15 research outputs found

    Ultrasound-Based Silent Speech Interface Built on a Continuous Vocoder

    Get PDF
    Recently it was shown that within the Silent Speech Interface (SSI) field, the prediction of F0 is possible from Ultrasound Tongue Images (UTI) as the articulatory input, using Deep Neural Networks for articulatory-to-acoustic mapping. Moreover, text-to-speech synthesizers were shown to produce higher quality speech when using a continuous pitch estimate, which takes non-zero pitch values even when voicing is not present. Therefore, in this paper on UTI-based SSI, we use a simple continuous F0 tracker which does not apply a strict voiced / unvoiced decision. Continuous vocoder parameters (ContF0, Maximum Voiced Frequency and Mel-Generalized Cepstrum) are predicted using a convolutional neural network, with UTI as input. The results demonstrate that during the articulatory-to-acoustic mapping experiments, the continuous F0 is predicted with lower error, and the continuous vocoder produces slightly more natural synthesized speech than the baseline vocoder using standard discontinuous F0.Comment: 5 pages, 3 figures, accepted for publication at Interspeech 201

    Ultrasound-Based Articulatory-to-Acoustic Mapping with WaveGlow Speech Synthesis

    Get PDF
    For articulatory-to-acoustic mapping using deep neural networks, typically spectral and excitation parameters of vocoders have been used as the training targets. However, vocoding often results in buzzy and muffled final speech quality. Therefore, in this paper on ultrasound-based articulatory-to-acoustic conversion, we use a flow-based neural vocoder (WaveGlow) pre-trained on a large amount of English and Hungarian speech data. The inputs of the convolutional neural network are ultrasound tongue images. The training target is the 80-dimensional mel-spectrogram, which results in a finer detailed spectral representation than the previously used 25-dimensional Mel-Generalized Cepstrum. From the output of the ultrasound-to-mel-spectrogram prediction, WaveGlow inference results in synthesized speech. We compare the proposed WaveGlow-based system with a continuous vocoder which does not use strict voiced/unvoiced decision when predicting F0. The results demonstrate that during the articulatory-to-acoustic mapping experiments, the WaveGlow neural vocoder produces significantly more natural synthesized speech than the baseline system. Besides, the advantage of WaveGlow is that F0 is included in the mel-spectrogram representation, and it is not necessary to predict the excitation separately.Comment: 5 pages, accepted for publication at Interspeech 2020. arXiv admin note: substantial text overlap with arXiv:1906.0988
    corecore