindhoven University of Technology, The Netherlands, under the supervision of
prof.dr. Mark van den Brand, dr. Yanja Dajsuren EngD, and dr.ir. Loek Cleophas. In his
Ph.D. research, Sangeeth explored the software and system engineering aspects of auto-
motive, predominantly from the lenses of requirements engineering, safety engineering,
architecture, and mining software repositories. The results of the Ph.D. work are presented
in this dissertation.

Titles in the IPA Dissertation Series since 2020

M.A. Cano Grijalba. Session-Based Con-
currency: Between Operational and Declar-
ative Views. Faculty of Science and Engi-
neering, RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-simulation
Construction. Faculty of Science, Mathe-
matics and Computer Science, RU. 2020-02

R.A. van Rozen. Languages of Games
and Play: Automating Game Design & En-
abling Live Programming. Faculty of Sci-
ence, UvA. 2020-03

B. Changizi. Constraint-Based Analysis of
Business Process Models. Faculty of Mathe-
matics and Natural Sciences, UL. 2020-04

N. Naus. Assisting End Users in Workflow
Systems. Faculty of Science, UU. 2020-05

J.J.H.M. Wulms. Stability of Geometric
Algorithms. Faculty of Mathematics and
Computer Science, TU/e. 2020-06

T.S. Neele. Reductions for Parity Games
and Model Checking. Faculty of Mathemat-
ics and Computer Science, TU/e. 2020-07

P. van den Bos. Coverage and Games in
Model-Based Testing. Faculty of Science,
RU. 2020-08

M.F.M. Sondag. Algorithms for Coher-
ent Rectangular Visualizations. Faculty
of Mathematics and Computer Science,
TU/e. 2020-09

D. Frumin. Concurrent Separation Logics
for Safety, Refinement, and Security. Faculty
of Science, Mathematics and Computer Sci-
ence, RU. 2021-01

A. Bentkamp. Superposition for Higher-
Order Logic. Faculty of Sciences, Depart-
ment of Computer Science, VU. 2021-02
P. Derakhshanfar. Carving Information
Sources to Drive Search-based Crash Repro-
duction and Test Case Generation. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2021-03
K. Aslam. Deriving Behavioral Specifi-
cations of Industrial Software Components.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2021-04
W. Silva Torres. Supporting Multi-Domain
Model Management. Faculty of Mathemat-
ics and Computer Science, TU/e. 2021-05
A. Fedotov. Verification Techniques for
xMAS. Faculty of Mathematics and Com-
puter Science, TU/e. 2022-01
M.O. Mahmoud. GPU Enabled Automated
Reasoning. Faculty of Mathematics and
Computer Science, TU/e. 2022-02
M. Safari. Correct Optimized GPU Pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2022-03
M. Verano Merino. Engineering
Language-Parametric End-User Program-
ming Environments for DSLs. Faculty
of Mathematics and Computer Science,
TU/e. 2022-04
G.F.C. Dupont. Network Security Moni-
toring in Environments where Digital and
Physical Safety are Critical. Faculty
of Mathematics and Computer Science,
TU/e. 2022-05

T.M. Soethout. Banking on Domain
Knowledge for Faster Transactions. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2022-06
P. Vukmirović. Implementation of Higher-
Order Superposition. Faculty of Sci-
ences, Department of Computer Science,
VU. 2022-07
J. Wagemaker. Concurrent Separation Log-
ics for Safety, Refinement, and Security. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2022-08

R. Janssen. Refinement and Partiality
for Model-Based Testing. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2022-09

M. Laveaux. Accelerated Verification of
Concurrent Systems. Faculty of Mathemat-
ics and Computer Science, TU/e. 2022-10

S. Kochanthara. A Changing Landscape:
On Safety & Open Source in Automated and
Connected Driving. Faculty of Mathematics
and Computer Science, TU/e. 2023-01

cyan magenta yellow black

Spine width choice of paper duplex printed on:
90 grams HVO WIT # pages : 100 x 5.95 = spine width in mm
90 grams BIOTOP # pages : 100 x 6.40 = spine width in mm
90 grams G-PRINT # pages : 100 x 4.70 = spine width in mm

	front_cover
	Sangeeth_phd_thesis_ without_cover
	back_cover

