33,665 research outputs found

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Beyond Covariation: Cues to Causal Structure

    Get PDF
    Causal induction has two components: learning about the structure of causal models and learning about causal strength and other quantitative parameters. This chapter argues for several interconnected theses. First, people represent causal knowledge qualitatively, in terms of causal structure; quantitative knowledge is derivative. Second, people use a variety of cues to infer causal structure aside from statistical data (e.g. temporal order, intervention, coherence with prior knowledge). Third, once a structural model is hypothesized, subsequent statistical data are used to confirm, refute, or elaborate the model. Fourth, people are limited in the number and complexity of causal models that they can hold in mind to test, but they can separately learn and then integrate simple models, and revise models by adding and removing single links. Finally, current computational models of learning need further development before they can be applied to human learning

    Agent-Based Models and Simulations in Economics and Social Sciences: from conceptual exploration to distinct ways of experimenting

    Get PDF
    Now that complex Agent-Based Models and computer simulations spread over economics and social sciences - as in most sciences of complex systems -, epistemological puzzles (re)emerge. We introduce new epistemological tools so as to show to what precise extent each author is right when he focuses on some empirical, instrumental or conceptual significance of his model or simulation. By distinguishing between models and simulations, between types of models, between types of computer simulations and between types of empiricity, section 2 gives conceptual tools to explain the rationale of the diverse epistemological positions presented in section 1. Finally, we claim that a careful attention to the real multiplicity of denotational powers of symbols at stake and then to the implicit routes of references operated by models and computer simulations is necessary to determine, in each case, the proper epistemic status and credibility of a given model and/or simulation
    • …
    corecore