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ABSTRACT 

Zeglen, Matthew Aaron. M.S.E.E., Department of Electrical Engineering, Wright State 

University, 2022. Amygdala Modeling with Context and Motivation Using Spiking 

Neural Networks for Robotic Applications. 

 

Cognitive capabilities for robotic applications are furthered by developing an artificial 

amygdala that mimics biology. The amygdala portion of the brain is commonly 

understood to control mood and behavior based upon sensory inputs, motivation, and 

context. This research builds upon prior work in creating artificial intelligence for 

robotics which focused on mood-generated actions. However, recent amygdala research 

suggests a void in greater functionality. This work developed a computational model of 

an amygdala, integrated this model into a robot model, and developed a comprehensive 

integration of the robot for simulation, and live embodiment. The developed amygdala, 

instantiated in the Nengo Brain Maker environment, leveraged spiking neural networks 

and the semantic pointer architecture to allow the abstraction of neuron ensembles into 

high-level concept vocabularies. Test and validation were performed on a TurtleBot in 

both simulated (Gazebo) and live testing. Results were compared to a baseline model 

which has a simplistic, amygdala-like model. Metrics of nearest distance and nearest time 

were used for assessment. The amygdala model is shown to outperform the baseline in 

both simulations, with a 70.8% improvement in nearest distance and, 4% improvement in 

the nearest time, and in real applications with a 62.4% improvement in nearest distance.  

Notably, this performance occurred despite a five-fold increase in architecture size and 

complexity.  
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1 INTRODUCTION 

Dreams of automata have been recorded in human history since the 4th century BC. 

Aristotle conceived “instruments that could listen to commands to perform work” [1]. 

Hydraulic, steam, and mechanically driven devices have been used for thousands of 

years. The first century AD documents over 100 automata in books by Hero of 

Alexandria [2]. In 1206, Ismail al-Jazari created a programmable, humanoid, automaton 

band with moving peacocks. In 1898, Nikolai Tesla demonstrated the first electrically 

automated submarine [3]. Inventors over time have created automata but the intelligence 

to drive them was missing. 

The invention of the computer began to change fantasy into reality. Artificial 

intelligence (AI) started its development in the 1940s with a machine based on abstracted 

mathematical reasoning. In the late 1940s, Allen Newell, Cliff Shaw, and Herbert Simon 

created the Logic Theorist, which solved math theorems [4]. Academia continued to push 

innovation forward during the Golden Age of AI which occurred from 1956 to 1974. 

Newell, Shaw, and Simon were part of that push. For over a decade, MIT produced 

several noteworthy AI systems. These include feats of continuous speech recognition, 

natural language processing for algebra, a virtual counselor, computer vision, and even a 

tournament-capable chess computer [4]. 

Statistical analysis and training methods to create accurate predictions gave rise to 

machine learning [4]. These predictions have been used in programs that recognize 

speech or determine if the email is spam. Unsupervised, reinforcement, and supervised 

are common learning algorithms used to train machines and allow algorithm 

improvement [4]. Robotic applications often use reinforcement learning. Responses to 
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interactions cause positive or negative learnings to guide the intended behaviors [4]. 

Machine learning methods are helping advance artificial cognition by training computers 

how to think and act [5]. 

Neural networks were created as an early digitally inspired application of 

neurological processes [6]. Three generations have since been developed from this 

biologically inspired idea [6]. The first generation considered simplistic neuron models 

which only provided binary responses; however, such models were difficult to train due 

to their non-differentiable manner [6]. The second generation, which includes much of 

the current state-of-the-art and state-of-the-practice in ANNs, innovated by incorporating 

differentiable cost functions, e.g., sigmoidal, and novel architectures, including the latest 

in deep learning [6]. The third generation, which is currently the theoretical state-of-the-

art in ANNs, mimics neurological processes with spike train signaling [6]. Neural 

networks are the basis for deep learning, a subset of machine learning, and part of the 

state-of-the-art second-generation neural networks [6]. The term deep comes from the 

number of layers in the neural network [4]. The advantage of deep learning is that feature 

extraction and relationship modeling can often be processed more accurately. 

Convolutional neural networks (CNN), provide visual data exploitation through 

convolutions, pooling, and nonlinear functions, and are used in applications for computer 

vision [6]. 

Cognitive architectures started their development in the 1950s as part of general AI 

research [5]. Scientists from the fields of biology, computer science, logic, neuroscience, 

and psychology have been collaborating since then to advance the technology [7]. 

Cognitive computing research aims to simulate action selection, attention, learning, 
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knowledge, metacognition, memory, perception, problem-solving, and reasoning [5]. All 

of which are human and animal capabilities. Different paradigms and hypotheses have 

been developed around how to implement these concepts [8]. These principles have then 

been used to create interactive cognitive systems such as a practical algebra tutor and 

interactive rescue robots [8]. These systems show how applying cognitive concepts 

produces adaptive, interactive, iterative, and contextual behavior. Decisions can be made 

without the need for constant changes specific to the task or situation. These are reasons 

to research and develop models for intelligent automata. 

Brains are divided into many sections and perform complex functions. Modern 

neuroscience and psychology teach us more about how each works, which helps to create 

better models. The basal ganglia have been shown to drive action selection [9] [10]. The 

hippocampus has been modeled for its role in memory [11]. Models of the cerebellum are 

based on its relationship to behavioral learning [12]. The amygdala is best known for 

mood and emotions [13]. 

The research in this thesis will model an amygdala to increase cognitive 

capabilities using SNNs. Existing models largely focus on fear and anxiety training and 

responses [14]. Recent neuroscience research shows context, motivation, action 

prediction, and nociception also guide autonomic responses and action selection [13]. 

The new research shows a gap in existing amygdala model functions either previously 

unknown or omitted. Nengo-based amygdala models and research performed by Stewart 

[15] [16] and Fischl [14] [17] are considered as a starting point. Adding these features is 

expected to influence mood responses due to changing contexts or internal stimuli. These 

variations will increase model complexity and require evaluation of robot response. 
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1.1 OPERATIONAL MOTIVATION 

Creating cognitive functions for robotic applications will add versatility and adaptability.  

Existing amygdala models consider different aspects of the brain segment. Nengo models 

use discrete vectors. This design utilizes Nengo semantic pointer architecture (SPA) to 

provide an abstraction of neuron vectors into concept vocabularies or symbols. This 

abstraction also allows methods for symbol manipulation with binding, unbinding, and 

superposition. These methods are critical elements in this design. 

 Mood-driven responses provided by the amygdala intend to change the way the 

system interacts with the environment. A cleaning robot typically maps a room, but 

unexpected items might appear. Identifying a cat laying in the living room might change 

the direction. Other obstructions might be identified as dirt to vacuum or a toy to avoid. A 

military drone can identify hostile or friendly territories to determine different flight 

patterns and actions. Rescue robots can interact uniquely with objects in different 

situations. Attempting to find a person in a fire might provoke urgency versus the careful 

sorting of wreckage. These are a few examples of how moods can influence robotic 

applications. 

1.2 TECHNICAL MOTIVATION 

Prior research developed a mood-responses-driven robot. [18]. This capability 

serves as the technical starting point for this effort. However, this prior work was limited 

by simplistic amygdala-like functions relying only on associative memory. Additionally, 

the software framework was not transferable to another computer, thus a recreation of the 

technical baseline was also performed in this effort to enable future use, extension, and 

reuse of this codebase. 
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Higher-level cognition can be developed in models by mimicking biology. This 

model elicits the amygdala features for contextual and motivational influences. These 

features are expected to provide dynamic interactions with the environment. In this work, 

new abilities will be added to this framework with a demonstration of a TurtleBot in both 

modeling and simulation (M&S) and live embodiment testing. Context and motivation 

are expected to alter the way a robot will interact with its environment. This is due to the 

mood-driven action selection. Successful modeling and testing hope to bring the dream of 

intelligent automata closer to reality.  

1.3 RESEARCH CONTRIBUTION 

Table 1.1 provides a summary and mapping of the contributions of this research, 

“Current Research,” to previous related research, “Prior Work.” In Table 1.1, the × 

symbol indicates that a technical area was addressed. 
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Table 1.1: Relational mapping between technical contributions in previous related work and current research 

contributions. The × symbol denotes areas addressed. 

Technical Area Prior Work Current Research 

 Addressed Ref # Addressed 

 

TurtleBot2 × [18] [19] × 

Neuroscience Principles in Robotics 

Basal Ganglia × [18] [20] × 

Thalamus × [18] × 

Amygdala  × [18] [16] [15] × 

Context   × 

Motivation   × 

Additional Contributions 

Ease of Future 

Development 

× [17] [14] × 

Model and Sim × [18] × 

Live Robot × [18] [16] [17] × 

Robot 

Performance 

Metrics 

  × 

 

1.4 RESEARCH OBJECTIVES 

The primary objective is to create an integrated model adding context and motivational 

features for robotic decision-making and control. For this, an amygdala model was 

developed which considers moods from visual inputs with influence from context and 

motivations. Nengo will be used to create a SPA-based model, which allows the 

important elements to be processed conceptually. Concepts provide abstraction from low-

level vectors into symbol vocabularies. Special operations on the symbols allow for 

binding for data combinations and unbinding for data extraction. Working with symbols 

and their operations simplifies concepts for motivation and context. The new model is 

expected to provide mood responses that change with environments and provocation.  
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The secondary object places the new amygdala into a robotic application. Higher 

cognitive abilities are expected to cause intelligent interactions with the environment. 

Motivations are expected to sway the behavior to act more positively or negatively. 

Tertiary objectives include integration, documentation, and repeatability. The goal is 

a repeatable and reusable codebase to address concerns from the prior demonstration of 

[18]. Thus, this work had to recreate much of the technical baseline of [18]. With this 

expanded integration of framework and integration of documentation, future code 

modules and research can be performed using this work as a technical baseline. 

Comparisons will be run against a baseline model that was used in previous research 

[18]. Test metrics are defined in section 4.1 for proof-of-concept models and 6.1 for 

simulation and live testing. The new amygdala model is expected to perform equal to or 

better than the baseline.  
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2 BACKGROUND 

Creating cognitive functions is an area of research that aims to develop better artificially 

intelligent (AI) systems by leveraging constructs and principles from biology. While this 

has seen significant utility in the use and deployment of artificial neural networks 

(ANNs), further computational brain modeling is performed in hopes of achieving higher 

levels of cognition, and hence utility, in artificial agents. Increasing levels of cognition 

are viewed as important for creating the ability for artificial agents to both understand and 

provide capabilities [21]. 

2.1 COGNITION AND THE BRAIN 

Cognition is considered a process of acquiring knowledge and understanding 

which allows a system to effectively adapt and improve [21]. Cognition includes brain 

processes such as perception, attention, focus, learning, decision making, problem-

solving, and memory. Intelligence and cognition provide the framework to gain new 

knowledge from existing knowledge [22]. Many of the processes of cognition are 

theorized to occur due to the complex interaction of brain segments. 

The human brain is a significantly interconnected system. In order to understand 

the application of a biological brain in a robotic application, one must understand how 

different segments contribute to cognitive functions. The cerebral cortex is relied on for 

motor control, sensory control, and executive function. The hippocampus is involved in 

spatial memory and learning. The hypothalamus oversees maintaining homeostasis. The 

thalamus is a relay center for neural signals to be transmitted from the cortex and brain 

stem to other parts of the brain for interpretation. The basal ganglia are involved with 
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reward-based learning, memory, and emotion, and are considered a critical component in 

decision making [9]. 

The amygdala is often described as the control center for emotions and fight or 

flight reactions. New insights into the function and connectivity of the amygdala have 

been revealed in recent research. While defensive responses are derived from this section 

of the brain, the amygdala performs more than fear responses [13]. Sensory inputs, 

context, experience, motivation, and threat intensity all connect to the amygdala. Mood 

responses are generated in the central nucleus (CEA) and sent to autonomic and action 

selection segments [13]. Additionally, associative memory is shown to have a strong 

connection with the amygdala. Figure 2.1 provides a graphical representation of 

connectivity with the CEA. This figure shows the types of inputs and outputs and where 

they come from in the brain. Directional arrows indicate signal directionality [13]. 

Sensory information is provided by the sensory cortex (CTXs) and insular cortex 

(CTXin). The medial prefrontal cortex (mPFC) provides decision prediction inputs. 

Memory and context information is provided by the hippocampus (HIP) [13]. The bed 

nucleus of the stria terminals (BNST) injects anxiety information while the 

paraventricular nucleus (PVT) and intercalated cells (ITC) help regulate fear. Nociceptive 

responses are provided by the parabrachial nucleus (PBN) [13]. The substantia nigra pars 

compacta/ventral tegmental area (SNc/VTA) and raphe nucleus (RN) provide 

motivational influences. The central nucleus factors all these inputs with valence, or 

reaction capacity, from the basolateral amygdala (BLA) to generate output responses 

[13]. Autonomic regulation responses are provided to the locus coeruleus (LC), nucleus 

tractus solitaries (NTS), and dorsal motor nucleus of the nervus vagus (DMV). Action 
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selection responses are directed to the basal forebrain (BF), hypothalamus (HYP), and 

periaqueductal grey (PAG) [13]. 

 

Figure 2.1: Functional connections of the central nucleus (CEA) of the amygdala [13] 

 

The brain's parts are interdependent and require one another to function and create 

higher-order thinking as a response to complex problems. For instance, a fear response 

will be mitigated by the amygdala but will involve the cerebral cortex, hypothalamus, and 

thalamus [13]. While many of the activities in the brain are understood, some of the 

connections and interactions are beyond present research and scientific capabilities. 
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2.2  MIMICKING THE BRAIN 

Artificial intelligence is used to create systems that have human-like thinking, rational 

thinking, human-like actions, or rational actions [5]. Training allows similar task 

repetition without new code creation. Learning can also be used to develop new 

capabilities for a system or robot. Biology continues to inspire researchers to dive deeper 

into creating intelligent systems. The brain provides a previously organized system that 

can be used as a model for effective and efficient design. 

 Modern AI is frequently designed using Artificial Neural Networks (ANNs). 

These networks are modeled after neural connections in biology [6]. Spiking Neural 

Networks (SNNs) are the third generation of neural networks. These networks mimic the 

spiking nature of neuron action potentials, or spikes [23]. This biological analog allows 

for better analysis of brain processes, thus better cognitive applications [23]. Nengo AI is 

a popular neural engineering framework (NEF) for developing SNN applications [24]. A 

software library for SPA modules is provided in Nengo. This library will allow for the 

abstracted elements for concept vocabularies. Higher-level cognition is produced by 

working with concepts. 

Spiking neural networks have seen successful use in robotic applications. Control 

over a robotic hand [25], a six-legged walker [26], and a small insect scale robot [27] 

have all been achieved using SNNs. Robotic navigation has also been developed this way 

[28]. The applications are enhanced by neuromorphic hardware. This technology 

provides a physical application of SNNs, which provides speed and power efficiencies 

[23]. 
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 Increased cognitive capabilities allow robotic applications to obtain a higher-order 

thinking. Developing a brain-like feature within robotics accomplishes this goal. These 

digital brains allow robots to perform more dynamic tasks like action selection, 

prioritization, or adaptable responses. 

Implanting cognitive capabilities into robotic applications will allow greater 

autonomy. Keys to actionable artificial cognition are sensing, perception, reasoning, and 

actuation [21]. Sensing gives the robot the ability to observe the world while reasoning 

determines the appropriate course of action. Actuation allows for the agent to interact 

with the world through movement or manipulation of the objects within its environment. 

Many AIs have been created using computational neuroscience to replicate 

functions of cognition. TacAir-Soar is an impressive system that replicates the behavior 

of combat pilots [8]. Façade provides a simulated apartment in which multiple 

intelligence agents allowed user interactions with the environment. Sentences, body 

language, and gestures could be understood and exhibited by the agents. [8]. 

A SPA Unified Network (SPAUN) is capable of a variety of cognitive tasks [24]. 

Reprogramming and manual interaction are not required for task switching. One task 

takes a visual input to determine a pattern and use that knowledge to complete it [24]. 

This system shows a high level of cognition by incorporating several functions of the 

brain. 

2.2.1 LIMITATIONS OF PAST INSTANTIATIONS 

 

Modeled functions may have specified or limited features. The basal ganglia are more 

often used for action selection rather than other capabilities. Decision-making-based 

models have been hypothesized and verified using models of a monkey’s basal ganglia 
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[9] and Gaussian process regression [29]. Some thalamus circuit models are used for 

enhanced learning performance. Mimicking a dopamine response showed a 36% decrease 

for a system trying to catch a target [30]. The cortex-basal ganglia-thalamus loop is well-

known. The cortex provides, stores, and manipulates representations. The basal ganglia 

capture current brain states to courses of action. The thalamus applies routing signals to 

cortical pathways [24]. 

The fields of biology, computer science, logic, neuroscience, and psychology are 

being merged to model and create behaviors and responses in robots that closely mimic 

life. Cognitive model applications are emerging with basal-ganglia and thalamus sections 

utilized for decision making and creating actions. Connecting the emotions from the 

amygdala to the basal ganglia allows for behavior-driven controls. These elements can 

drive a person toward or away from a situation as well as create a sense of survival [18]. 

Nengo provides modules for the basal-ganglia and thalamus but not an amygdala. Adding 

this functionality will provide dynamic responses that contribute to higher-order thinking. 

2.2.2 SPIKING NEURAL NETWORKS 

Neural networks and the concept of interconnected branches and nodes get their 

inspiration from biology. The first generation only allowed for Boolean functions. The 

second-generation neural networks introduced sigmoid and other activations. These 

networks have allowed reasonable approximations of analog signals and are commonly 

used in other learning algorithms. Generation three introduced SNNs, which continued 

the biomimicry trend by modeling signals after neuron action potentials. These networks 

have helped develop better tools for analyzing brain functions [23].  

Using SNNs the human brain can process an image, classify it, and make 

decisions within 100 ms. This has not been true for other CNNs. A human brain 
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consumes about 20 watts, while supercomputers running brain simulations devour 

megawatts. Robots have limited power sources and CNNs can push beyond those limits. 

Lower power consumption can pave a new path for advances in robotic systems [23] 

Scalability is one of the largest capabilities for SNNs. Information can be 

processed in a relatively small number of neurons, but it also supports very large 

networks [23]. This makes abstraction and detail easier. A higher-level function works 

with a small number of neurons by sending commands to another set of neurons 

performing lower-level tasks. The same can be applied in reverse. This creates great 

versatility for SNNs [24]. 

Spatial-temporal information is also captured by the pulse-encoded nature of the 

SNN. These spikes can convey the timing of events with high precision and accuracy. 

The SNN offers advantages and greater biological plausibility for robotic applications 

[23]. The interest in this type of network has increased, but further research is still 

needed. 

2.2.3 NEURAL ENGINEERING FRAMEWORK 

The Neural Engineering Framework (NEF) used mathematical theory to represent the 

dynamics of neural systems [24].  There are three key principles to constructing an NEF. 

Representation is the first element. Spike trains need a nonlinear encoding of vector 

spaces to allow linear decoding [24]. The abstracted conversion allows for easier work 

with SNNs. Second, is the ability to compute and transform arbitrary vector functions 

based on the encoding [24]. Dynamics are the last element. Neurons are non-linear 

dynamical systems that have theoretical control state variables. The ability to represent 

dynamic and differential equations is required to have a fully functioning framework 

[24]. Nengo is a current NEF used to develop cognitive models and accomplishes all 
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three principles. The tool allows for the creation of SNN neuron ensembles, 

interconnection, and manipulation. Nengo was chosen because it offers better flexibility, 

scalability, and robustness while allowing a continuation of prior research [24]. 

2.2.4 SPA NETWORKS 

Semantic pointers use high-dimensional vectors to represent concepts. These vectors 

provide neural representations vital to complex cognition. Structure representations can 

be created through linear and non-linear operations on concept vectors [24]. There are 

three operations: superposition, binding, and unbinding. 

Superposition allows a union-like operation on two vectors. It provides an 

additive property. Elements of the original vectors are found in the resulting vector [24]. 

Binding produces a dissimilar vector but allows information recovery. A circular 

convolution operation is performed to achieve this. An example is shown for a simple 

symbol binding example of two concepts, 𝑅𝑒𝑑 ⊛ 𝑆𝑞𝑢𝑎𝑟𝑒 +  𝐵𝑙𝑢𝑒 ⊛ 𝐶𝑖𝑟𝑐𝑙𝑒 =

 �⃗�, where Red is bound with Square summed with Blue bound to Circle creating a new 

vector, �⃗�.  [24].  Unbinding performs the opposite function of binding. Two concepts 

bound together can become unbound. An approximate inverse is used in the circular 

convolution process to make this happen, but often produces noise [24]. An example of 

unbinding is demonstrated here, �⃗� ⊛ ~𝑆𝑞𝑢𝑎𝑟𝑒 =  𝑅𝑒𝑑 ⊛ 𝑆𝑞𝑢𝑎𝑟𝑒 ⊛ ~𝑆𝑞𝑢𝑎𝑟𝑒 +

 𝐵𝑙𝑢𝑒 ⊛ 𝐶𝑖𝑟𝑐𝑙𝑒 ⊛ ~𝑆𝑞𝑢𝑎𝑟𝑒 = 𝑅𝑒𝑑 + 𝑛𝑜𝑖𝑠𝑒, showing how to acquire color information 

from �⃗� data by binding with ~𝑆𝑞𝑢𝑎𝑟𝑒 (approximate inverse). A cancellation occurs with 
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𝑅𝑒𝑑 ⊛ 𝑆𝑞𝑢𝑎𝑟𝑒 ⊛  ~𝑆𝑞𝑢𝑎𝑟𝑒, leaving Red, and 𝐵𝑙𝑢𝑒 ⊛ 𝐶𝑖𝑟𝑐𝑙𝑒 ⊛ ~𝑆𝑞𝑢𝑎𝑟𝑒, becomes 

noise. 

This research relies on these three operations to create the desired functionality. 

Developing context and motivation become simplified as a result. These equations also 

demonstrate the practicality of working with concepts. 

2.2.5 NEUROMORPHIC HARDWARE 

Memristor-based technologies offer a method that natively represents and communicates 

in spikes. The physical implementation reduces computational overhead and power 

consumption [23]. This technology is called neuromorphic hardware. Traditional von 

Neumann and modified Harvard processors can run neural networks and SNNs but lose 

efficiency due to constant conversions [23].  

2.3 ROBOTIC INTELLIGENCE 

Robots are often designed to solve specific problems. This allows a given task to be 

performed well, but it is poor or incapable of performing anything outside of those 

parameters. Stepping away from the algorithmic approach provides a framework for 

systems to make decisions, learn, and develop on their own [21]. Systems capable of self-

development should meet the following design principles: the ability to mimic brain 

functions, the ability to organize sensory information, and it should have a physical 

presence within an environment for exploration [21]. Given a minimal skill set, it should 

explore, survive, engage in behavioral tasks, and then learn from its experiences. The 

system should have a means for adaptation and a sense of connection with its 

environment [21]. These systems use AI and machine learning techniques to adapt to 

their surroundings and learn new behaviors. 
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The ability to recognize oneself in a mirror has often been assumed a mark of 

intelligence. Humans quickly learn their mirrored identity. The test has been performed 

on numerous animals including dogs and fish with varying levels of success. A robot 

learned to identify itself in a mirror without other visual cues, such as a marking dot [31]. 

This has been done by relating the viewed actions with the movements performed by the 

machine. The ability of a robot to self-recognize can enhance navigation and 

environmental interactions [31]. 

 Using perfect single-color stimuli, researchers have taught a robot to understand 

concepts like horizontal, vertical, left, and right. Learning concepts are considered 

higher-order cognitive functions. Higher-order functions have previously been reserved 

for cognition and have been a focus of replication in robotics [32]. In biology and 

robotics, there are questions about how neural connections are made or modified. The 

relationship between first-order and second-order concepts is one such challenge. For 

example, by understanding the concept of horizontal, can a system identify above and 

below? [32]. This kind of thinking will help robots to learn at conceptual levels. 
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2.3.1 ROBOTIC CONTROL APPLICATIONS 

SNNs and neuromorphic hardware are research topics for robotics controls applications 

[23]. The advantage of spikes and learning allows for a wide range of robotic 

applications. Uses include low-level controls to high-level cognition with a variety of 

inputs and outputs. These applications and utilization of neuromorphic hardware have 

great potential. 

One application of SNNs developed motor primitives for a soft-grasping robotic 

arm. Online learning was used to create adaptive controls. The research allowed 

development without the need for traditional inverse kinematics and complex point 

planning, which avoids engineering complexities [25]. 

A six-legged walker intended for space exploration used the SNNs to control motor 

primitives, local leg behaviors, coordination, and high-level controls [26]. This modeling 

approach represented varied motions and highlighted the ability of a neurorobotic 

platform by demonstrating that motor primitives are flexible enough to mimic more than 

one type of movement [26]. Another example involves a small insect scale robot capable 

of flight. Neuromorphic hardware is used to receive sensor inputs, control hover, 

perching, and trajectory-following [27]. 

 A social robot, developed by Fischl, utilizes neuromorphic hardware [17]. The 

robot uses a vision system to detect the social partner’s facial expression. A primate 

amygdala model detects if the person is smiling, distressed, frowning, or neutral. This 

information is used to provide a joy score [14] [17].  This research leverages these 

concepts and builds upon this foundation as described in the subsequent chapters.  
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3 DEVELOPING A MOOD MODEL FOR ROBOTICS 

The interest herein involves developing an amygdala-driven robot. This involves creating 

autonomous abilities for computational mood responses as a result of detected object 

inputs, contextual applications, and motivational influences. 

3.1 BACKGROUND REFERENCE MODEL 

Amygdala models frequently focus on fear responses and conditioning [17]. Fischl 

developed a primate amygdala model that focused on multiple emotions [14] [17]. This 

model used a visual input to evaluate a subject’s emotional countenance and assign a 

score. Neuron ensembles were created in Nengo to represent neural subcomponents. 

Additionally, work by Stewart [16] created a simple amygdala model that receives 

numeric values representing the facial features of a subject to determine a response. 

However, the work of [16] used limited mood responses based upon inputs to neuron 

ensembles. Despite these limitations, the simple amygdala models from [16] served as a 

basis for the start of this research.  

3.1.1 CONCEPTS AND EXTENSIONS 

The central nucleus is the key processing unit of the amygdala. Here, numerous inputs 

create responses for autonomic regulation and drivers for action selection [13]. Sensory 

inputs come from the sensory cortex. The hippocampus provides a relationship for 

context-based on memory. The substantia nigra pars compacta inject motivational stimuli 

[13]. These are the inputs of interest for this research. 

Creating and altering contexts allows an amygdala to respond differently to the 

environment. Meeting a lion at the zoo versus on the Savanah likely evokes different 

reactions. Likewise, interacting with a grease fire demands a different response than the 
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open flame of a gas stovetop. The examples show how contextual influences are 

important and can be used to create higher-order thinking in robots. 

Motivations of various kinds can amplify an intended response or influence an 

agent to behave differently. Simple motivations like encouragement or focus can drive 

one toward a goal and discouragement can drive one away from it. This concept was 

added to the model and provided a method to increase or decrease the three primary 

behaviors of fear, hunger, and curiosity. 

 The inputs provided for object types, context, and motivation lend themselves to a 

conceptual nature. The Nengo SPA provides an easy way to allow this abstraction from 

vector values. This conversion of discrete inputs into symbols allowed the transmission 

and transformation of concepts, which are human-readable, easier to track in the system, 

and simplify scale with added vocabulary. 

The other models use low vector count representations for moods and expressions. 

The primate amygdala used a five-dimensional vector to represent emotional input and 

gaze [14]. Using SPAs for this research will create a unique model. Neuron count will 

increase as a trade-off for abstraction. However, working with concepts allows for the 

binding and unbinding of context with objects. This will be important to the functionality 

of this model. 

3.1.2 IMPLEMENTATION CONSIDERATIONS 

Model and simulation work from previous research, see [18] [19], served as a starting 

framework. This prior work enabled the leveraging of already developed simple robotic 

controls and sensor inputs such as image processing. These inputs are then processed by 

the reasoner portions which implement simple amygdala-like functions for mood, 

intention, and basal ganglia decision making [18]. Moods of fear, hunger, and curiosity 
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were connected to the actions of flee, feed, and explore to create a basis for mood-driven 

decision-making [18]. These elements were kept for simplicity. The system used Nengo 

for cognitive modeling, ROS communication, and Gazebo for the simulation 

environment. Real-world applications were implemented on a TurtleBot 2.0 system [18]. 

3.2 SIMPLE AMYGDALA MODEL, MODEL A 

Before the implementation of robotics or considering sensor data, the behavior of 

Stewart’s model [16] was analyzed. This model contains a lateral segment, simple basal 

ganglia, an external cerebral cortex, and a central nucleus to represent the amygdala. The 

block diagram of this model, Model A, from Nengo, is shown in Figure 3.1. The input 

values for a discrete number of signals, such as eyes, mouth, teeth, and known target are 

received by the lateral neuron ensemble input [16] [15]. Data is transformed along lateral 

to the central pathway by evaluating the inputs to a list of known point values and 

resolving it with a list of output moods. Along the lateral to basal connection, a 

thresholding function is applied. For instance, if input values for teeth or mouth are below 

a level then anger is given a strong assertion [16]. These two paths then recombine at the 

central nucleus to create a summed value. 

 

Figure 3.1:  Block diagram of the simple amygdala, Model A, displayed in Nengo 
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This model will serve as a reference. Replication of the lateral and central nucleus 

is considered the necessary minimum. Conversion to SPA modules is not one-to-one. 

Transformations performed along signal paths will require different approaches. Path 

combinations will also require the same vocabulary set. The concepts used to identify 

objects cannot be interchanged with moods. The conversion is expected to provide 

similar functionality but not expected to have identical results. 

3.3 AMYGDALA MODEL B 

The amygdala Model B concept was provided by the previous research on autonomous 

learning and considered as a baseline [18]. The model is displayed in Figure 3.2. The 

associative memory block could be considered the simplest stand-alone amygdala. Here, 

the inputs on the left connect to the associative memory input. This block compares a 

given input to a Python dictionary to provide the mood output. The function is similar to 

the lateral basal pathway in the simple model. The output then goes to a SPA state 

module, “Mood”, which provides a light memory function. The model possesses bio-

plausibility [13] and methods for extending motivation. 

 

Figure 3.2: Block diagram of Model B displayed in Nengo 
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3.4 AMYGDALA MODEL 0 

The Amygdala Model 0 was developed to convert Model A [15] into the SPA symbolic 

form. Working with abstracted symbols is the primary objective and will simplify the 

manipulation of concepts. Additionally, instead of input elements derived from images 

for eyes, mouth, teeth, and a known target, this implementation received vocabulary 

symbols at the lateral input as detected objects. 

 

Figure 3.3: Block diagram of Model 0 displayed in Nengo 

 

Figure 3.3 shows the connections between blocks for Model 0. The inputs in Figure 

3.3 start on the left side of the diagram and are connected to the lateral inputs. Two paths 

diverge from the lateral output. One branch to an associative memory block named 

“Basal”, which converts the object to a mood. The other path goes to a winner-take-all 

(WTA) basal-thalamus for object selection. The basal-thalamus emphasizes the mood 

response of specified objects if present. This attempts to replicate the strong influences of 

certain facial features found in the lateral to central path of the simple model. These 

branches from the basal and basal-thalamus recombine into the pre-central state before 

evaluating for the maximum signal. The central portion now requires a WTA approach to 
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determine the outcome. An attempt was made to use a WTA module, but this altered the 

output into 32 unique states. Limitations in understanding prevent reasonable adaptation 

for this. Instead, a second basal-thalamus action selection module was used to provide the 

maximum output to the CEA. 

3.5 AMYGDALA MODEL 1 

Model 1 was intended to reduce the complexity of Model 0 due to the high neuron count 

and the number of required components. The key difference was the conversion from 

signal input to mood output. This was performed in the central stage of the model instead 

of along the pathways and removed the secondary action selection node used in Model 0. 

Additionally, the action selection path was replaced with SPA basal ganglia and thalamus 

blocks, which are expected to perform in a WTA fashion. 

Figure 3.4 shows two inputs connecting to the lateral input. The lateral output has 

one connection to the central and another to a basal-thalamus section. This section 

includes a SPA state to mimic the cortex memory used in the simple model. Both paths 

converge back to the central nucleus where the output mood is produced. 

 

Figure 3.4: Block diagram of Model 1 displayed Nengo 

 

  



 

25 

 

3.6 AMYGDALA MODEL 2 

Model 2 was developed to resolve issues in Model 1’s WTA pathway discovered during 

the evaluation. The original path was intended to simplify programming and allow better 

scalability; information about the related challenges can be found later in the thesis, in 

Section 4.3. Action selection components were selected to prove the desired WTA 

functions. This also drove a method for selecting objects of interest. 

 

Figure 3.5: Block diagram of Model 2 displayed in Nengo 

 

The connectivity of Model 2 is shown in Figure 3.5. The lateral input (far-left) 

receives inputs and passes them to both the basal-thalamus circuit and the CEA. The 

basal-thalamus path identifies objects of interest and emphasizes the signal to the central 

nucleus. This allows the robot to view an environment and deem some objects of a higher 

value or importance than another. Responding to a person on the highway may be more 

important than the traffic sign. The cortex state allows for retention of some values even 

if the inputs are changed or cleared. The CEA is an associative memory block and will 

create the mapped mood outputs. 
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Model 2 became the basis for adding features. While Model B offered simplicity, 

Model 2 provided additional pathways to influence the response which mimics the simple 

model. In a modularized form, these features were easily adjusted or omitted. 

3.7 ADDING MOTIVATION, AMYGDALA MODEL 2M 

Motivational input is a described feature of the central nucleus as well as associative 

learning [13]. However, prior work [18] did not incorporate this. As discussed in section 

2.1 such motivational input influences amygdala responses. Thus, to model this a 

motivational vocabulary was created. Mood transformations from the motivations were 

considered with a simple associative memory module added to the output of Model 2 to 

provide a singular mood output. Figure 3.6 shows the addition of motivation on the far-

right side along with the summation of the central output; outlined in red. Thus, the 

output of the motivation module is combined with the amygdala outputs using the 

superposition properties in Nengo. The placement of motivation at the end of the path 

was chosen to reflect an influence on the overall mood and not just a specific input or 

aspect of it. 

 

Figure 3.6: Model 2 with the addition of the motivation circuit, outlined in red 
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Discourage, encourage, focus, and normal symbols were created to represent 

motivations. These motivators and their effects were decided based on general logic on 

how individuals might interact with their environment because of the motivator’s 

definition. The represented effects of the motivators are found in Table 3.1. Moods are 

developed relative to the motivation that they include. For example, the “Normal” 

motivation provides a simple curiosity so the robot will move and look around if there is 

no actionable stimulus. Normal has a scaling factor of 0.15 on curiosity to impel 

movement if no objects drive a mood. A scaling factor of 1.0 was not used to avoid 

overriding mood responses from object inputs. Further motivations are based on 

combinations of moods. For example, while the mood of hunger drives the robot forward 

(towards a target), the “Focus” motivations include hunger as a primary effect and 

curiosity and fear as negations to balance the intent of focusing on a specific object 

instead of the looking and searching of curiosity and turning away of fear.  

Discouragement brings about fear and a reduction of hunger and curiosity causing 

avoidance reflected by an action to flee. Encouragement is used to add courage and 

reduce the impact of fear.  

Table 3.1: Relating motivation to mood 

Motivation Intent Mood Output 

Discourage Increase fear 0.2*FEAR - 0.1*HUNGER - 

0.1*CURIOSITY 

Encourage Decrease fear 0.25 * CURIOSITY - 0.3*FEAR 

Focus Increase drive 0.5*HUNGER - 0.25*CURIOSITY - 

0.25*FEAR 

Normal General movement 0.15*CURIOSITY 
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3.8 ADDING CONTEXT, AMYGDALA MODEL 2MC 

Context is a framework around everything that can be observed. For this application, 

context is used to describe a given environment, such as a highway or living room. The 

approach for creating this framework in Nengo relied upon contexts represented as 

concepts through SPA. Two different models were developed to demonstrate the impact 

of context. The first mimicked the method used for motivation. This is a very simple, 

straightforward approach and the results were effective but less realistic. Applying 

context in a blanketed method overrules unique responses from individual objects. 

Principles for binding and unbinding in Nengo are critical for using context. A 

context is applied, or bound, to the inputs outside of the amygdala model, and is assumed 

to be unknown. New pathways were created for context unbinding. These additions also 

created a change in the model. Context unbinding paths obtained localized associative 

memory units to provide unique mappings. The CEA was changed to be a SPA state as a 

mood collection point. 

 

Figure 3.7: Block diagram for Model 2MC with elements for added context. Binding circuits are outlined in blue 

and unbinding circuits are outlined in red. 
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Figure 3.7 shows binding inputs in a blue box on the left and an encapsulated amygdala 

model on the right. Inside, a red box labeled “Context_Unbinding” contains the pathways 

used to unbind the object from the context. The approximate inverse is specified in each 

pathway providing the unbound information to the respective associative memory block. 

 Several context symbols were created. A roadway scenario and a building 

environment were imagined and created as separate sets. The roadways were “Highway”, 

“Neighborhood”, and “Practice” environments. Buildings were given room names for 

“Office”, “Kitchen”, and “Living Room.” Each context has a unique mapping for objects 

to provide different interactions and effects. 

3.9 COMPLEXITY OF MODELS  

Each element in the model contributes to the overall neuron count. Table 3.2 compares 

the total number of neurons from one model to another. These counts include input 

generators. The change of scale was considered more important than an exact count. 

Model B is the least complex. Model 2 is approximately three times more complex. 

Adding multiplexer circuits for context dramatically increased neuron count. 

Table 3.2: Neuron count per model 

Model Number of Neurons Comments 

A 1100 Not SPA-based, cannot 

integrate into robot 

model [18] 

B 1800 Baseline model [18] 

0 7750 First attempt 

1 22600 Failed reduction 

2 6700 Appropriate reduction 

2M 8450 Motivation added to 

Model 2 

Context (end) 8600 Concept not used 

2MC 64850 Amygdala with context 

and motivation 
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4 PROOF OF CONCEPT DEMONSTRATION 

The models were developed for a proof-of-concept demonstration. A set of metrics were 

created to perform functional validation. Different phases of development and testing 

required different metrics. The best-performing model was then selected for expansion 

and robot integration. 

4.1 METRICS 

Simulation data was captured in Nengo by using probes. These probes were placed along 

the signal paths. When observing the final model, one of the probes is placed on a 

dummy state which collects all inputs without context binding. Once objects have a 

binding they can no longer be probed in the same manner. Simulation run times were 

captured during each run and exported to a log file. The log also includes configuration 

information on the context and motivation. During the proof of concept, the metrics for 

architecture size, simulation time, and behavioral accuracy were most important. 

Network architecture size is based upon the number of neurons and helps to 

understand complexity. This number is a retrievable property of the Nengo model. 

Simulation time was assumed to be proportional to the number of neurons. The timing 

was captured using Python’s Time library to determine a run time measurement. This 

measurement evaluated the complexity and efficiency of the model. Run times were 

averaged throughout 10 operations. This method helps reduce differences caused by 

processor loading and other system variables. 

Behavioral accuracy was measured by comparing detected inputs to expected 

outputs. If an object created a “FEAR” response but the output showed a “HUNGER” 

response, it was considered inaccurate. Correct outputs with lower-than-expected values 
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are flagged but not considered inaccurate. The accuracy is calculated as a percentage of 

correct versus the total. Proof of concept models were tested twice. Once with a single 

detected object and another with two. 

4.2 GUIDE TO READING PLOTS 

Many of the plots contain large amounts of data. Plots are presented in a way to convey 

the flow from input to output moving from top to bottom. This section intends to bring 

clarity on how to read and understand the data. 

 

Figure 4.1: Model 2MC used to explain probe information, red indicates the location of a probe with its 

identification number 

 

Figure 4.1 shows a block diagram of Model 2 with context and motivation. Knowing the 

progression of signals through the model is important to anticipate and read results while 

tracking from input to output. Probe locations are numbered in red for reference. 

Location 1 (left) is the unbound collection of all detected inputs and measures objects. 

Location 2 (left) is the applied context. Location 3 (center) is the input to the basal-

thalamus selection circuit and measures objects. Locations 4 and 5 (right) are the 

respective input and output of the context 1 associative memory. The input measures 
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unbound objects filtered by context 1. The output is the associated mood responses. 

Location 6 (right) is the input motivation. Location 7 (right) measures the mood 

associated with the active motivation. Locations 8 and 9 (right) are the respective inputs 

and outputs of the CEA. These locations are both expected to measure the same mood 

values with possible exceptions from feedback. 

To read plots, like Figure 4.2 and Figure 4.3, the signals of each plot were color-

coded according to the defaults provided by the Matplotlib for Python. The number of 

signals was limited to prevent color overlap and confusion. The signals are represented in 

time and signal level. Detection inputs combine differently based upon the generated 

signals and their timing. Figure 4.2, which was created using data from internal cycling 

generators as inputs to Model 2MC, provides an example of a single input signal where 

the change is visible every half-second. 

 

Figure 4.2: Example of single detection input probe location 1. 

 

Figure 4.3 combines two signals with slightly different timing. The signal levels 

often match, showing both signals as active, but making it more difficult to determine 
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which is more dominant. Signals of the same object type sum together to produce one 

larger signal, as found around 1.75s with the “STOP_SIGN”. 

 

Figure 4.3: Example of two detection inputs at probe location 1. 

 

 Context and motivation input signals are easier to track because each one has a 

single value and cycles over time, so there are no overlapping signals. An example of 

context is shown in Figure 4.4 and motivation in Figure 4.5. 

 

 

Figure 4.4: Example of applied context input at probe location 2. 
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Figure 4.5: Example of applied motivation input at probe location 6. 

 

 Part of the model flow is the association of a signal to a corresponding output. 

The signals are typically synchronous throughout the amygdala portion of the models 

allowing simple response correlations. Inputs to the robot are denoted by capitalization 

and quoting to differentiate from discussion around the function. Figure 4.6 uses arrows 

to show how “FOCUS” corresponds with increased “HUNGER” and suppression of 

“FEAR” and “CURIOSITY”. Arrows are used in this guide to help show the relationship 

between signals but are not used in the rest of the document. 
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Figure 4.6: Example of motive input and associated mood output probe locations 6 (top) and 7 (bottom). 

 

Figure 4.7 shows signals being traced with a given applied context. Probes are 

placed at locations 2, 4, 5, and 9 and plotted in that order from top to bottom. Vertical 

bands are added to help highlight a specific region for observation. This becomes very 

helpful while following the numerous stages of input with context binding, unbinding, 

and the eventual outcome. Reading the plots from top to bottom, “NEIGHBORHOOD” is 

the applied context in the banded region of interest. The second row shows the detected 

objects related to this context input. The associated mood responses are in row three. The 

final row shows its contribution to the overall output.  
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Figure 4.7: Example of context signal flow from input, unbinding, and association. Probes, from top to bottom, 

are at locations 2, 4, 5, and 9. Arrows and bands show signal routing and contributions. 

  

Showing the flow of multiple signals can be more complicated. In some cases, 

this is done by plotting each context side by side with the full response in the bottom-

most plot. The intention is to show how each path contributes to the overall response. An 

example of this is shown in Figure 4.8. This plot style shows the propagation and 

transformation of signals from input to output. The first row shows contexts as they 

change in time. The second row shows the inputs to each context path as a subplot. The 

first column is “Practice”, the second is “Neighborhood”, and the third is “Highway”. 

These paths are repeated from Figure 4.7 to Figure 4.8 above and incorporated with the 

full responsibility for context. The respective mood responses to each context are placed 

below each in row three. The last row is the overall mood response and shows how each 

part contributed. 
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Figure 4.8: Example of context signal flow with multiple contexts shown at once. 
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4.3 DEMONSTRATION FOR PROOF OF CONCEPT 

Proof of concept testing for each model was performed to evaluate performance and 

accuracy to an expected outcome. The models were compared to each other but not 

compared to Model A. These do not operate in the same manner due to the SPA design, 

and can only be evaluated by similarity in behavior. Simulations were run using a five-

second simulation time with a time step of 0.001. Table 4.1 lists the neuron count, 

average simulation execution time, and the standard deviation between runs for each 

model. Table 4.2 provides an overview of model accuracy. 

 

Table 4.1:  Proof of Concept Results. Simulations are 5s with dt=0.001 

Model Neuron Count Avg Sim Time (s) Std. Deviation Reason 

Model 0 7750 26.308 0.873 Initial model 

Model 1 22600 18.188 1.065 Model 

reduction 

Model 2 6700 16.960 0.728  

Model B 1800 4.659 0.115 Previous 

research 

Model 2M 8450 19.683 1.365 New feature 

Context (end) 8600 22.567 1.172 Test feature 

Model 2MC 64850 61.430 1.814 New feature 

 

Table 4.2: Model accuracy overview 

Model Neuron Count Accuracy (Single Input) Accuracy (Two Inputs) 

Model 0 7750 67% 100% 

Model 1 22600 67% (50%) 100% 

Model 2 6700 67% (100%) 100% 

Model B 1800 100% (92%) 100% 

Model 2M 8450 100%  

Context (end) 8600 NA NA 

Model 2MC 64850 83%  

 

Simulations of the simple model were performed to capture the overall behavior. 

Inputs for the eyes and known persons used a square wave input. The lateral to central 

connection path evaluates if the mouth and teeth are below a threshold of 0.8 (changed to 
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0.6 for simulation) and asserts an angry mood. This value could outweigh the inputs from 

the basal ganglia portion, which is evaluating all four inputs differently. Inputs were 

randomized for testing using square waves for eyes and known persons while mouth and 

teeth were produced with sinusoids. 

 

Figure 4.9: Response from Simple model 

 

 Figure 4.9 shows the results of the stimulus and output response. The plot for the 

input to the central nucleus reflects the output of both the basal ganglia and lateral 

pathways before its final conversion for the output. Stronger assertions of the mood 

“Anger” are shown when the signals for mouth and teeth meet the threshold 

requirements. 

Model B is highly simplified, consisting of a single associative memory block. 

The probes capture both input signals and the associated output. Since this block is set up 
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for threshold and not WTA the output signals expect a dominant signal but do not expect 

other signals to be suppressed. 

 

Figure 4.10: Model B input to output response over 5s simulation time with a single input 
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Figure 4.11: Model B output response from two inputs over 5s simulation 

 

Figure 4.10 shows the effectiveness and simplicity of a single-stage module. Figure 4.11 

shows how multiple inputs are easily handled and can include multiple mood responses 

due to the thresholding nature. 

Table 4.3: Model accuracy from a single input. Yellow items yield close but different results. 

 

Time Input Expected Central 

Output 

Measured Central 

Output 

0.25 0.25 None None 

0.75 0.75 Curiosity Curiosity 

1.25 1.25 Hunger Hunger 

1.75 1.75 Fear Fear 

2.25 2.25 None None (Hunger 0.3) 

2.75 2.75 Hunger Hunger 
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Table 4.4: Model B accuracy from two inputs. 

 

Time Input Expected Central 

Output 

Measured Central 

Output 

0.25 Bus, Bowl Hunger Hunger 

0.75 Car, Traffic Light Curiosity Curiosity 

1.25 Fire Hydrant, Traffic 

Light 

Hunger Hunger 

1.75 Stop Sign Fear Fear 

2.25 Fire Hydrant, Traffic 

Light 

Hunger Hunger 

2.75 Car, Bowl Hunger + Curiosity Hunger (0.8) + 

Curiosity (1.25) 

3.25 Bus, Car Curiosity Curiosity 

3.75 Bus, Car Curiosity Curiosity 

4.25 Fire Hydrant, Bowl Hunger Hunger 

4.75 Stop Sign, Traffic 

Light 

Fear Fear 

 

Table 4.3 and Table 4.4 present the measured versus expected results. The results 

were sampled every 250 ms to avoid signal transitions. The yellow text reveals a minor 

inaccuracy which can be considered noise. 

Model B provides the lowest number of neurons, fastest result, best accuracy, and 

the simplest solution. The trade-off is the loss of weighted inputs provided in other 

models but still holds to principles of the amygdala function. 

Model 0 closely mimics the behavior of the simple model. Compared to other 

models, Model 0 requires 10 seconds more than Model 2 to execute the simulation and is 

nearly five times slower than Model B. An accuracy test using a single input yielded 

67%. The inaccuracies occurred when the input has no associated mood mapping. The 

action selection path treats the highest signal as the maximum despite its absence as an 

input. For example, if there is no input, but the noise from the object “CAR” is the 

maximum signal, then the associated output, “CURIOSITY”, is asserted as the response, 

which causes the output to yield an incorrect result. 
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Figure 4.12: Model 0 selection path signals.  

 

Figure 4.12 displays the results using two inputs and the reflected output. The 

central plots of the figure show how a low signal strength for “CAR” produces a 

moderate “CURIOSITY” response during the first half-second. The impacts can be 

viewed in the central output in the bottom right. 
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Table 4.5: Model 0 expected versus measured results with a single input. The results in red are incorrect. 

Time Input Expected 

Pre-

Central 

Measured 

Pre-Central 

Expected 

Central 

(Output) 

Measured 

Central 

(Output) 

0.25 Bus None 0.5 Curiosity None Curiosity 

0.75 Car Curiosity Curiosity Curiosity Curiosity 

1.25 Fire 

Hydrant 

Hunger Hunger Hunger Hunger 

1.75 Stop 

Sign 

Fear Fear Fear Fear 

2.25 Traffic 

Light 

None 0.4*Curiosity None Curiosity 

2.75 Bowl Hunger + 

Curiosity 

Hunger + 0.6 

Curiosity 

Hunger Hunger 

 

Table 4.6: Model 0 expected versus measured results with two inputs. The results in red are incorrect. 

Time Input Expected 

Pre-

Central 

Measured 

Pre-

Central 

Expected 

Central 

(Output) 

Measured 

Central 

(Output) 

0.25 Bus, Bowl Hunger + 

Curiosity 

Hunger + 

0.6 

Curiosity 

Hunger Hunger 

0.75 Car, Traffic 

Light 

Curiosity Curiosity Curiosity Curiosity 

1.25 Fire 

Hydrant, 

Traffic 

Light 

Hunger Hunger Hunger Hunger 

1.75 Stop Sign Fear Fear Fear Fear 

2.25 Fire 

Hydrant, 

Traffic 

Light 

Hunger Hunger Hunger Hunger 

2.75 Car, Traffic 

Light 

Curiosity Curiosity 

+ Hunger 

Curiosity Curiosity 

3.25 Bus, Car Curiosity Curiosity Curiosity Curiosity 

3.75 Bus, Car Curiosity Curiosity Curiosity Curiosity 

4.25 Fire 

Hydrant, 

Bowl 

Hunger + 

Curiosity 

Hunger Hunger Hunger 

4.75 Stop Sign, 

Traffic 

Light 

Fear Fear + 

Hunger 

Fear Fear 
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Table 4.5 and Table 4.6 present the measured versus expected results. The results 

were sampled every 250 ms to avoid signal transitions. It highlights in red which tests 

failed. Despite the closeness of adaptation, this model is deemed impractical due to the 

slow speed and inaccuracies. 

Model 1 relies on basal ganglia and thalamus circuit for WTA results. The cortex 

output is the memory stage of the basal-thalamus network. The winner, or maximum 

signal, is expected to be large and the rest should be suppressed to a value of zero or less. 

The signals along this path cause the results to be skewed from the expectation. 

 

Figure 4.13: Model 1 input to output response over 5s simulation time 

 

Figure 4.13 shows measurements along with the Model 1 paths. Object inputs are 

in the top row. The cortex output is the second row. Only one signal should be asserted 

while others are suppressed, but the subplot clearly shows this is false. The figure shows 
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where signals of the central input don’t always produce expected signals at the central 

output. Table 4.7 and Table 4.8 present the measured versus expected results. The results 

were sampled every 250 ms to avoid signal transitions. It highlights in red which tests 

failed. Of note, three out of six mood responses were successful in Table 4.7, generating 

a low accuracy. Mood responses in Table 4.8 were 100% accurate, indicating false mood 

generation when a single input is present without an expected response. 

 

Table 4.7: Model 1 expected versus measured results for a single input. Red entries are incorrect. 

Time Input Expected Central 

Input 

Measured 

Central 

Input 

Expected Central 

Output 

Measured Central 

Output 

0.25 0.25 Bus Bus None Fear (0.2) 

0.75 0.75 Car Car Curiosity Curiosity 

1.25 1.25 Fire Hydrant Fire 

Hydrant 

Hunger Hunger 

1.75 1.75 Stop Sign Stop Sign Fear Fear 

2.25 2.25 Traffic Light Traffic 

Light 

None Fear (0.4) 

2.75 2.75 Bowl Bowl Hunger + Curiosity Hunger 
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Table 4.8: Model 1 accuracy results based on two inputs. Red entries are incorrect. 

Time Input Expected 

Central 

Input 

Measured Central 

Input 

Expected 

Central Output 

Measured 

Central Output 

0.25 Bus, 

Bowl 

Bus, Bowl Bus, Bowl Hunger Hunger 

0.75 Car, 

Traffic 

Light 

Car, Traffic 

Light 

Car, Traffic Light Curiosity Curiosity 

1.25 Fire 

Hydrant, 

Traffic 

Light 

Fire Hydrant, 

Traffic Light 

Fire Hydrant, Traffic 

Light, Bowl 

Hunger Hunger 

1.75 Stop 

Sign 

Stop Sign Stop Sign Fear Fear 

2.25 Fire 

Hydrant, 

Traffic 

Light 

Fire Hydrant, 

Traffic Light 

Fire Hydrant, Traffic 

Light 

Hunger Hunger 

2.75 Car, 

Bowl 

Car, Bowl Car, Bowl Hunger + 

Curiosity 

Hunger + 

Curiosity 

3.25 Bus, Car Bus, Car Bus, Car, Stop Sign Curiosity Curiosity 

3.75 Bus, Car Bus, Car Bus, Car Curiosity Curiosity 

4.25 Fire 

Hydrant, 

Bowl 

Fire Hydrant, 

Bowl 

Fire Hydrant, Bowl Hunger Hunger 

4.75 Stop 

Sign, 

Traffic 

Light 

Stop Sign, 

Traffic Light 

Stop Sign, Traffic 

Light 

Fear Fear 

 

An underlying element of Nengo caused challenges for this model. The basal 

ganglia and thalamus modules were expected to function with the SPA inputs. Instead of 

finding the winner with an abstracted symbol, it appeared to compare each of the 32 

dimensions in the underlying vector space and select the winner from each one. Because 

of this, some results were observed to display outputs that weren’t even selected for the 

inputs. Model 1 was deemed invalid due to the incorrect behavior of the basal-thalamus 

circuit. This is seen in Table 4.7 

Model 2’s basal-thalamus path provides the maximum function in an expected 

manner and yields results that were not found in Model 1. The neuron count is less than 
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Model 1 by nearly 16,000 neurons, however, its average simulation time is only 5% 

faster. 

 

Figure 4.14: Model 2 basal-thalamus path showing WTA behavior with two inputs. 

 

The desired WTA behavior is observed in Figure 4.14. The basal ganglia select 

the maximum signal and can be viewed in the “Thalamus In” in the center. The thalamus 

portion suppresses all other signals to provide a single dominant signal. This is viewed in 

the “Cortex Out” subplot. 
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Figure 4.15: Model 2 input to output response over 5s simulation time 

 

Figure 4.15 provides visibility into each stage of the model. The objects “CAR”, 

“STOP SIGN”, and “TRAFFIC LIGHT” hold additional weight based on the 

configuration shown in Figure 3.5  This plot shows the influence of weighted items in the 

“Cortex Output” stage of the basal-thalamus circuit on the “Central Output”.  

Single input accuracies follow the trend of Model 0 and Model 1 at 67%. Using 

thresholding associative memory causes this inaccuracy. Increasing the threshold or 

changing to a WTA associative memory can resolve the inaccuracies. Changes to the 

threshold could suppress low signals but would remain effective, however changing the 

typing of associative memory would only allow a single output. This matches the simple 

model but would prevent mixed moods or behaviors where other brain segments could 
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determine the appropriate action. Two or more inputs yield 100% accuracy with signal 

levels slightly lower than expected at 2.75 and 3.75 seconds. 

Table 4.9: Model 2 expected versus measured results for a single input. Red entries are incorrect. 

Time Input Expected 

Central Input 

Measured 

Central Input 

Expected 

Central 

Output 

Measured 

Central Output 

0.25 0.25 Bus Bus None Hunger (0.6) 

0.75 0.75 Car Car Curiosity Curiosity 

1.25 1.25 Fire Hydrant Fire Hydrant Hunger Hunger 

1.75 1.75 Stop Sign Stop Sign Fear Fear 

2.25 2.25 Traffic Light Traffic Light None Hunger (0.6) 

2.75 2.75 Bowl Bowl Hunger + 

Curiosity 

Hunger (1.4) + 

Curiosity (0.25) 

 

Table 4.10: Model 2 expected versus measured with two inputs. Yellow items yield close but different results. 

Time Input Expected 

Central 

Input 

Measured Central 

Input 

Expected 

Central 

Output 

Measured 

Central 

Output 

0.25 Bus, Bowl Bus, Bowl Bus (1.2), Bowl (1.9) Hunger Hunger 

0.75 Car, Traffic 

Light 

Car, Traffic 

Light 

Car (1.8), Traffic Light 

(1.1) 

Curiosity Curiosity 

1.25 Fire 

Hydrant, 

Traffic 

Light 

Fire Hydrant, 

Traffic Light 

Fire Hydrant (0.9), 

Traffic Light (1.7) 

Hunger Hunger 

1.75 Stop Sign Stop Sign Stop Sign (2.5) Fear Fear 

2.25 Fire 

Hydrant, 

Traffic 

Light 

Fire Hydrant, 

Traffic Light 

Fire Hydrant (1.8), 

Traffic Light (0.9) 

Hunger Hunger 

2.75 Car, Bowl Car, Bowl Bowl (1.5), Car (0.7) Hunger + 

Curiosity 

Hunger (1.25) 

+ Curiosity 

(0.75) 

3.25 Bus, Car Bus, Car Bus (0.5), Car (1.5) Curiosity Curiosity 

3.75 Bus, Car Bus, Car Bus (1.5), Car (0.5) Curiosity Curiosity 

4.25 Fire 

Hydrant, 

Bowl 

Fire Hydrant, 

Bowl 

Fire Hydrant (0.8), 

Bowl (1.6) 

Hunger Hunger 

4.75 Stop Sign, 

Traffic 

Light 

Stop Sign, 

Traffic Light 

Stop Sign (1.8), 

Traffic Light (1.0) 

Fear Fear 
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Table 4.9 and Table 4.10 present the measured versus expected results. The 

results were sampled every 250 ms to avoid signal transitions. It highlights in red which 

tests failed. Of note, two of six inputs were incorrect in Table 4.9. Thus, while Model 2 

greatly reduced the neuron count from Model 1, accuracy remained the same but 

decreased in a simulation time of 6.7%. Model B is 72% faster and 73% smaller than 

Model 2. However, Model 2 was selected over Model B because it allowed pathways to 

emphasize selected object inputs. This feature better reflected the Model A’s connection 

to the basal and was preferred for the design. In a modularized form, these features can be 

easily adjusted or omitted. 

Model 2M adds motivation to Model 2, combining it with the CEA for the 

complete mood response. A single input was used to highlight the impacts of motivation 

on the output. The additional circuitry adds 650 neurons and up to six seconds of 

simulation time. The top row of Figure 4.16 shows the inputs to the central nucleus (top 

left) and the motivation input (top right). Row two shows the output effects of each of 

those nodes. The output mood displays the superposed result of the image to mood and 

motivation to mood signals. 
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Figure 4.16: Effects of motivation with single detection input. Central and motivation outputs combine to 

produce the overall mood output. 

 

 

Table 4.11 present the measured versus expected results for Model 2M as seen in 

Figure 4.16. The results were sampled every 250 ms to avoid signal transitions. The 

yellow text reveals a minor inaccuracy in signal level. Adding motivation was an 

effective influence on behavioral responses. The impact of “FEAR” with the motive 

“DISCOURAGE” was reduced. Testing revealed the influence overwhelmed other inputs 
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causing a constant state of fear. Simulation execution time increased up to six seconds by 

adding this feature to the motivation model. 

Table 4.11: Accuracy for adding motivation with a single input 

Time Input Motivation Expected 

Output 

Measured Output 

0.17 Bus Encourage Fear (-0.4) Fear (-0.4) 

0.5 Car Encourage Curiosity Curiosity 

0.83 Fire Hydrant Encourage Hunger Hunger 

1.16 Stop Sign Discourage Fear Fear 

1.49 Traffic Light Discourage Fear Fear 

1.82 Bowl Discourage Fear + Hunger Fear (0.5) + 

Hunger (1.3) 

2.15 Bus Focus Hunger Hunger 

2.48 Car Focus Hunger + 

Curiosity 

Hunger + 

Curiosity 

2.81 Fire Hydrant Focus Hunger Hunger 

3.14 Stop Sign Encourage Fear (0.5) Fear (1.0) 

3.47 Traffic Light Encourage Fear (-0.4) Fear (-0.4) 

3.8 Bowl Encourage Hunger + 

Curiosity (0.4) 

Hunger + 

Curiosity (0.5) 

4.13 Bus Discourage Fear Fear 

4.46 Car Discourage Fear + Curiosity Fear + Curiosity 

4.79 Fire Hydrant Discourage Fear + Hunger Fear (0.5) + 

Hunger (1.2) 

5.12 Stop Sign Focus Fear + Hunger Fear (1.0) + 

Hunger (0.5) 

5.45 Traffic Light Focus Hunger Hunger 

5.78 Bowl Focus Hunger Hunger 
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Figure 4.17: Effects of a detected object, motivation, and context added at the end. Central, motivation, and 

context outputs combine to produce the final mood output. 

 

Model 2MC adds context with binding and unbinding networks creating a 

multiplexer-like pathway. The model will scale relative to the number of contexts. In this 

case, the model increases by at least 56,000 neurons. The average simulation time, 

61.43s, was approximately three times that of the motivation model. This was not 

unexpected due to the additional circuits. 

Each context has a unique association table allowing a different response to 

detected objects. A test was created using Table 4.12 for easily identifiable differences. 

This table describes the context-related mappings of input to mood. The motivation 

stimulus was nullified for simplification. 



 

55 

 

Table 4.12: Test associations to demonstrate output changes with context 

Context Input Mapping 

Highway Bus Fear 

Highway Car Hunger 

Highway Fire Hydrant Curiosity 

Highway Stop Sign Fear – 0.25*Curiosity 

Highway Traffic Light Hunger + 0.25*Fear 

Highway Bowl Fear – 0.5*Curiosity 

Neighborhood Bus Hunger 

Neighborhood Car Curiosity 

Neighborhood Fire Hydrant Fear 

Neighborhood Stop Sign Hunger – 0.25*Fear 

Neighborhood Traffic Light Curiosity – 0.5*Fear 

Neighborhood Bowl 0.25*Hunger + Curiosity 

Practice Bus Curiosity 

Practice Car Fear 

Practice Fire Hydrant Hunger 

Practice Stop Sign Curiosity – 0.5*Fear 

Practice Traffic Light Fear – 0.5*Hunger 

Practice Bowl Hunger + 0.25*Curiosity 

None All inputs (None) 
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Figure 4.18: Multiplexer effect of context unbinding – single detection and a single association table 

 

The middle subplot of Figure 4.18 shows the applied context. A new context was 

cycled every two seconds. Unbinding circuits proved the desired multiplexer behaviors. 

Filtered inputs are shown in the bottom row and labeled with the respective context. Each 

of the unbound responses also shows signals outside of the filtered context. Noise is 

found in each of the outputs, which is an artifact of the unbinding process itself. 

Increasing the threshold levels of the associative memory units will help reduce noise but 

can also suppress low but valid signals. Symbols for context were created in a vocabulary 

separate from recognized objects. Symbolic reinterpretation of the context was used for 

binding and unbinding. This translation may add errors and noise if the generated vector 

and an existing term are too similar. 
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Figure 4.19: Context unbinding with unique association tables 

 

Figure 4.19 shows the relationship between the context filtered inputs and the 

mood outputs. The object input cycles through six objects. This cycle demonstrates how 

object responses are altered by context. Noise is shown to carry over into the associated 

moods, which sometimes causes unintended impacts on the overall responses. 
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Table 4.13: Accuracy measurements for context modeling. Items in red are errors. 

Time Input Context Expected Output Measured Output 

0.17 Bus None None None 

0.5 Car None None None 

0.83 Fire 

Hydrant 

None None Fear (0.4) 

1.16 Stop Sign None None Curiosity (0.4) 

1.49 Traffic 

Light 

None None None 

1.82 Bowl None None Hunger (0.3) 

2.15 Bus Practice Curiosity Curiosity 

2.48 Car Practice Fear Fear 

2.81 Fire 

Hydrant 

Practice Hunger Hunger 

3.14 Stop Sign Practice Curiosity – 

0.5*Fear 

Curiosity - Fear (-0.7) 

3.47 Traffic 

Light 

Practice Fear – 0.5*Hunger Fear - Hunger (-0.6) 

3.8 Bowl Practice Hunger + 

0.25*Curiosity 

Hunger + Curiosity (0.25) 

4.13 Bus Neighborhood Hunger Hunger + Fear (0.25) 

4.46 Car Neighborhood Curiosity Curiosity 

4.79 Fire 

Hydrant 

Neighborhood Fear Fear 

5.12 Stop Sign Neighborhood Hunger – 

0.25*Fear 

Hunger - Fear (-0.35) 

5.45 Traffic 

Light 

Neighborhood Curiosity – 

0.5*Fear 

Curiosity (0.25) + Hunger (0.3) - 

Fear (-0.25) 

5.78 Bowl Neighborhood 0.25*Hunger + 

Curiosity 

Hunger (0.2) + Curiosity 

6.11 Bus Highway Fear Fear 

6.44 Car Highway Hunger Hunger 

6.77 Fire 

Hydrant 

Highway Curiosity Curiosity 

7.1 Stop Sign Highway Fear – 

0.25*Curiosity 

Fear – Curiosity (-0.4) 

7.43 Traffic 

Light 

Highway Hunger + 

0.25*Fear 

Hunger 

7.76 Bowl Highway Fear – 

0.5*Curiosity 

Fear - Curiosity (-0.25) 

 

Table 4.13 presents the measured versus expected results. The results were 

sampled every 330 ms to avoid signal transitions. It highlights in red which tests failed. 
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The failures are related to signal noise and low thresholds. This knowledge 

allowed for improvements. Figure 4.20 shows noise reduction due to the threshold 

increase. The original signals are displayed in grayscale to easily show the filtering 

effects of the applied threshold. 

 

Figure 4.20: Increasing thresholds to 0.55 reduces unbinding noise with the noisy data shown in grey 

 

Adding context offers unique ways to process information. It demonstrated the 

multiplexed nature of the signals and allows for higher-level thinking. Increasing the 

threshold effectively removes noise created during the unbinding process. A WTA 

associative memory would also require an increased threshold and would avoid the 

results from combined outcomes. 
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5 SIMULATION AND ROBOTIC EMBODIMENT 

5.1 TURTLEBOT 2.0 

A TurtleBot 2.0 was selected for the simulated and live embodiment of this research, 

consistent with, and as an extension of, the work in [18] [19]. The TurtleBot 2.0 is an 

open-source, wheeled, robotic development kit. Platforms stacked vertically above the 

mobile base allowed for easy additions of sensors and other hardware [33]. Vision for the 

robot was established using an Xbox 360 Kinect camera and a standard NVIDIA Jetson 

TX2 was used for image processing. Operating the TurtleBot with the new amygdala 

model is the primary objective. The features for context and motivation can be evaluated 

on this platform. Simulations are a quick method to prove functionality before migrating 

to a real robot. 

5.2 INTEGRATION 

Integration into a larger robotic system was the next step for the model. After proving the 

connections and behavior the remainder of the robotic system was included. This allowed 

integration with the simulated TurtleBot in the Gazebo environment to capture 

movement, orientation, and response times. 

 A view of the integrated model is shown in Figure 5.1. Objects in blue are robot 

functions using neuron ensembles. Motor controls, position, orientation, and target 

information are among these networks. The robot and CNN are external to the Nengo 

model and are shown in gray. The amygdala and basal-thalamus sections are marked in 

orange. These are all cognitive elements. The diagram notes two connections. The robot 

to CNN link comes from Kinect images provided by ROS. Object detections are provided 

to the Amygdala from the CNN via ROS. Mood responses are provided to the basal-
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thalamus for action selection. These actions are turned into motor selections by another 

basal-thalamus section. 

 

Figure 5.1: Amygdala integrated into the robot model 

 

Changes were made to the radii of neuron ensembles for the target position, robot 

position, and range to target. Neuron ensembles values are closely bound to the unit circle 

with a default radius of one. Smaller bounds prevented the robot from knowing the 

correct information about these parameters. This change allowed for accurate 

calculations. 

Values were adjusted for the action to motor vectors. The values were not 

orthogonal which created a combined “FEED” and “EXPLORE” response when 

triggered. Output actions were expected to be only a single item. Vector dimensions were 

increased, and values changed to fix this and separate the responses. A small script to 

ensure orthogonality was included in the Nengo robot model should motor scaling values 

be adjusted in the future. 
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 The integrated model provides a near-seamless migration to a TurtleBot. 

Messaging from ROS provides most of this simplicity. The Nengo model can operate on 

the robot or a separate machine. The CNN will operate on the robot instead of a desktop. 

No code modifications are required for this migration. This provides incredible flexibility 

and a rapid transition from simulation to live embodiment. 

5.3 SIMULATION ENVIRONMENT 

Integrated models required a different test environment than proof-of-concept models. 

Gazebo provides a 3-D simulated environment and allows the robot to operate in created 

worlds. The virtual TurtleBot operates in Nengo and has subcomponents in Python and 

C. The CNN image processing unit is also an independent program. It takes images from 

the virtual camera on the TurtleBot, then classifies and publishes them in ROS messages. 

The message system from ROS allows the integration of each component. These tools 

were leveraged from previous research to accelerate testing. 

Gazebo worlds were hand-designed to allow for interaction with objects found in 

the CNN vocabulary. These objects included cars, trucks, and other roadway items. 

Several environments were created for test purposes. Only one was used for the final 

simulations. 



 

63 

 

 

Figure 5.2: Top-down view of the developed simulated environment in Gazebo with annotation, actual 

environment is fully 3D 

 

An overview of the simulation world used for testing is shown in Figure 5.2. The 

robot is located at the bottom of the figure at the origin. An orange triangle shows the 57ׄ° 

Kinect viewing angle. The triangle also shows the viewing distance. Lamp posts were 

placed as markers just beyond the viewable limits. All elements of this environment were 

chosen for a specific purpose. The total number of objects was limited to simplify the 

interactions and create more predictable behaviors. Objects were spaced with this 

consideration in mind to prevent immediate interactions. The fire hydrant, stop sign, and 



 

64 

 

car have unique mappings in each context. This was intentional to observe interactions of 

“FEAR”, “HUNGER”, and “CURIOSITY”. 

One target location was chosen at (16,2,0) for the simulation and hardcoded into 

the models. This spot allowed for the best interaction with each element. The location is 

encircled in red in  Figure 5.2. This facilitated repeatability across all tests and allowed 

for testing of expected behaviors. The primary goal for the robot is to reach the target 

while interacting with the surrounding environment. Mood responses are expected to 

influence velocities and trajectories. 

Context mappings were selected to exhibit different behaviors from the TurtleBot. The 

context “Highway” was designed to encourage an unhindered response unless the robot 

would see the fire hydrant. At this point, it was anticipated it might invoke a “FEAR” 

response. The context “Neighborhood” was created to move quickly to the target. Many 

of the objects produced a “HUNGER” response, which causes acceleration. The 

mappings in context “Practice” were intentionally chosen to quickly create “FEAR” 

responses. These context mapping choices would help elicit behavior changes due to 

“Motivation”. Tables for context maps can be found in appendix section A.1. 

Motivations are combined with the output of mood responses from identified 

objects. Applying the motivation “Encourage” or “Focus” hope to show positive impacts 

to overcome “FEAR” and continue toward the target. The motivation “Discourage” was 

excluded from testing due to an increase in “FEAR” that cannot be overcome due to 

starting objects being out of view. Motivation mappings are found in Table 3.1. 

The virtual TurtleBot will move about the environment based upon commands 

provided by the Nengo model. Gazebo provides information for position, velocity, and 
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model inputs via ROS. These messages are captured and processed by the Nengo model 

to provide new motor outputs. The outputs are captured back into Gazebo to create the 

simulated motion. 

Figure 5.3 is an overlay of classified images in Gazebo. The larger image shows a 

robot and two vehicles. The smaller image shows the classified objects viewed through 

the Kinect. This image also shows how some objects can be misidentified. In this 

example, a truck is recognized as a truck and a car. This can create different responses 

and behaviors based on associative memory mapping. 

 

Figure 5.3: Example of image recognition in simulation 

 

Nengo is a slower element in the simulations because spike conversions are 

calculation intensive. A lock-step method was implemented in the robot model to allow 

30ms of Nengo to pass for every 1ms of simulation time. The implementation would 

pause and unpause the Gazebo environment to allow for the timing differences. This 

method also created repeatable artifacts. At the start of each simulation, “FEAR” was 

observed as the largest signal and created an immediate “FLEE” action. When lockstep 
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was removed, the behavior disappeared. The resolution was to place barriers near the 

origin in the Gazebo model to prevent the robot from fleeing too far from the beginning. 

Creating equal operating conditions between the amygdala and baseline models 

was important for comparison as well. Since the Model 2 Amygdala can change context, 

but the Baseline model cannot, the mood mapping in the Baseline model was made equal 

to the desired context to overcome this challenge for apples-to-apples comparisons. 

Motivation would remain a feature difference between models. The code bases were 

made to be identical except for the amygdala-like elements in the baseline. 

5.4 LIVE EMBODIMENT 

Performing tests given a physical embodiment allows for real-world testing and 

performance analysis. Figure 5.4 displays the TurtleBot used for these tests. This 

involved the real TurtleBot 2.0, a Dell workstation for processing Nengo code, an HP 

laptop to remotely access both devices, and a dedicated router to create an isolated 

network.  
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Figure 5.4:  TurtleBot 2.0 with TX2 board and Xbox Kinect from the side (left) and front (right) 

 

 

Code changes were made for environmental adaptation. A building environment 

was available, and context mappings were constructed to match. Items from the larger 

CNN vocabulary were also chosen to match the new conditions. Table A.4 and Table A.5 

appendix section A.1 detail the room-based context maps. The code port also allowed 

probes used for metrics to remain the same. Data could be stored with the same method 

used for Gazebo simulations. This approach allowed for simple transfers after test runs. 

A large open area was found to perform testing. A real robot moves faster than the 

simulated one. The items in the environment remained in their given location with one or 

two chairs removed. Attempting to replicate the Gazebo model with office equipment 

would have been ideal. This setup still allowed for interactions with the tables, chairs, 
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and benches. Several other items, like plants, were identified by the CNN but were not 

used in the room-based vocabulary. 

 

 

Figure 5.5: Live TurtleBot test environment with the target marked with a red diamond 

 

 The location narrowed into a hallway which limited locations for a fixed target. 

One was decided next to an office in front of a bench. Figure 5.5 shows an overview of 

the area used for live testing with the target location marked with a red diamond. This 

location is programmed as (16,1,0) which is similar to the (16,2,0) used in the simulation. 

The red arrow on the TurtleBot shows its starting orientation. 
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Figure 5.6: View from the TurtleBot’s starting location toward the target 

 

Figure 5.6 shows the area from the TurtleBot’s starting point. A window frame 

feature was used to identify the starting location for the robot. Two notches in the side of 

the TurtleBot were aligned with the color transition of the carpet to allow for easy 

orientation. A simple command could be executed to reset the robot’s position in ROS. 

This simplified setup and reset for each test. 

 Test runs were not duplicated as they were in the Gazebo simulations. Two 

contexts, “Office” and “Living Room”, were used in these tests. The motivations 

“Normal” and “Focus” were used for the Model 2 Amygdala. These were considered 

sufficient for ANOVA calculations. 

 Lock-step timing cannot be performed in the same manner in this embodiment. 

Methods for delaying ROS messages for synchronization exist but were not attempted. 
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The live embodiment is performed noting the process timing may impact performance 

and behavior. 
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6 RESULTS AND ANALYSIS 

Simulated integration in Gazebo will demonstrate the interoperability between ROS, the 

Nengo amygdala model, and a simulated robot. The amygdala’s sensory inputs are 

received from the CNN via ROS messages. The integrated model selects actions that 

drive the motors based on the amygdala’s mood output. The integrated model included 

context and motivation circuits. This allowed the robot to respond and move about 

Gazebo according to system inputs. 

Once simulations are validated, the software will migrate out of the virtual world 

and into the embodiment of a real TurtleBot. This will be executed on a Jetson TX2 

board to process images from an Xbox Kinect camera. The Nengo models were run 

remotely on the Dell workstation. Both systems were connected via ROS maintaining the 

TurtleBot as the ROS master. 
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6.1 METRICS AND FRAMEWORK 

New metrics were created for simulation and real-world embodiment. These metrics are 

target quality, ANOVA calculations, and timeliness. Simulation and embodiment results 

of the new amygdala versus the baseline design were then compared. 

Target quality evaluated if the robot reached the target and how quickly. Mood 

responses are expected to impact the robot’s trajectory. The impact is more important to 

observe than reaching the target. Test runs were checked for repeatability and accuracy. 

Nengo ensembles and modules recreate the weights and biases during each execution. 

Different outcomes could occur as a result. These can be set to fixed values to prevent 

this feature but were not for these tests. 

Timeliness includes the zone of object interaction, behavioral response timing, and 

motor response. The Kinect camera has a limited range and viewing angle. Object 

placement in the simulation is designed to prevent immediate detections. The detection 

must also exceed the context memory threshold of 0.55 to properly activate a mood 

response. Timing starts at this level. The impacts of model complexity are determined by 

the propagation speed from object input to mood output. 

6.2 EMBODIMENT: M&S AMYGDALA VS. BASELINE 

Two robot models can respond to objects based upon an applied context and motivation. 

The impact based on these three factors is needed. Only one world was used for testing 

and is not considered a factor. Target quality captures the desired response data. These 

metrics are the nearest distance to the target and the time for the nearest distance. 

A test matrix was created to determine context and motivation selection as seen in  

Table 6.1 which lists the test with the model, context, and motivation used for each run. 
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These elements were selected to observe different mood responses based on context and 

the impacts of motivation on those same contexts. This resulted in nine simulations for 

the amygdala model and three configurations for the baseline model. 

Table 6.1: Simulation Test Matrix 

Run Model Context Motivation 

Amygdala Run 1 Amygdala Model 

2MC 

Highway Normal 

Amygdala Run 2 Amygdala Model 

2MC 

Highway Encourage 

Amygdala Run 3 Amygdala Model 

2MC 

Highway Focus 

Amygdala Run 4 Amygdala Model 

2MC 

Neighborhood Normal 

Amygdala Run 5 Amygdala Model 

2MC 

Neighborhood Encourage 

Amygdala Run 6 Amygdala Model 

2MC 

Neighborhood Focus 

Amygdala Run 7 Amygdala Model 

2MC 

Practice Normal 

Amygdala Run 8 Amygdala Model 

2MC 

Practice Encourage 

Amygdala Run 9 Amygdala Model 

2MC 

Practice Focus 

Baseline Run 1 Baseline Highway Normal 

Baseline Run 2 Baseline Practice Normal 

Baseline Run 3 Baseline Neighborhood Normal 

 

Four replications of each experiment combination in Table 6.1 were run to provide 

an understanding of performance and to test repeatability. In AI, such approaches are 

often critical due to the implicit stochasticity of algorithms [34] , for example, Nengo 

creates new weights and biases for neurons in each execution. The seeds for these are 

random unless the value is specified. Keeping the randomness of the neurons was 

considered desirable to allow for deviations in behavior. These deviations seemed more 

natural for cognition. 

Statistical analysis was applied to the simulation results using JMP (JMP 16.2, 

SAS, Cary, NC). In JMP, Analysis of Variance (ANOVA) was computed for the model, 
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context, and motivation to determine if any provide a significant impact on the 

performance of the nearest distance and nearest time. The factors were measured 

individually, and each shows statistical significance based on p-values associated with the 

ANOVA hypothesis test, i.e. at least one group is different in response than the others.  

Single-factor ANOVA results are presented in Table 6.2 for the nearest distance and each 

factor from Table 6.1. Model, Context, and Motivation all had a statistically significant 

impact on the nearest distance at the 5% level.  However, Context without including 

“Practice” run results does not show a statistically meaningful influence on distance.  

Additionally, while not apparent in these results though context appears to have the 

greatest impact it doesn’t necessarily improve performance but alters the way the robot 

behaves. This impact will be considered to provide alteration and not an improvement. 

Additionally, the results for context include the “Practice” context environment, which 

was expected to impact the behavior of the robot. Re-evaluating without “Practice” 

suggests context is not as significant. It is important to keep this environmental context 

included in the results because the concept being applied is complex and should not be 

normalized. 
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Table 6.2: Oneway ANOVA applied to the nearest distance 

Single Factor ANOVA Source DF Sum of 

Squares 

Mean 

Square 

F Ratio Prob > F 

Model 1 141.7734 141.773 6.7386 0.0126 

 Error 46 967.7874 21.039   

 Total 47 1109.5608    

Context 2 432.3959 216.198 14.3671 <.0001 

 Error 45 677.1648 15.048   

 Total 47 1109.5608    

Motivation 2 251.6678 125.834 6.6005 0.0031 

 Error 45 857.8930 19.064   

 Total 47 1109.5608    

Context (without Practice) 1 4.59218 4.59218 1.6558 0.208 

 Error 30 83.201439 2.77338   

 Total 31 87.793618    

 

6.2.1 COMPARING MODEL AND CONTEXT 

Evaluating interactions between factors required multiple ANOVA. The Baseline model 

doesn’t support the motivation feature, thus no baseline with motivation data was 

available. This difference created a problem with the ANOVA calculations and forced 

separated analyses. First, the model and context would be compared with the default 

motivation, “Normal”. All other motivations are excluded. For this, the dependent 

variables of nearest distance and nearest time were both used, with ANOVA performed 

twice, with the independent variables of Model and Context.   

The models were expected to have a different response due to the results seen in 

Table 6.2. From this ANOVA, Figure 6.1, provides the effects of the model and context 

on the nearest distance. The results in the ANOVA table show that the model itself is 

statistically significant (at p < 5%) for the hypothesis test that at least one combination 

yields a different result than the others [35].  This model further explains more than 90% 

of the variance explained (R2) and the adjusted R2 presents a similar result indicating that 

the multiple factors are not biasing the raw R2 [35].  The effects test table lists the 
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constituent parts of the ANOVA Model with further considerations for null hypotheses 

on the Model, Context, and Model by Context [36].  These results show that the Model 

variable has a reasonable impact on the performance (the hypothesis is rejected at 10%), 

however, Context is shown to provide a significant impact at p < 5%. The combined 

response is less significant than the individual factors.  

 

Figure 6.1: Multiple ANOVA of model and context for simulation results on the nearest distance 

 

Figure 6.2 was computed which shows significant differences between models in 

the “Highway” context but not in the others. However, both the “Neighborhood” and 

“Practice” contexts have confidence intervals of 95% which overlap the group means for 

both Baseline and Amygdala Model 2MC, indicating no statistical difference in results.  
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Figure 6.2 Model performance given context showing least squares mean for the nearest distance 

 

 Table 6.3 shows the least squared means for both the nearest distance and the 

nearest time. The results are paired by Baseline and Amygdala models respective of 

context for easier one-to-one comparison. The results for nearest distance reveal the 

Amygdala Model 2MC always performed better than the Baseline. The Baseline was 

always outperformed on time except in the “Highway” context. 

Table 6.3: Least squares mean given model and context given model and context 

Level LSM Distance Std Error LSM Time Std Error 

Baseline, Highway 3.45 0.82 2.29 0.26 

Amygdala Model 2MC, 

Highway 

0.04 0.82 2.43 0.26 

Baseline, Neighborhood 0.48 0.82 3.46 0.26 

Amygdala Model 2MC, 

Neighborhood 

0.03 0.82 2.82 0.26 

Baseline, Practice 12.88 0.82 0.81 0.26 

Amygdala Model 2MC, 

Practice 

12.56 0.82 0.80 0.26 

 



 

78 

 

 Figure 6.3 provides the effects of the model and context on the nearest time. The 

ANOVA shows the whole model has a significant impact at p < 5%. Additionally, in the 

Effects Test, context is shown to provide a significant impact, but the model and the 

combined response are not significant. From the Summary of Fit in Figure 6.3, the model 

explains 83% of the variance as seen in the R2. The expanded components of the 

ANOVA table are shown in the Effects Tests table, seen in Figure 6.3. Here, the 

constituent parts of the Model are listed. This section displays the individual sum of 

squares, which sum to the model sum of squares in the ANOVA table, and the 

significance of each feature. 

 

Figure 6.3: Multiple ANOVA of model and context for simulation results on nearest time 

 

 Figure 6.4 shows the largest differences in the “Neighborhood” context. The 

Baseline and Model 2MC 95% confidence intervals overlap by nearly 50%. The 

“Practice” context with a “Normal” motivation yields a high “FEAR” response. The 
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robot is expected to flee in either model, which creates a high distance to the target. This 

behavior causes the nearest distance to occur early in the simulation, appearing as a fast 

speed in reaching the target. 

 

 
Figure 6.4: Model performance given context showing least squares mean for the nearest time 

 

Amygdala Model 2MC always performed better than the baseline with one 

exception. Since the goal was reaching a target, then the nearest distance is considered 

more valuable for rejecting the null hypotheses. Increased performance and value are 

proven between the Amygdala Model 2MC and the Baseline based upon the rejection of 

H0m and impacts of altered behavior based upon the rejection ofH0c. 

6.2.2 COMPARING CONTEXT AND MOTIVATION 

For a test comparing the effects of context and motivation, a null hypothesis states that 

context, motivation, or context and motivation don’t make a difference. For this 

application, the typical ANOVA alternative hypothesis stating that a single factor or 

combination thereof does make a difference was used [36]. For this, the dependent 
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variables of nearest distance and nearest time were both used, and the ANOVA was 

performed twice. 

 Figure 6.5 provides the effects of the model and context on the nearest time. The 

ANOVA shows the whole model has a significant impact at p < 5%. According to the 

Effects Test, context, motivation, and context-cross-motivation are all shown to provide a 

statistically significant impact on the nearest time. From the Summary of Fit in Figure 

6.5, the model further explains 94% of the variance as seen in the R2. The expanded 

components of the ANOVA table are shown in the Effects Tests table, seen in Figure 6.5. 

Here, the constituent parts of the Model are listed.  

 

Figure 6.5: Multiple ANOVA for context and motivation on simulation data for nearest distance. 

 

Figure 6.6 was computed and shows significant differences given the context 

“Practice” and all motivations. The “Normal” motivation is shown as vastly different 

from “Encourage” and “Focus”. However, “Encourage” and “Focus” are significantly 
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different with minor overlaps in their 95% confidence intervals. The “Highway” and 

“Neighborhood” contexts indicate no statistical difference in results. 

 

 
Figure 6.6: Model performance given context and motivation on nearest distance. 

 

Figure 6.7 provides a graphic observation of the impacts of motivation. Robot 

movement is captured from the sets of different runs. All use the same context of 

“Practice” but change the motivation. Runs A7 and B3 have “Normal” motivation and 

don’t reach the target. Some cases of “Encourage” reach the goal while others only get 

close. Using “Focus” as a motivation always reaches the target. Paths are shown to 

exceed past the target’s location but are not considered important for these tests. 
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Figure 6.7: Overlay of robot movements given "Practice" context 

 

 

 

Table 6.4: Least squares mean given model and context given context and motivation 

Level LSM Distance Std Error LSM Time Std Error 

Highway, Encourage 0.05 0.57 2.31 0.15 

Highway, Focus 0.04 0.57 1.58 0.15 

Highway, Normal 0.04 0.57 2.43 0.15 

Neighborhood, 

Encourage 

0.02 0.57 2.82 0.15 

Neighborhood, Focus 0.03 0.57 1.67 0.15 

Neighborhood, Normal 0.03 0.57 2.82 0.15 

Practice, Encourage 1.91 0.57 2.86 0.15 

Practice, Focus 0.05 0.57 1.63 0.15 

Practice, Normal 12.56 0.57 0.80 0.15 

 

 Figure 6.8 provides the effects of the model and context on the nearest time. The 

ANOVA shows the whole model has a significant impact. According to the Effects Test, 

context, motivation, and context-cross-motivation are all shown to provide a statistically 
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significant impact. From the Summary of Fit in Figure 6.8, the model explains 87% of the 

variance as seen in the R2. The expanded components of the ANOVA table are shown in 

the Effects Tests table, seen in Figure 6.8. Here, the constituent parts of the Model are 

listed. This section displays the individual sum of squares, which sum to the model sum 

of squares in the ANOVA table, and the significance of each feature. 

 

 

Figure 6.8: Multiple ANOVA for context and motivation on simulation data for nearest time.  

 

Figure 6.9 was computed and shows the motivations “Normal” and “Encourage” 

are nearly identical in “Highway” and “Neighborhood” contexts but are significantly 

different in the “Practice” context. The “Focus” motivation is shown to be significantly 

different than the other motivations. This motivation also indicates the robot reached the 

target faster and validates the speed increase as an expected response. 
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Figure 6.9: Model performance given context and motivation on nearest time. 

 

The ANOVA results validate the expected changes to the robot’s behavior due to 

motivation given a specific context. All null hypotheses, H0c, H0m, and H0mc, are rejected. 

Mimicking biological features from the amygdala is proven to be useful. 

6.2.3 SIMULATION ERRORS 

Some simulations revealed some erroneous positional information. The robot was 

observed colliding into an object, whether moving forward or in reverse, yet the data 

suggests the robot traveled much further in that direction. Figure 6.7 shows an example of 

this across different runs. The reason behind this is not understood. Positional 

information is sent by Gazebo and was expected to line up with the model’s location. 

None of these outcomes impacted the overall results. 
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6.3 EMBODIMENT: LIVE SYSTEM DEMONSTRATION 

The Amygdala Model 2MC has proved itself in simulation. Performance comparison is 

achieved on a real robot. The same factors and responses are considered in this 

application. A reduced test matrix was created. The contexts changed due to the location, 

and only two were used for testing. Test runs were not iterated. Table 6.5 outlines the 

tests performed. 

Table 6.5: Live embodiment test matrix 

Run Model Context  Motivation 

Amygdala Run 1 Model 2 Amygdala Office Normal 

Amygdala Run 2 Amygdala Model 

2MC 

Office Encourage 

Amygdala Run 3 Amygdala Model 

2MC 

Office Focus 

Amygdala Run 4 Amygdala Model 

2MC 

Living Room Normal 

Amygdala Run 5 Amygdala Model 

2MC 

Living Room Encourage 

Amygdala Run 6 Amygdala Model 

2MC 

Living Room Focus 

Baseline Run 1 Baseline Office Normal 

Baseline Run 2 Baseline Living Room Normal 

 

Statistical analysis was performed on the simulation results using JMP (JMP 16.2, 

SAS, Cary, NC). Analysis of Variance was computed for the model, context, and 

motivation to determine if any provide a significant impact on the performance of the 

nearest distance and nearest time. The factors were measured individually, but only the 

model shows some significance within the 10% band based on p-values associated with 

the hypothesis test under consideration. The Oneway ANOVA results in Table 6.6 show 

that the Model provides a statistically significant impact on the nearest distance at p < 

10% while the other variables do not provide a statistically meaningful impact on nearest 

distance results.  The Oneway ANOVA results in Table 6.7 show that only motivation 
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provided a statistically meaningful impact on the nearest time with a p-value near 10%.  

The other variables do not provide a statistically meaningful impact.  Overall, the 

probabilities suggest testing on the live embodiment fails to reflect the positive changes 

found in the simulations. 

Table 6.6: YX Fit on single factors applied to the nearest distance 

Single Factor 

ANOVA Source 

DF Sum of 

Squares 

Mean 

Square 

F Ratio Prob > F 

Model 1 68.73061 68.7306 5.2427 0.062 

 Error 6 78.65847 13.1097   

 Total 7 147.38908    

Context 1 34.11235 34.1124 1.8069 0.2275 

 Error 6 113.27673 18.8795   

 Total 7 147.38908    

Motivation 2 63.48954 31.7448 1.8918 0.2445 

 Error 5 83.89954 16.779   

 Total 7 147.38908    

 

Table 6.7: YX Fit on single factors applied to the nearest time 

Single Factor 

ANOVA 

Source 

DF Sum of Squares Mean Square F Ratio Prob > F 

Model 1 0.225816 0.22582 0.0492 0.8318 

 Error 6 27.544968 4.59083   

 Total 7 27.770784    

Context 1 4.461085 4.46108 1.1483 0.3251 

 Error 6 113.27673 18.8795   

 Total 7 147.38908    

Motivation 2 16.393266 8.19663 3.6021 0.1074 

 Error 5 11.377518 2.27550   

 Total 7 27.770784    

 

Figure 6.10 shows robot movement for the Amygdala Model 2MC with the 

“Living Room” context applied. Run A4 is shown to move toward the target and then 

retreat and retry when using the “Normal” motivation. Runs A6 and A6 use “Encourage” 

and “Focus” respectively and do not exhibit the “Flee” behavior. They never reach the 
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target, as shown in the plot, because they both collided with a chair and were stuck. The 

tests were kept showing the responses did change but the rotational control was incorrect. 

Visually this can help validate changes that aren’t revealed by the statistics. 

 

Figure 6.10: Robot movement of Amygdala Model 2MC with “Living Room” context, all motivations 

 

Excluding the robot, numerous differences exist between the simulation and the 

real world. An ideal situation would allow identical setups. This duplication wasn’t 

possible. The concept of contexts and motivations can be applied in diverse ways. These 

features were intended to mimic cognitive abilities for behavioral responses. It is not 

unreasonable to expect someone to act in identical ways in different environments. 

Statistically, it would suggest insignificance until presented with a situation that could 

reject the hypothesis. The differences may not prove valuable in the given real-world 

testing. However, stating the Amygdala Model 2MC cannot show value or differences in 

the world is believed to be erroneous and require further testing. 
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6.3.1 IMPLEMENTATION CHALLENGES 

A variety of implementation challenges were discovered and addressed in this work as 

well. These included timing, CNN identification issues, and movement issues. Each was 

handled logically and straightforwardly to ensure that the amygdala concepts under test 

could be effectively studied. 

6.3.2 IDENTIFICATION CHALLENGES 

A further implementation and integration issue involved the Kinect-based images and 

detections, per the Figure 5.1 process flow chart. The challenges were identified early in 

live testing. The real-world environment contained a higher number of recognizable 

objects than expected which was inconsistent with the more limited amount used in the 

simulation. 

The practical aspect of this effect was that the CNN recognized more objects than 

the model could process. As shown in Figure 6.11 five objects are detected; however, the 

Nengo robot model is only capable of receiving three inputs. Not resolving this adds an 

element of randomness based on the certainty of the detected object. Objects with lower 

certainties didn't register. Anything outside of the vocabulary subset was also ignored. 

 

Figure 6.11: Console showing the number of detections in the real world exceeded the limit of three 

 

Another challenge was the number of objects that could be misidentified. The 

bench object was considered a particular furniture item. Sometimes the bench would 

register as a chair or sofa. For example, a file cabinet would frequently be identified as a 
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refrigerator. Although the word was not part of the vocabulary subset and would be an 

issue if the detected objects were overloaded. 

6.3.3 TIMING ANALYSIS CHALLENGES 

Critical to implementation is the timing and routing of signals for decision-making. 

Measuring the timing between object input to mood output is valuable to determine 

propagation delays due to added neuron count and complexity. These measurements were 

attempted for both simulation and live embodiment. The methods didn’t provide useful 

results. Signals were difficult to correlate and appropriate timing between events could 

not be calculated. 

Figure 6.12 shows object detections in the first row. The horizontal line at 0.55 

indicates the threshold at which the associative memory will acknowledge the signal. 

Mood responses based on the inputs are shown in the second row. Vertical marker lines 

were added to find the moods matching input signals. This method was cumbersome and 

tedious. 
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Figure 6.12: Object and mood timing information from live embodiment Run A6 

 

A script was created in MATLAB to find the maximum signal and the peak times. 

Maximum signals became pulses with heights equal to their vector position. Converting 

the signals into discrete pulses allowed for quick peak detection. Figure 6.13 is an 

example of the pulse-formed data. This method allowed a cleaner approach to finding 

timing responses. Peak calculations performed on both data sets attempted to eliminate 

the need for manual searches. 



 

91 

 

 

Figure 6.13: Object and mood pulses calculated from the live embodiment Run A6 

 

 Overall, the attempt proved problematic and was abandoned. No results were 

captured from this, which leaves a gap in understanding how the model impacted timing. 

A likely cause of this failure is the oversight of the type of associative memory used in 

context unbinding circuits. of context associative memory blocks. The calculations kept 

considering a WTA style and not thresholding, so the effects of multiple inputs weren’t 

properly considered. 

6.3.4 ROBOT MOVEMENT CHALLENGES 

The neuron ensemble radii were changed for the position, target, and range to target 

values, as noted in section 5.2.  The radius for orientation was not changed and remained 

at 4. This seemed sufficient for values of 2π or +/- π. The robot had difficulties rotating 

toward values more than 75°. The math and neuron connections were verified as correct. 

This forced robot to narrow and forward only pathways. 
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6.3.5 IMPACTS ON RUN TIMES 

The amygdala module is larger and is expected to impact simulation times and response 

times from object detection to mood output and motor drive. These times can provide 

valuable performance metrics. The baseline model is the original model and does not 

include additional elements for motivation or context and established a reference for 

comparison and a minimum expected response time. The averaged results are found in 

Table 6.8. 

Table 6.8: Summary of simulation timing 

Model Embodiment Neuron Count Avg Time (s) Standard 

Deviation (s) 

Baseline Gazebo 14200 224.61 8.66 

Amygdala Model 

2MC 

Gazebo 104600 296.72 9.54 

Baseline Live 14200 33.65 1.99 

Amygdala Model 

2MC 

Live 104600 114.87 3.12 

 

The neuron count in the amygdala model increased by 630%. Simulation run times 

increased by 30%, and live embodiment run times by 241.37%. The positive impacts of 

the Amygdala Model 2MC suggest the value provided is greater than the increase in 

simulation time. Other challenges inhibit proper evaluation of features and performance 

versus run time. 

Capturing probe data in Nengo, see Figure 4.1, was a consideration for a slower 

simulation time. The Amygdala Model 2MC captures 38 different points whereas the 

Baseline model captures 24. A simple test removing all probes from Model 2 proved this 

had no impact on the simulation run times. 

An adverse effect of the simulation run times must be noted. The baseline model 

always operated quicker than the amygdala model. Distance to target was always higher 

on the baseline models. Since the robot motors were configured to be the same, the only 
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difference is operation time. As a result, the faster execution prevented the robot from 

having enough time to reach the desired targets. 

Synchronization between ROS, Nengo, and the TurtleBot is a known issue. 

Providing a lock-step timing solution as used in simulation may yield better results. 

Another possible solution is neuromorphic hardware to allow the rapid execution of 

amygdala models.  
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7 CONCLUSIONS AND FUTURE RESEARCH 

7.1 SUMMARY OF MODEL RESULTS 

This research developed computational models of the biological amygdala and applied 

them to a robotics decision and control problem. With this amygdala, the use of 

motivation, mood, and context was studied in a robotics implementation. First, this work 

created a foundational understanding of how to mimic the behavior of a simple biological 

amygdala. Next, this work developed successive models of the amygdala and 

implemented them in code and simulation to find a proof of concept for a robotics 

implementation. Finally, this was demonstrated on a live robot in a real-world 

environment. Both the simulation and live robot testing were conducted using an 

experimental design framework to understand the statistical implications of the results. 

Results demonstrated that the proposed amygdala model provided a simulation 

improvement of 70.8% (p<0.006, t-test, dof=1) in nearest distance, 4% improvement in 

nearest time (p<0.387, t-test, dof=1) and real applications improvements of 62.4% in 

nearest distance (p < 0.031, t-test, dof=1)) over the baseline. 

In practice, this thesis developed a baseline understanding of the amygdala in 

code; this model “Model 0” proved to be complex, slow, and inaccurate and it also 

proved simulation timing is not directly correlated to the number of neurons. Next, a 

more refined version, “Model 1” was developed as a simpler implementation; but it 

required five times more neurons and produced invalid outputs. The additional neural 

mechanics made “Model 1” cumbersome, slow to operate, and improperly performed the 

weighted actions. This model was deemed invalid, and the work was discontinued. 

Finally, leveraging the understanding gained from the earlier implementations, “Model 2” 
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was developed to provide a method to emphasize inputs. Model 2’s simulation was the 

second-fastest but contained some accuracy issues. Model 2MC added motivation and 

context into Model 2 to model amygdala inputs. Noise from context unbinding created 

issues but was resolved by changing threshold values. This improved the accuracy to 

100%. 

The addition of motivation proved to influence the overall behavior of Model 2. 

The development of context offered a new way to interact with the environment. The 

multiplexing nature was proven to filter information unrelated to the applied context. 

This method demonstrated the amygdala model produces different moods from objects in 

different contexts. These features mimic an amygdala and accomplish the first objectives. 

Integrated simulations with Gazebo, Nengo, and ROS revealed the new Model 2 

Amygdala performed better than the baseline. The new features of context and 

motivation proved valuable additions. The increase in simulation time was minor relative 

to the massive increase in neuron count. The model also allows for further research into 

expanded or new features. 

Testing the live embodiment showed differences in simulation versus real-world 

application. Some of the challenges were due to conditions that were not ideal and other 

unexpected control-related behaviors. Statistically, the results only suggest the model 

differences are relevant. The context and motivation factors were not. Environments are 

dynamic and may not always yield significantly different results, as shown with 

“Highway” and “Neighborhood” contexts. Due to the broad application being introduced 

by the amygdala structures, the results are considered inconclusive with further research 

and testing required. 
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7.2 FUTURE RESEARCH 

Brains respond to multiple sensory inputs at one time. Adding mixed inputs such 

as sound and touch create layers of complication while offering enhanced responses and 

interactions. A great example of this would be the sound of a fire alarm to trigger a new 

context and a new way of interacting with objects. This could be implemented within the 

robot by adding new sensors but was not feasible in the scope of this project. 

Additional features of a biological amygdala could be added to this model. 

Constructing circuits to handle fear and anxiety is one portion. Valence controls the 

capability for reaction. This circuit could inhibit responses in particular situations. 

Existing features could be further enhanced. 

A single motivator was applied during the simulation. Studies can be created to 

measure the impacts of changing motivation due to different internal or external factors. 

Motivation can change the psychology and response to actions. These influences could be 

used to train or retrain a given response to a stimulus. For example, an object created a 

fear response but if encouraged the robot learned not to be afraid. Motivation input is 

shown to come from the substantia nigra pars compacta/ventral tegmental area and raphe 

nucleus [13]. There might also be a consideration to separate this into a separate model. 

Only a single context was applied during the simulation. Changing contexts 

during operation would allow for the demonstration of changing environments. A robot 

changing from a neighborhood onto a highway could detect key features and then choose 

to interact with a different context. 

Context hierarchy provides greater descriptions and understanding of objects and 

environments. Finding methods to implement hierarchies would prove very useful for 
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robotic applications. The implementation here involves a single layer. In addition, using 

environmental clues to determine the present context. Objects around a room might 

indicate what type of room it is and therefore interact differently with those objects as a 

result. For example, recognizing the refrigerator or stove among the table and chairs can 

detect the environmental context of a kitchen. 

The amygdala model is not assumed to be the best implementation or the most 

efficient. Improvements in these areas could enhance performance and create a more 

practical reusable model. In this research, multiple vocabularies were used. It is uncertain 

if this is better than a single, large vocabulary broken into their categorical subsets. This 

method might reduce noise when unbinding symbols. Other memory cleanup methods 

may also exist. Reduced noise could allow for faster identification and response. 

Research on cognitive emotions could be considered for diverse mood states [37]. 

Research exists using semantic pointers for emotions [38]. This research was not known 

until late in the thesis. Exploring how this could be applied or expand the model is 

worthwhile. 

The performance metrics of nearest distance and nearest time provided 

measurements to provide insights into robot movement and speed. While these values 

were useful for this research, a better method would be ideal for tracking behavior. One 

approach might be to compare an expected versus a measured movement vector. 

Finer motor controls can be developed for this platform. Simple proportional 

controls for speed and orientation were implemented. Problems arose when selecting 

targets behind the TurtleBot. Creating controls for linear and angular positions and 
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velocities would provide more desirable behaviors and allow for greater focus on other 

cognitive enhancements, such as the amygdala. 
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A  ADDITIONAL INFORMATION 

A.1 TURTLEBOT REFERENCE TABLES 

Table A.1: Highway context mapping used for simulation embodiment 

Input Mapping 

Bus Fear 

Car Hunger 

Fire Hydrant Fear 

Stop Sign Curiosity 

Traffic Light Hunger + 0.25*Fear 

Truck Fear – 0.5*Curiosity 

 

Table A.2: Neighborhood context mapping used in simulation embodiment 

Input Mapping 

Bus Hunger 

Car Curiosity 

Fire Hydrant None 

Stop Sign Hunger – 0.25*Fear 

Traffic Light Curiosity – 0.5*Fear 

Truck 0.25*Hunger + Curiosity 

 

Table A.3: Practice context mapping used in simulation embodiment 

Input Mapping 

Bus Curiosity 

Car Fear 

Fire Hydrant Curiosity 

Stop Sign Hunger – 0.25*Fear 

Traffic Light Curiosity – 0.5*Fear 

Truck 0.25*Hunger + Curiosity 
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Table A.4: Office context 

Input Mapping 

Backpack 0.25*Fear 

Bench 0.5*Fear 

Chair 0.33*Hunger 

Bottle Hunger+0.25*Fear 

TV Monitor Curiosity 

Laptop Hunger 

Dining Table NA 

 

 

Table A.5: Living room context 

Input Mapping 

Backpack Hunger 

Bench Fear 

Chair 0.4*Fear 

Bottle 0.75*Curiosity 

TV Monitor NA 

Laptop Fear 

Dining Table Hunger 

 

 

Table A.6: Relating motivation to mood 

Motivation Mood Output 

Discourage 0.2*FEAR - 0.1*HUNGER - 

0.1*CURIOSITY 

Encourage 0.25 * CURIOSITY - 0.3*FEAR 

Focus 0.5*HUNGER - 0.25*CURIOSITY - 

0.25*FEAR 

Normal 0.15*CURIOSITY 
 

 

Table A.7: Action to motor effects 

Action Linear X Effect Angular Z Effect Behavior 

Flee -2 1.2 Reverse 

Feed 2 1 Accelerate 

Explore 1 2 Rotate (Look) 
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Table A.8: Simulation Test Matrix 

Run Model Context Motivation 

Amygdala Run 1 Amygdala Model 

2MC 

Highway Normal 

Amygdala Run 2 Amygdala Model 

2MC 

Highway Encourage 

Amygdala Run 3 Amygdala Model 

2MC 

Highway Focus 

Amygdala Run 4 Amygdala Model 

2MC 

Neighborhood Normal 

Amygdala Run 5 Amygdala Model 

2MC 

Neighborhood Encourage 

Amygdala Run 6 Amygdala Model 

2MC 

Neighborhood Focus 

Amygdala Run 7 Amygdala Model 

2MC 

Practice Normal 

Amygdala Run 8 Amygdala Model 

2MC 

Practice Encourage 

Amygdala Run 9 Amygdala Model 

2MC 

Practice Focus 

Baseline Run 1 Baseline Highway Normal 

Baseline Run 2 Baseline Practice Normal 

Baseline Run 3 Baseline Neighborhood Normal 

 

Table A.9: Live embodiment test matrix 

Run Model Context  Motivation 

Amygdala Run 1 Amygdala Model 

2MC 

Office Normal 

Amygdala Run 2 Amygdala Model 

2MC 

Office Encourage 

Amygdala Run 3 Amygdala Model 

2MC 

Office Focus 

Amygdala Run 4 Amygdala Model 

2MC 

Living Room Normal 

Amygdala Run 5 Amygdala Model 

2MC 

Living Room Encourage 

Amygdala Run 6 Amygdala Model 

2MC 

Living Room Focus 

Baseline Run 1 Baseline Office Normal 

Baseline Run 2 Baseline Living Room Normal 
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Table A.10: Simple model evaluation points [16] 

Eyes Mouth Teeth Known Mood X Mood Y 

-1 1 -1 1 1 -1 

1 -1 -1 -1 -1 0.3 

1 -1 1 1 -1 1 

1 -1 1 0 -1 0.6 

1 0 -1 -1 -0.5 -0.5 

1 0 -1 1 -1 -1 

-1 1 -1 -1 0.5 0.5 

-1 1 -1 1 1 1 

-1 0 -1 -1 0.5 -0.5 

-1 0 -1 1 1 -1 

 

Table A.11: Simple model mood values [16] 

Mood X Mood Y Meaning 

1 1 Happy 

-1 1 Angry 

-1 -1 Sad 

1 -1 Calm 
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B  ROBOT MOVEMENT PLOTS 

The following figures provide graphical representations of the paths followed by the 

robot during different simulation scenarios. Data presented in the movement plots has 

been smoothed due to the noisy nature of these SNNs. Increased smoothing causes the 

robot to appear on the right side of the target when it was on the left. The plots are 

intended for general information but are not considered to be accurate. 

 

Figure B.1: Robot movement from simulations, both models, “Normal” motivation, all contexts 
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Figure B.2: Robot movement from simulations, arranged by motivation 
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Figure B.3: Robot movement from simulations, arranged by context 
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Figure B.4: Robot movement from live embodiment, both models, “Normal” motivation, all contexts 
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Figure B.5: Robot movement from live embodiment, arranged by motivation 
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Figure B.6: Robot movement from live embodiment, arranged by context 

 

B.1 TIMING ANALYSIS PLOTS 

Timing analysis was attempted to determine the impacts of neuron count and complexity 

on the robot. Attempts at this were difficult and needed better analysis methods. Several 

figures are included here to show CNN input to mood detections. 
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Figure B.7: Object and mood timing information from simulation Run A1 

 

 

Figure B.8: Pulse form of object and mood data from simulation Run A1 
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Figure B.9: Object and mood timing information from live embodiment Run A4 
 

 

Figure B.10: Pulse form of object and mood data from live embodiment Run A4 
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The connectivity for robot actuator controls is shown in Figure B.11. The block 

diagram shows how the action states and target distance influence the drivers. The action 

state is the input of interest because this is controlled by the amygdala output or mood. 

These controls drive the linear x and angular z motors. The scalar influence of these 

actions can be found in Table A.7. 

 

 

Figure B.11: Block diagram of motor control connectivity 

 

Figure B.12 shows how mood relates to the action state, which influences the motor 

controls. The action states are shown in dashed lines and scaled to allow an overlay with 

the mood responses. Transitions from curiosity (yellow) to fear (blue) are reflected in the 

explore (dashed blue) and flee (dashed purple) actions. 
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Figure B.12: Overlaying action (scaled, dashed) with mood responses 

 

Figure B.13 shows the linear x motor response. Vertical dashed lines denote the action 

state transitions for timing calculations. This response matches the mood and action states 

shown in Figure B.12. 
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Figure B.13: Linear X motor response with vertical markers for action states 
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C  EQUIPMENT AND SETUP 

C.1 COMPUTER EQUIPMENT 

Two computers were used during research, development, and testing. Initial development 

was performed on an HP Spectre x360 computer with the following hardware: Intel Core 

i7-10510U CPU at 1.8 GHz, 16.0 GB of RAM, NVIDIA GeForce MX250. This 

computer was the property of the researcher and readily available. Gazebo simulations 

were executed on a Dell 3650 with the following hardware: Intel Core i9-11900K CPU at 

3.5 GHz with 8 cores, 32 GB of RAM, NVIDIA RTX 3090. A high-end GPU was 

required for the training of the Darknet image recognition CNN. The software is also tied 

with CUDA software which is proprietary to NVIDIA. This research worked with a pre-

trained network. Possible methods exist to utilize the CPU but were not explored. 

Initially, Nengo and ROS were loaded onto a Raspberry Pi 4. There was an early 

assumption of a simple installation. The Pi device is ARM-based and cannot support an 

x86 version of Linux. The original intent was abandoned for a desktop PC. 

C.2 SOFTWARE 

The HP Spectre x360 computer uses a Windows 10 OS. The following software was 

installed for operation: Windows 10, Docker, VcXsrv, and supporting packages for 

software dependencies or development. A Docker image was created to provide a 

development and testing environment consistent with the previous research. The image 

contains Ubuntu 20.4 OS, Gazebo, Nengo, ROS Noetic, Python 3.8, and other supporting 

packages for software dependencies. 
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The Dell workstation uses Ubuntu 20.4 OS, Gazebo, Nengo, ROS Noetic, Python 

3.7, and other supporting packages for software dependencies. The configuration was set 

up to match the Docker image. This software setup allowed for easier network 

connections when connecting with multiple devices and the TurtleBot. 

Gazebo provides the simulation environment. Nengo is the SNN development tool. 

The cross-platform communications are provided by ROS. Python is a software 

dependency for Gazebo, Nengo, and ROS. 

Several challenges were encountered during this research project. Many of them 

were related to the equipment and software installation around the simulation work. 

Programs and simulation environments were new, and the learning curve was steeper 

than anticipated. 

The original workstation provided was an older machine from 2007. Due to the 

lower demands of Linux and the Python-based Nengo environment, the given specs were 

adequate at the time. The starting platform was based on previous work. The source code 

was missing important elements which prevented usability. Software version 

requirements caused another set of challenges. Python 2.7 was required for Gazebo and 

ROS, but Nengo required Python 3.7. A split environment was created but caused other 

problems. Additionally, the graphics card was unable to run the CNN. The intended use 

of the CNN was used to process images in the virtual environment. 

A possible solution was to operate the CNN on another machine. A server was 

recruited to perform this function. While plausible, the solution was less practical than 

having it available on the same computer. Server setup, resource scheduling, and cross-

computer integration posed challenges to the timeline. 



 

122 

 

A new workstation was requested with university funding and a quote was put 

together. Supply shortages added to the challenge. The Dell workstation was acquired 

and delivered in early January 2022. 

C.3 TURTLEBOT 2.0 

The TurtleBot 2.0 is an open-source, wheeled, robotic development kit. Platforms stacked 

vertically above the mobile base allowed for easy additions of sensors and other hardware 

[33]. Vision for the robot was established using an Xbox 360 Kinect camera and a 

standard NVIDIA Jetson TX2 was used for image processing. The TurtleBot used in this 

research is the exact one used in the previous one. Darknet code for CNN processing 

existed on the robot. 

Access to a physical TurtleBot was not available late in 2021. Setup challenges 

were presented due to the inability to connect to the device through Docker. An UpBoard 

with previous work was used to provide the necessary connectivity. The new computer 

was used in place of the UpBoard once received. 

Gradual steps were taken to prove connectivity and control over the TurtleBot 

using the ROS teleoperation commands and Nengo. Integrating the intended code 

presented a challenge with target control and motion. The robot commonly wanted to 

spin in circles instead of moving toward a target. Actions were then taken to understand 

and debug the reasons behind this behavior.  

 Debugging revealed a connection between the position and target ensemble that 

needed to be removed. The math, functions, and transformations were correct. An odd 

behavior was observed where a target behind the robot would create a spinning response 

or failure to reach the target. It was noted that targets not in front of the robot were not 
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reachable despite the proper math. The reasons for this were not researched due to it 

being outside of the scope of the project. Target locations were always placed in front of 

the robot. 
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D  APPENDIX - LINUX-ROS-NENGO SETUP 

D.1 WINDOWS SOFTWARE 

1. Windows 10 
2. Docker 4.2.0 
3. VcXsrv 
4. Other supporting packages 

 

D.2 LINUX AND DOCKER IMAGE 

1. Ubuntu 20.4 

2. ROS Noetic 

3. Gazebo 

4. Anaconda 

5. Python 3.8 

6. Nengo 

7. Other supporting packages 

D.3 DEVELOPED TOOLS 

1. Amygdala models for proof of concept and robot integration 
2. FakeNet for fabricating CNN messages 
3. Data export/import for calculation and plotting 
4. Gazebo worlds for maneuvering and exploration 

D.4 WINDOWS SETUP 

1. Download VDL Package 

a. https://community.vdl.afrl.af.mil/neuromorphic-computing/demos-and-

publications/turtlebot-reasoner 

2. Copy fakenet_ros files into the noetic workspace 

a. These files are options when the CNN is not available 

3. Update docker.yml file to map local ports from Docker to Windows 

   ports: 

      - 8080:8080 

     - 8888:8888 

4. Build docker environment 

a. In the noetic directory: 

https://community.vdl.afrl.af.mil/neuromorphic-computing/demos-and-publications/turtlebot-reasoner
https://community.vdl.afrl.af.mil/neuromorphic-computing/demos-and-publications/turtlebot-reasoner
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docker-compose up --build 

5. Build ROS Workspace 

a. From the noetic directory, launch the docker environment 

docker-compose run --service-ports --rm -e 

DISPLAY=host.docker.internal:0.0 -e LIBGL_ALWAYS_INDIRECT=0 tb_ros bash  

b. In the bash prompt, build the workspace 

catkin_make 

6. Verify Setup using Fakenet 

a. From docker start roscore 

rosore & 

b. Launch Gazebo 

roslaunch turtlebot_gazebo turtlebot_world.launch 

c. New terminal 

d. Start the fakenet publisher 

rosrun fakenet_ros fakenet_publisher.py 

e. New terminal 

f. Start Nengo in Docker (GUI) 

nengo --no-browser --unsecure --listen '*' --password pwd 

src/turtlebot_nengo/scripts/turtlebot.py 

g. In Windows by open a browser to localhost:8080 for Nengo GUI 

h. Enter the password pwd 

i. Click play in the Nengo GUI 

j. OR run script 

python src/turtlebot_nengo/scripts/turtlebot.py 

Be sure to run the proper source commands in each terminal window. 
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source devel/setup.bash 

If issues require an update to the Darknet package, updates top the CMakelist.txt file are 

required to match CUDA to the proper graphics card code. 

vi ~/src/cnn/darknet_ros/darknet_ros/CMakelist.txt 

if (CUDA_FOUND) 

  find_package(CUDA REQUIRED) 

  message(STATUS "CUDA Version: ${CUDA_VERSION_STRINGS}") 

  message(STATUS "CUDA Libraries: ${CUDA_LIBRARIES}") 

  set( 

    CUDA_NVCC_FLAGS 

    ${CUDA_NVCC_FLAGS}; 

    -O3 

    #-gencode arch=compute_30,code=sm_30 

    -gencode arch=compute_35,code=sm_35 

    -gencode arch=compute_50,code=[sm_50,compute_50] 

    -gencode arch=compute_52,code=[sm_52,compute_52] 

    -gencode arch=compute_61,code=sm_61 

    -gencode arch=compute_62,code=sm_62 

    -gencode arch=compute_75,code=sm_75 

    -gencode arch=compute_86,code=sm_86 

  ) 

  add_definitions(-DGPU) 

 

New network settings are also wrong… copy from the original folder set not from the git 

repo 

Darknet_ros/darknet_ros/yolo_network_config 

Configuration information for the TurtleBot is not included to retain network and login 

privacy. Information for this can be found in the Git repo. 

D.5 MODELS AND SUPPORTING SCRIPTS 

A separate file was created for each amygdala model. Several supporting Jupyter 

notebooks and MATLAB scripts were created to allow for data collection, calculations, 

and plotting for each of the files. These are made available in the Git repo. 

D.6 FAKENET SOFTWARE 

The original environment provides a CNN for image processing and recognition. The 

Darknet software is computationally intensive during the training operation. Running this 
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code via CUDA cores on a GPU provides the best performance. Hardware and software 

challenges prevented some of the original use of this feature, which would otherwise 

render the program useless. Published messages from the ROS node were fabricated so 

the system could operate without knowing the CNN wasn’t present. Modes of operation 

included continuous, randomly generated messages or the ability to playback from a file. 

The fixed output file provided consistent data for testing models. 

Integration testing involved the merging of the amygdala code into the existing 

Nengo TurtleBot model. Initial testing could be exercised without a Gazebo environment 

to prove connectivity. Proving full functionality and performance required Gazebo and 

ROS. The robotic system uses a CNN for image classification. Equipment limitations in 

earlier testing prevented the use of processed images as inputs. Fakenet was used to 

mimic CNN messages. The messages alongside ROS interactions worked as expected but 

there were synchronization issues between Gazebo and the Nengo script. This issue made 

repeatable responses nearly impossible to create. Figure D.14 shows how ROS message 

inputs were tracked, context filtered, and the resulting moods. 
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Figure D.14: Initial integration with ROS and Fakenet without motivation 

 

Fakenet was helpful to prove out system inputs without having access to the CNN. 

The tool was abandoned because inputs and timing could not be repeated. Internally 

generated inputs were used as a short-term solution to provide movement and interaction 

in the simulated world. Using these different test input approaches in a simulated 

environment proved that integration does not affect the amygdala pathway. Further 

testing could be accomplished once new equipment was received. 
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