4 research outputs found

    A systematic identification of consistency rules for UML diagrams

    Get PDF
    UML diagrams describe different views of one piece of software. These diagrams strongly depend on each other and must therefore be consistent with one another, since inconsistencies between diagrams may be a source of faults during software development activities that rely on these diagrams. It is therefore paramount that consistency rules be defined and that inconsistencies be detected, analyzed and fixed. The relevant literature shows that authors typically define their own UML consistency rules, sometimes defining the same rules and sometimes defining rules that are already in the UML standard. The reason might be that no consolidated set of rules that are deemed relevant by authors can be found to date. The aim of our research is to provide a consolidated set of UML consistency rules and obtain a detailed overview of the current research in this area. We therefore followed a systematic procedure in order to collect and analyze UML consistency rules. We then consolidated a set of 116 UML consistency rules (avoiding redundant definitions or definitions already in the UML standard) that can be used as an important r

    UML consistency rules: a systematic mapping study

    Get PDF
    Context: The Unified Modeling Language (UML), with its 14 different diagram types, is the de-facto standard tool for objectoriented modeling and documentation. Since the various UML diagrams describe different aspects of one, and only one, software under development, they are not independent but strongly depend on each other in many ways. In other words, the UML diagrams describing a software must be consistent. Inconsistencies between these diagrams may be a source of the considerable increase of faults in software systems. It is therefore paramount that these inconsistencies be detected, ana

    Ontology-based methodology for error detection in software design

    Get PDF
    Improving the quality of a software design with the goal of producing a high quality software product continues to grow in importance due to the costs that result from poorly designed software. It is commonly accepted that multiple design views are required in order to clearly specify the required functionality of software. There is universal agreement as to the importance of identifying inconsistencies early in the software design process, but the challenge is how to reconcile the representations of the diverse views to ensure consistency. To address the problem of inconsistencies that occur across multiple design views, this research introduces the Methodology for Objects to Agents (MOA). MOA utilizes a new ontology, the Ontology for Software Specification and Design (OSSD), as a common information model to integrate specification knowledge and design knowledge in order to facilitate the interoperability of formal requirements modeling tools and design tools, with the end goal of detecting inconsistency errors in a design. The methodology, which transforms designs represented using the Unified Modeling Language (UML) into representations written in formal agent-oriented modeling languages, integrates object-oriented concepts and agent-oriented concepts in order to take advantage of the benefits that both approaches can provide. The OSSD model is a hierarchical decomposition of software development concepts, including ontological constructs of objects, attributes, behavior, relations, states, transitions, goals, constraints, and plans. The methodology includes a consistency checking process that defines a consistency framework and an Inter-View Inconsistency Detection technique. MOA enhances software design quality by integrating multiple software design views, integrating object-oriented and agent-oriented concepts, and defining an error detection method that associates rules with ontological properties
    corecore