12,600 research outputs found

    Hypermedia support for argumentation-based rationale: 15 years on from gIBIS and QOC

    Get PDF
    Having developed, used and evaluated some of the early IBIS-based approaches to design rationale (DR) such as gIBIS and QOC in the late 1980s/mid-1990s, we describe the subsequent evolution of the argumentation-based paradigm through software support, and perspectives drawn from modeling and meeting facilitation. Particular attention is given to the challenge of negotiating the overheads of capturing this form of rationale. Our approach has maintained a strong emphasis on keeping the representational scheme as simple as possible to enable real time meeting mediation and capture, attending explicitly to the skills required to use the approach well, particularly for the sort of participatory, multi-stakeholder requirements analysis demanded by many design problems. However, we can then specialize the notation and the way in which the tool is used in the service of specific methodologies, supported by a customizable hypermedia environment, and interoperable with other software tools. After presenting this approach, called Compendium, we present examples to illustrate the capabilities for support security argumentation in requirements engineering, template driven modeling for document generation, and IBIS-based indexing of and navigation around video records of meetings

    Intrusiveness, Trust and Argumentation: Using Automated Negotiation to Inhibit the Transmission of Disruptive Information

    No full text
    The question of how to promote the growth and diffusion of information has been extensively addressed by a wide research community. A common assumption underpinning most studies is that the information to be transmitted is useful and of high quality. In this paper, we endorse a complementary perspective. We investigate how the growth and diffusion of high quality information can be managed and maximized by preventing, dampening and minimizing the diffusion of low quality, unwanted information. To this end, we focus on the conflict between pervasive computing environments and the joint activities undertaken in parallel local social contexts. When technologies for distributed activities (e.g. mobile technology) develop, both artifacts and services that enable people to participate in non-local contexts are likely to intrude on local situations. As a mechanism for minimizing the intrusion of the technology, we develop a computational model of argumentation-based negotiation among autonomous agents. A key component in the model is played by trust: what arguments are used and how they are evaluated depend on how trustworthy the agents judge one another. To gain an insight into the implications of the model, we conduct a number of virtual experiments. Results enable us to explore how intrusiveness is affected by trust, the negotiation network and the agents' abilities of conducting argumentation

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    Analyzing collaborative learning processes automatically

    Get PDF
    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners’ interactions is a time consuming and effortful process. Improving automated analyses of such highly valued processes of collaborative learning by adapting and applying recent text classification technologies would make it a less arduous task to obtain insights from corpus data. This endeavor also holds the potential for enabling substantially improved on-line instruction both by providing teachers and facilitators with reports about the groups they are moderating and by triggering context sensitive collaborative learning support on an as-needed basis. In this article, we report on an interdisciplinary research project, which has been investigating the effectiveness of applying text classification technology to a large CSCL corpus that has been analyzed by human coders using a theory-based multidimensional coding scheme. We report promising results and include an in-depth discussion of important issues such as reliability, validity, and efficiency that should be considered when deciding on the appropriateness of adopting a new technology such as TagHelper tools. One major technical contribution of this work is a demonstration that an important piece of the work towards making text classification technology effective for this purpose is designing and building linguistic pattern detectors, otherwise known as features, that can be extracted reliably from texts and that have high predictive power for the categories of discourse actions that the CSCL community is interested in

    Hypermedia Support for Argumentation-Based Rationale

    Get PDF

    A multi-agent system with application in project scheduling

    Get PDF
    The new economic and social dynamics increase project complexity and makes scheduling problems more difficult, therefore scheduling requires more versatile solutions as Multi Agent Systems (MAS). In this paper the authors analyze the implementation of a Multi-Agent System (MAS) considering two scheduling problems: TCPSP (Time-Constrained Project Scheduling), and RCPSP (Resource-Constrained Project Scheduling). The authors propose an improved BDI (Beliefs, Desires, and Intentions) model and present the first the MAS implementation results in JADE platform.multi-agent architecture, scheduling, project management, BDI architecture, JADE.
    corecore