1,925 research outputs found

    Knowledge Rich Natural Language Queries over Structured Biological Databases

    Full text link
    Increasingly, keyword, natural language and NoSQL queries are being used for information retrieval from traditional as well as non-traditional databases such as web, document, image, GIS, legal, and health databases. While their popularity are undeniable for obvious reasons, their engineering is far from simple. In most part, semantics and intent preserving mapping of a well understood natural language query expressed over a structured database schema to a structured query language is still a difficult task, and research to tame the complexity is intense. In this paper, we propose a multi-level knowledge-based middleware to facilitate such mappings that separate the conceptual level from the physical level. We augment these multi-level abstractions with a concept reasoner and a query strategy engine to dynamically link arbitrary natural language querying to well defined structured queries. We demonstrate the feasibility of our approach by presenting a Datalog based prototype system, called BioSmart, that can compute responses to arbitrary natural language queries over arbitrary databases once a syntactic classification of the natural language query is made

    CloudDRN: A Lightweight, End-to-End System for Sharing Distributed Research Data in the Cloud

    Full text link

    Automation of Smart Grid operations through spatio-temporal data-driven systems

    Get PDF

    CELO: A System for Efficiently Building Informatics Solutions to Manage Biomedical Research Data

    Get PDF
    Traditional data management methods are unable to sufficiently support growing trends in biomedical research such as collection of larger data sets, use of diverse data types, and sharing of data among multiple laboratories. Although many technologies are readily available to help laboratories build data management solutions, many laboratories are not taking advantage of them. This may be due to hardware and software costs, the need for an informaticist to build customized solutions, and long development times. Several systems already exist which attempt to address the informatics needs of biomedical researchers. A review of these systems has revealed the benefits and drawbacks of various system design approaches, and has helped us to identify a set of core requirements for a system that will successfully serve the biomedical research community. In consideration of these requirements, we developed the Customizable Electronic Laboratory Online (CELO) system to help laboratories efficiently build cost-effective informatics solutions. CELO automatically creates a generic database and web interface for laboratories that submit a simple web registration form. Researchers can then build their own customized data management systems using web-based features such as configurable user permissions, customizable user interfaces, support for multimedia files, and templates for defining research data representations. An evaluation of the CELO system has demonstrated its ability to efficiently create customized solutions for research laboratories with basic data management needs. The evaluation has also highlighted areas in which CELO can be improved and has elucidated potential research problems that may be of interest to the biomedical informatics field

    Doctor of Philosophy

    Get PDF
    dissertationOver 40 years ago, the first computer simulation of a protein was reported: the atomic motions of a 58 amino acid protein were simulated for few picoseconds. With today's supercomputers, simulations of large biomolecular systems with hundreds of thousands of atoms can reach biologically significant timescales. Through dynamics information biomolecular simulations can provide new insights into molecular structure and function to support the development of new drugs or therapies. While the recent advances in high-performance computing hardware and computational methods have enabled scientists to run longer simulations, they also created new challenges for data management. Investigators need to use local and national resources to run these simulations and store their output, which can reach terabytes of data on disk. Because of the wide variety of computational methods and software packages available to the community, no standard data representation has been established to describe the computational protocol and the output of these simulations, preventing data sharing and collaboration. Data exchange is also limited due to the lack of repositories and tools to summarize, index, and search biomolecular simulation datasets. In this dissertation a common data model for biomolecular simulations is proposed to guide the design of future databases and APIs. The data model was then extended to a controlled vocabulary that can be used in the context of the semantic web. Two different approaches to data management are also proposed. The iBIOMES repository offers a distributed environment where input and output files are indexed via common data elements. The repository includes a dynamic web interface to summarize, visualize, search, and download published data. A simpler tool, iBIOMES Lite, was developed to generate summaries of datasets hosted at remote sites where user privileges and/or IT resources might be limited. These two informatics-based approaches to data management offer new means for the community to keep track of distributed and heterogeneous biomolecular simulation data and create collaborative networks
    • …
    corecore