5 research outputs found

    Well-balanced and asymptotic preserving schemes for kinetic models

    Get PDF
    In this paper, we propose a general framework for designing numerical schemes that have both well-balanced (WB) and asymptotic preserving (AP) properties, for various kinds of kinetic models. We are interested in two different parameter regimes, 1) When the ratio between the mean free path and the characteristic macroscopic length ϵ\epsilon tends to zero, the density can be described by (advection) diffusion type (linear or nonlinear) macroscopic models; 2) When ϵ\epsilon = O(1), the models behave like hyperbolic equations with source terms and we are interested in their steady states. We apply the framework to three different kinetic models: neutron transport equation and its diffusion limit, the transport equation for chemotaxis and its Keller-Segel limit, and grey radiative transfer equation and its nonlinear diffusion limit. Numerical examples are given to demonstrate the properties of the schemes

    A High Order Stochastic Asymptotic Preserving Scheme for Chemotaxis Kinetic Models with Random Inputs

    Get PDF
    In this paper, we develop a stochastic Asymptotic-Preserving (sAP) scheme for the kinetic chemotaxis system with random inputs, which will converge to the modified Keller-Segel model with random inputs in the diffusive regime. Based on the generalized Polynomial Chaos (gPC) approach, we design a high order stochastic Galerkin method using implicit-explicit (IMEX) Runge-Kutta (RK) time discretization with a macroscopic penalty term. The new schemes improve the parabolic CFL condition to a hyperbolic type when the mean free path is small, which shows significant efficiency especially in uncertainty quantification (UQ) with multi-scale problems. The stochastic Asymptotic-Preserving property will be shown asymptotically and verified numerically in several tests. Many other numerical tests are conducted to explore the effect of the randomness in the kinetic system, in the aim of providing more intuitions for the theoretic study of the chemotaxis models
    corecore