2 research outputs found

    Amygdala Modeling with Context and Motivation Using Spiking Neural Networks for Robotics Applications

    Get PDF
    Cognitive capabilities for robotic applications are furthered by developing an artificial amygdala that mimics biology. The amygdala portion of the brain is commonly understood to control mood and behavior based upon sensory inputs, motivation, and context. This research builds upon prior work in creating artificial intelligence for robotics which focused on mood-generated actions. However, recent amygdala research suggests a void in greater functionality. This work developed a computational model of an amygdala, integrated this model into a robot model, and developed a comprehensive integration of the robot for simulation, and live embodiment. The developed amygdala, instantiated in the Nengo Brain Maker environment, leveraged spiking neural networks and the semantic pointer architecture to allow the abstraction of neuron ensembles into high-level concept vocabularies. Test and validation were performed on a TurtleBot in both simulated (Gazebo) and live testing. Results were compared to a baseline model which has a simplistic, amygdala-like model. Metrics of nearest distance and nearest time were used for assessment. The amygdala model is shown to outperform the baseline in both simulations, with a 70.8% improvement in nearest distance and, 4% improvement in the nearest time, and in real applications with a 62.4% improvement in nearest distance. Notably, this performance occurred despite a five-fold increase in architecture size and complexity

    A Survey of Robotics Control Based on Learning-Inspired Spiking Neural Networks

    Get PDF
    Biological intelligence processes information using impulses or spikes, which makes those living creatures able to perceive and act in the real world exceptionally well and outperform state-of-the-art robots in almost every aspect of life. To make up the deficit, emerging hardware technologies and software knowledge in the fields of neuroscience, electronics, and computer science have made it possible to design biologically realistic robots controlled by spiking neural networks (SNNs), inspired by the mechanism of brains. However, a comprehensive review on controlling robots based on SNNs is still missing. In this paper, we survey the developments of the past decade in the field of spiking neural networks for control tasks, with particular focus on the fast emerging robotics-related applications. We first highlight the primary impetuses of SNN-based robotics tasks in terms of speed, energy efficiency, and computation capabilities. We then classify those SNN-based robotic applications according to different learning rules and explicate those learning rules with their corresponding robotic applications. We also briefly present some existing platforms that offer an interaction between SNNs and robotics simulations for exploration and exploitation. Finally, we conclude our survey with a forecast of future challenges and some associated potential research topics in terms of controlling robots based on SNNs
    corecore