6,915 research outputs found

    An asynchronous message-passing distributed algorithm for the global critical section problem

    Full text link
    This paper considers the global (l,k)(l,k)-CS problem which is the problem of controlling the system in such a way that, at least ll and at most kk processes must be in the CS at a time in the network. In this paper, a distributed solution is proposed in the asynchronous message-passing model. Our solution is a versatile composition method of algorithms for ll-mutual inclusion and kk-mutual exclusion. Its message complexity is O(∣Q∣)O(|Q|), where ∣Q∣|Q| is the maximum size for the quorum of a coterie used by the algorithm, which is typically ∣Q∣=n|Q| = \sqrt{n}.Comment: This is a modified version of the conference paper in PDAA201

    Survey-propagation decimation through distributed local computations

    Full text link
    We discuss the implementation of two distributed solvers of the random K-SAT problem, based on some development of the recently introduced survey-propagation (SP) algorithm. The first solver, called the "SP diffusion algorithm", diffuses as dynamical information the maximum bias over the system, so that variable nodes can decide to freeze in a self-organized way, each variable making its decision on the basis of purely local information. The second solver, called the "SP reinforcement algorithm", makes use of time-dependent external forcing messages on each variable, which let the variables get completely polarized in the direction of a solution at the end of a single convergence. Both methods allow us to find a solution of the random 3-SAT problem in a range of parameters comparable with the best previously described serialized solvers. The simulated time of convergence towards a solution (if these solvers were implemented on a distributed device) grows as log(N).Comment: 18 pages, 10 figure

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure

    Self-stabilizing K-out-of-L exclusion on tree network

    Get PDF
    In this paper, we address the problem of K-out-of-L exclusion, a generalization of the mutual exclusion problem, in which there are ℓ\ell units of a shared resource, and any process can request up to k\mathtt k units (1≤k≤ℓ1\leq\mathtt k\leq\ell). We propose the first deterministic self-stabilizing distributed K-out-of-L exclusion protocol in message-passing systems for asynchronous oriented tree networks which assumes bounded local memory for each process.Comment: 15 page

    The Parallelism Motifs of Genomic Data Analysis

    Get PDF
    Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing
    • …
    corecore