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ABSTRACT 

Over 40 years ago, the first computer simulation of a protein was reported: the 

atomic motions of a 58 amino acid protein were simulated for few picoseconds. With 

today’s supercomputers, simulations of large biomolecular systems with hundreds of 

thousands of atoms can reach biologically significant timescales. Through dynamics 

information biomolecular simulations can provide new insights into molecular structure 

and function to support the development of new drugs or therapies. While the recent 

advances in high-performance computing hardware and computational methods have 

enabled scientists to run longer simulations, they also created new challenges for data 

management. Investigators need to use local and national resources to run these 

simulations and store their output, which can reach terabytes of data on disk. Because of 

the wide variety of computational methods and software packages available to the 

community, no standard data representation has been established to describe the 

computational protocol and the output of these simulations, preventing data sharing and 

collaboration. Data exchange is also limited due to the lack of repositories and tools to 

summarize, index, and search biomolecular simulation datasets.   

In this dissertation a common data model for biomolecular simulations is 

proposed to guide the design of future databases and APIs. The data model was then 

extended to a controlled vocabulary that can be used in the context of the semantic web. 

Two different approaches to data management are also proposed. The iBIOMES 



  

 

repository offers a distributed environment where input and output files are indexed via 

common data elements. The repository includes a dynamic web interface to summarize, 

visualize, search, and download published data. A simpler tool, iBIOMES Lite, was 

developed to generate summaries of datasets hosted at remote sites where user privileges 

and/or IT resources might be limited. These two informatics-based approaches to data 

management offer new means for the community to keep track of distributed and 

heterogeneous biomolecular simulation data and create collaborative networks. 
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CHAPTER 1 

INTRODUCTION 

Problem statement 

Biomolecular simulations aim to simulate large biomolecular systems in silico to 

provide insight into biological structure and function through molecular dynamics. They 

can be used for prediction purposes as a screening step for experiments, or to 

complement experimental studies by providing transition information between 

representative structural conformations. With recent advances in computational 

hardware1-3 and algorithmic techniques,4 simulations can now reach time scales that are 

biologically significant to study dynamic processes such as protein folding. The data 

generated by these simulations are overwhelming because of the storage requirements 

and the heterogeneity of the computational methods being used. The data are highly 

unorganized: each computational experiment can consist of hundreds of input (e.g., 

system topology, simulation parameters) and output (e.g., atom trajectories, energies, 

temperatures) files in different formats, and following user-specific naming conventions. 

The data also tend to be scattered among distributed resources, at the researcher’s home 

institution and at national computing centers where the data are generated. It becomes 

nontrivial even for primary investigators to keep track of their data, especially when the 

data were generated by past students or collaborators, who might use different methods, 
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software packages, and file naming conventions. New tools are needed by researchers to 

catalog these files and provide a structured view of the data to enable data browsing, 

searching and mining at the level of the lab, and to enable data exchange with 

collaborators or the larger community.  

Main objectives 

This dissertation focuses on the development of computable data models for 

biomolecular simulations and management tools to summarize, track, and share datasets 

stored in heterogeneous and distributed environments. The specific aims pursued in this 

research are presented in the next paragraphs. 

 

Aim 1 

Hypothesis: A common data model can represent the computational protocols used in 

biomolecular simulations. 

Research question 1.1: Can a common model represent the variety of methods used in 

biomolecular simulations (i.e., ab initio, semi-empirical, and empirical methods)? 

Research question 1.2: Can such a model be used to develop new databases and/or 

Application Programming Interfaces (API)? 

Research question 1.3: Can such a model be used to develop a controlled vocabulary that 

can be used in a semantic web context? 

For this aim a data model and set of dictionaries were designed to address the 

representation of computational models (e.g., molecular dynamics, quantum mechanics), 

parameters, authorship, molecular systems (biomolecules and chemical compounds), 

computing environments, and files (input and output). The data model was used in 



  

 

3 

different prototypes to show its applicability to databases and APIs for biomolecular 

simulation data management. The data model and dictionaries were then used to create a 

controlled vocabulary, in the form of a database similar to the UMLS metathesaurus,5 

which was extended to a Simple Knowledge Organization System6 (SKOS) and an OWL 

ontology. 

 

Aim 2 

Hypothesis: A repository can be built to store, index, and present biomolecular simulation 

data distributed among multiple resources.  

Research question 2.1: Can current technology be used to develop a distributed repository 

for biomolecular simulation input and output files? 

Research question 2.2: Can the repository support data queries using common data 

elements? 

A repository (iBIOMES) was designed and implemented to integrate a distribute 

file system where files are indexed using common data elements. It includes a dynamic 

web interface to summarize, visualize, search, and download published data. 

 

Aim 3 

Hypothesis: A simple tool can be developed to track and share biomolecular simulation 

data hosted in heterogeneous environments where user privileges and IT support are 

limited.  

Research question 3.1: Can a single tool summarize heterogeneous biomolecular 

simulation datasets using a common data model? 
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Research question 3.2: Can this tool be deployed and used in limited settings where user 

privileges and IT support are limited? 

A simple tool (iBIOMES Lite) was created to generate XML and HTML 

summaries of biomolecular simulation datasets. A set of file parsers is used to 

automatically create a representation of the computational protocol based on a common 

data model.  

Dissertation outline 

Chapter 2 provides background information about biomolecular simulations, data 

challenges, and current environments available to manage and share these data. The next 

four chapters address the three research aims introduced earlier. Chapter 3 and 4 provide 

the basis for a common representation of biomolecular simulation data. Chapter 3 focuses 

on the design of a logical data model and a set of dictionaries for database and API design 

while Chapter 4 focuses on the development of a controlled vocabulary that can be used 

in a semantic web context. Chapter 5 introduces iBIOMES, a distributed repository 

architecture for simulation data publication. Chapter 6 introduces iBIOMES Lite, a light-

weight tool that can be deployed in limited settings to summarize and share simulation 

protocols and results. Finally in Chapter 7 the results of the research are summarized and 

discussed. 
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CHAPTER 2 

BACKGROUND 

Biomolecular simulations 

Introduction 

Biomolecular simulations aim to simulate the motions of complex biomolecular 

systems characterized at the atomic level. Simulated systems include proteins,1 nucleic 

acids (DNA, RNA),2, 3 lipids,4, 5 and carbohydrates.6, 7 Through dynamics, simulations 

can provide new insights into molecular structure and function.8 They can be used to 

supplement existing experiments, guide the design of new experiments, or provide 

insights that might not be determined experimentally because of current protocol 

limitations. Another major application of biomolecular simulations is the study of 

interactions between biomolecules and ligands in the context of drug discovery.9 

Understanding binding affinities between receptor and ligand is a critical component to 

develop better drugs, therapies, catalysts and nanotechnology.8, 10, 11 Simulation 

implementations have evolved along with advances in hardware and software technology 

and it is now possible to use more complex and accurate models to study the dynamics of 

biomolecules.12, 13 As the implementations of biomolecular simulations software evolve, 

developers need to keep validating their models and their specific implementations using 

experimental data14-17 (e.g., crystal or NMR structures) or alternative computational 
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methods that provide highly accurate results.18-20 Validation of simulation output is a 

necessary step for users as well.16, 21 The large amount of data generated by these 

simulations must be checked for errors, analyzed, and interpreted to draw conclusions 

that have a biological meaning.  

 

Molecular dynamics 

Molecular dynamics (MD) is arguably the most popular class of methods for 

biomolecular simulations today. MD methods use Newton’s equations of motion to 

compute the atomic positions over discrete time steps, called trajectories. The simulated 

molecule or set of molecules is represented by a system of interacting particles. For each 

particle i in a system constituted by N particles, Newton’s equations of motion define the 

force 𝐹⃗𝑖 acting on the particle as 

 𝐹⃗𝑖 = 𝑚𝑖𝑎⃗𝑖 = −𝛻⃗⃗𝑖𝑈 (1) 

where mi is the mass of the particle i, 𝑎⃗𝑖 its acceleration, and −𝛻⃗⃗𝑖𝑈 the gradient of the 

potential energy. 

The acceleration can then be expressed as 

 
a⃗⃗𝑖 =

𝑑2𝑟𝑖
𝑑𝑡2

= −
1

𝑚𝑖

𝑑𝑈⃗⃗⃗

𝑑𝑟𝑖
 (2) 

where ri is the position of the particle. 

Using a Taylor series expansion, the position of the particle along a single 

dimension x after an increment in time ∆t can be described as 

 
𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) +

𝑑𝑥(𝑡)

𝑑𝑡
∆𝑡 +

𝑑2𝑥(𝑡)

𝑑𝑡2
∆𝑡2 +⋯ (3) 
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Several integration algorithms use a truncated version of this series to integrate 

the equations of motions using small steps in time (∆t). For example, in the simple Verlet 

algorithm22 the position x of a particle at the instant (t+∆t) is given by: 

 
𝑥(𝑡 + ∆𝑡) = 2𝑥(𝑡) − 𝑥(𝑡 − ∆𝑡) +

𝑑2𝑥(𝑡)

𝑑𝑡2
∆𝑡2 (4) 

Therefore, using information about the previous time steps and Equation (2) one 

can determine the position of the particle i at the instant t if the potential energy is known.  

 In classical MD, the potential energy is derived from molecular mechanics (MM) 

principles. Each particle in the system is represented by a sphere with a certain radius 

(van der Waals radius), polarizability, and charge, while bonds are represented by springs. 

The potential energy is mathematically described through a force field, a mathematical 

function that is parameterized to enable different set of parameters for different types of 

particles. Force fields describe both bonded interactions (between atoms linked by 

covalent bonds) and nonbonded interactions (long-range interactions). Bonded 

interactions can be described through terms that represent bonds and angles between the 

different particles for example. The nonbonded interactions typically include van der 

Waals forces and electrostatic interactions.  

In all-atom MD, each atom is represented by a single particle in the system. The 

force field parameter set is then dependent on the atom type, which is typically defined 

by the corresponding atomic element (e.g., Carbon, Oxygen), but also by the electronic 

configuration of the atom. In coarse-grain (CG) MD23 each particle in the system 

represents a group of atoms rather than an individual atom. For example, each residue 

(e.g., amino acid in protein) can be approximated as a bead, dramatically reducing the 

cost of calculations compared to an all-atom representation. Unfortunately CG 
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representations can also lead to more simulation inaccuracies. For example, the side chain 

motions cannot be well described, although they are known to have an influence on 

polymers’ properties. Independently from the granularity of the representation, most force 

field parameter sets tend to be domain specific. For example, a given force field 

parameter set might be adapted to protein modeling24-26 while another one might be 

recommended for nucleic acid simulations.19, 27 

 

Quantum chemistry 

One of the limitations of classical MD is that chemical reactions where bonds 

form and break cannot be represented. To overcome these limitations the potential energy 

can be calculated using a quantum mechanics (QM) method to provide an electronic 

description of the system. In quantum chemistry the electronic structure of the atoms is 

explicitly described through Schrödinger’s equations. The spatial distribution and energy 

of an electron can be defined though molecular orbitals, which can be described through 

a set of wave functions: the basis sets. Different levels of theory are available to 

approximate the selected basis set and find a discrete set of solutions to the Schrödinger 

equation. Popular methods include Hartree-Fock (HF) and post-Hartree-Fock methods 

(e.g., Configuration Interaction, Moller-Plesset, Coupled-Cluster), multi-reference 

methods, and Density Functional Theory (DFT).  

In ab initio molecular dynamics28 (AIMD) these methods are used to replace the 

MM force field and compute the potential energy of the system using a quantum 

approach. Because of the computational cost of quantum methods, AIMD methods are 

only used on small biomolecular systems and reduced time scales compared to classical 
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MD. In semi-empirical MD29 (SEMD) the quantum methods that are used make many 

approximations using empirical formulae.30 These approaches provide a less accurate 

electronic description of the system but they can greatly reduce the cost of the QM 

calculations.  

The role of quantum chemistry in biomolecular simulations is not limited to 

quantum MD applications. Many MM force field parameters set developments for 

example are guided by quantum calculations, which can give very accurate results on 

small test cases and help fitting parameters.18-20 Quantum chemistry can also be used in 

hybrid QM/MM approaches where the system is partitioned into a QM region and an 

MM region.31 Assuming that the QM region is fairly small and targets a region of interest 

(e.g., binding site of a protein) QM/MM simulations can combine the speed of classical 

MD and the level of accuracy of QM methods.  

Computing environment 

Software packages 

A wide variety of MD and QM parallel codes are available to the scientific 

community. AMBER,32 CHARMM,33 NAMD,34 GROMACS,35 Desmond,36 and 

GROMOS37 are some of the most popular MD simulation codes in use today to simulate 

proteins, nucleic acids, or even larger molecules. Gaussian,38 NWChem,39, Q-Chem,40 

GAMESS,41 Jaguar,42 or VASP43 on the other hand, are popular QM packages, typically 

used to study small molecules such as drug compounds. Some of these software packages 

also offer QM/MM capabilities, either by implementing both MD and QM engines, or by 

allowing external engines to interface with their code.  
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Many tools are available to analyze the output of the simulations, compare the 

results to experimental data, and possibly generate new hypotheses. Visualization tools 

such as VMD44 or Chimera45 feature 3D rendering of molecules and visualization of MD 

trajectories through animations. A more quantitative analysis of the output can be 

performed with programs like CPPTRAJ46 or MD-specific scripting libraries (e.g., 

VMD’s Tcl capability, MDAnalysis47) to pinpoint anomalies, evaluate differences with 

other simulations or experimental datasets, and  identify events of potential interest. 

Because of the wide variety of software packages and computational methods 

available to the community, no standard format has been adopted to store or describe 

simulation results. Various cheminformatics projects have emerged, aiming to facilitate 

computational chemistry data exchange. The Blue Obelisk effort, for example, aims to 

provide informatics tools with the concepts of Open Data, Open Standards and Open 

Source in mind, to facilitate collaboration between chemists.48 Projects such as the 

Chemistry Markup Language (CML49, 50) and the OpenBabel51 data converter are part of 

this effort to distribute free tools to the community to encourage the usage of standard 

data formats. For now these tools are mostly limited to the representation of experimental 

and quantum chemistry, and only few legacy software packages are adopting them.52 

 

High-performance computing hardware 

All these packages keep evolving as new hardware allows the implementation of 

more complex algorithms and numerical techniques. The simulation engines provided by 

these software packages are very demanding computationally and cannot be run on 

regular desktop computers. CPU clusters composed of hundreds of computational nodes 
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are today’s common computing platform for biomolecular simulations. Despite their 

computational power, simulations usually have to run for weeks or months to reach time 

scales that are biologically significant. More modern high-performance computing (HPC) 

hardware, such as general-purpose Graphics Processor Units (GPUs), is now used in 

conjunction with CPU nodes to accelerate the computations.13, 53 Specialized hardware, 

such as MDGRAPE54, 55 or Anton,56 is specifically designed to run molecular dynamics 

simulations. These machines are usually much faster than general-purpose HPC 

hardware, but their usage is also limited to the simulation model their architecture 

supports and they are usually not widely available to researchers. 

 

Data storage 

While advances in hardware have allowed simulations of larger systems using 

longer time scales, they also created a tsunami of data researchers have to store and 

analyze. Today’s simulation output can easily reach terabytes (TB) of data on disk. Most 

of these data represent the MD trajectories: the time series of the 3D coordinates of each 

atom in the system. Even though the output can be compressed57, 58 or stripped from 

unnecessary information (e.g., remove solvent molecules from the system), data storage 

and transfer (between national computing centers and home institutions for example) 

remains a bottleneck. Simulation archiving becomes a necessity if researchers want to 

keep track of model evolutions and simulation output changes. It also becomes necessary 

for researchers to adopt new approaches to expose their existing datasets to build 

collaborative networks and share data with the community. The number of tools for 

biomolecular simulation data management is currently limited because of the amount of 
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data that need to be stored and described, and because of the heterogeneity of the data 

due to the wide variety of software packages and computational methods available. In the 

next sections we present previous projects that aim to develop standard data formats and 

infrastructures for structural and dynamics data exchange in the experimental and the 

computational communities.  

Data sharing 

Experimental data 

One of the largest open sources for experimental structures is the Protein Data 

Bank (PDB),59 hosted by the Research Collaboratory for Structural Bioinformatics 

(RCSB). The PDB is widely used by the biomolecular simulation community to validate 

computational results and to create the initial structures for dynamics runs. While PDB is 

one of the main resources for experimental structures, no information about dynamics 

(e.g., MD trajectories) is available, and search capabilities are limited (molecule name, 

author, ligand, and sequence). Other structural databases, such as the Cambridge 

Structural Database60 (CSD), provide more search capabilities, but at a certain financial 

cost. Several open databases for small chemical molecules exist as well. PubChem 

provides access to millions of compounds, substances, and bioassays.61 The database can 

be searched using advanced queries based on chemical structure, names, and properties 

(e.g., hydrogen bond donor and acceptor count). ChEMBL is a database of drug-like 

bioactive compounds.62 Assays from different sources are represented through a common 

data model to enable computerized data mining and drug discovery. The ChEMBL 

database was recently integrated into the semantic web63 to facilitate inferences with 

external web resources such as ChemSpider.64 
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Molecular simulations 

The BioSimGrid project65, 66 tackles the simulation data storage problem through 

a specialized grid. This infrastructure offers secured data deposition and retrieval 

services. BioSimGrid is supported by a Grid-based architecture to connect distributed 

relational databases that stores not only biomolecular simulation metadata (e.g., author, 

software, method) but also molecule topology and trajectory information. Simulation data 

can be deposited, retrieved, and processed though a Python script environment and a web 

interface. A prototype of BioSimGrid was deployed in the UK to connect multiple e-

Science centers but the current status of the project is uncertain. The code is now 

available at http://sourceforge.net/projects/biosimgrid/. The Dynameomics project67 aims 

to create the largest repository of protein folding simulations. The repository currently 

indexes about 11,000 simulations of over 2,000 distinct proteins. In order to achieve this, 

the simulation and analysis workflow had to be computerized, and data warehousing 

issues had to be addressed. Each atom trajectory is stored in a database, along with 

metadata about the simulation and the target molecule. Data retrieval was optimized by 

creating multiple instances of Microsoft SQL at each physical server, and making use of 

SQL views. The database is also supplemented with a 3D index to speed up nearest 

neighbor searches68. This architecture seems adapted to the authors’ particular needs but 

they note that changes in their database schema could be costly as SQL views would have 

to be updated and data moved around. A limitation of this project is that the data are not 

currently open for queries. Access through SQL queries can be requested but one should 

have prior knowledge about the database schema to obtain the information of interest. A 

web service interface (SOAP) is in development and might facilitate data integration into 

http://sourceforge.net/projects/biosimgrid/
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external systems. Both BioSimGrid and Dynameomics are limited by the way they store 

atoms’ coordinates. With the advances in high-performance computing, it is now possible 

to run millisecond simulations, resulting in GB or TB of data. Organizing these data into 

a relational database is expensive: specialized trajectory compression and indexing 

techniques are required and new analysis tools need to be developed since most of the 

current ones are only applicable to file-based trajectories.  

Other projects focus on more complex infrastructures that aim to provide a single 

platform for simulation execution, data storage and postprocessing. The eMinerals 

project69 aims to study mineralogical processes through molecular simulations. It is 

supported by a computational and data minigrid. Data resources are managed by the 

Storage Resource Broker (SRB),70 which creates a virtual file repository for the 

organization. A central metadata catalog (MCAT) stores information about the distributed 

files and can store associated user-defined metadata. The compute resources and job 

submissions are managed through Globus and Condor,71 Several scientific projects72 

showed the benefits of this minigrid implementation. MoDEL73 (Molecular Dynamics 

Extended Library) is a large simulation repository, and part of an integrated platform that 

initially focused on protein simulations. Users set up their simulations via the MDWeb 

web portal,74 which automatically takes care of many of the steps necessary to prepare 

the initial structure (e.g., model downloaded from the PDB)  for production MD runs. 

The simulation jobs are submitted to a supercomputing center and results are centralized 

into a repository accessible via the web interface for data retrieval and postprocessing. 

External and local analysis tools such as Ptraj46 were integrated into the environment to 

enable trajectory analysis. The public MoDEL database currently indexes 1,700 
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simulations of proteins and is available at http://mmb.pcb.ub.es/MoDEL/. The MDWeb 

environment now also provides a computational workflow to study nucleic acids.75 In 

these types of integrated environments the simulation runs can be monitored and resulting 

data can be indexed with accurate metadata. The underlying architectures tend to be very 

complex and expensive since they require computational resources to run batch jobs, 

storage resources to manage the resulting datasets, and IT support. At this point one of 

the main limitations is that external data cannot be published to these platforms. In these 

integrated environments provenance metadata is generated based on the input provided 

directly within the environment. Publication of raw data generated outside these 

environments would require some parsing mechanism66, 76 to extract the metadata and 

provide a description of the associated files that fits their data model. Since most 

researchers currently use resources available at their home institutions or via national 

computing centers, architectural changes would have to be made to enable the use of 

these environments as collaborative repositories. 

Dissertation 

In this dissertation the problem of biomolecular simulation data management is 

tackled using design criteria informed by previous work published by researchers in the 

field. First the set of management tools presented here are not tied to the computational 

component used to run biomolecular simulations, unlike a full workflow-based 

environment such as MDWeb. This means that the tools are not dependent on the way the 

simulation data are generated, leaving researchers with the ability to use the 

computational resources they are already using (e.g., local machine, high-performance 

computing centers). In order for the tools to be aware of the data, the data need to be 

http://mmb.pcb.ub.es/MoDEL/


  

 

17 

“published” to a management system. Publication includes data indexing using 

provenance metadata and data copy if the management system is not installed where the 

original data reside (e.g., community-level repository). Users should be able to deploy 

these tools on heterogeneous platforms – i.e., various types of storage resources that can 

be distributed over the network – or have the means to access them remotely (e.g., 

command-line or web interface). A federated approach is used to aggregate distributed 

resources and enable seamless searches via a single entry point. Java is used to enable 

deployment and usage of these tools on a variety of operating systems. The management 

systems presented here are also meant to be context- and method- independent. Using a 

model-driven approach, the simulation protocol can be used to computationally describe 

and index data generated by a wide spectrum of methods and software packages, enabling 

the description of various studies (e.g., quantum calculations on small drug compounds, 

protein folding simulations). In this work the data model is used to create detailed 

summaries via the iBIOMES Lite tool and index raw data – i.e., the files – in the context 

of data exchange and collaboration via the iBIOMES repository. 
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CHAPTER 3 

DATA MODEL, DICTIONARIES, AND DESIDERATA 

FOR BIOMOLECULAR SIMULATION DATA  

INDEXING AND SHARING1 

Abstract 

Background 

Few environments have been developed or deployed to widely share biomolecular 

simulation data or to enable collaborative networks to facilitate data exploration and 

reuse. As the amount and complexity of data generated by these simulations are 

dramatically increasing and the methods are being more widely applied, the need for new 

tools to manage and share these data has become obvious. In this paper we present the 

results of a process aimed at assessing the needs of the community for data representation 

standards to guide the implementation of future repositories for biomolecular simulations. 

 

Results 

We introduce a list of common data elements, inspired by previous work, and 

updated according to feedback from the community collected through a survey and 

                                                 
1 Reprinted with permission from Thibault, J. C., Roe, D. R., Facelli, J. C., & Cheatham, T. E. (2014). Data 

model, dictionaries, and desiderata for biomolecular simulation data indexing and sharing. Journal of 

Cheminformatics, 6(1), 4. 
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personal interviews. These data elements integrate the concepts for multiple types of 

computational methods, including quantum chemistry and molecular dynamics. The 

identified core data elements were organized into a logical model to guide the design of 

new databases and application programming interfaces. Finally a set of dictionaries was 

implemented to be used via SQL queries or locally via a Java API built upon the Apache 

Lucene text-search engine. 

 

Conclusions 

The model and its associated dictionaries provide a simple yet rich representation 

of the concepts related to biomolecular simulations, which should guide future 

developments of repositories and more complex terminologies and ontologies. The model 

still remains extensible through the decomposition of virtual experiments into tasks and 

parameter sets, and via the use of extended attributes. The benefits of a common logical 

model for biomolecular simulations was illustrated through various use cases, including 

data storage, indexing, and presentation. All the models and dictionaries introduced in 

this paper are available for download at  

http://ibiomes.chpc.utah.edu/mediawiki/index.php/Downloads. 

Background 

Introduction 

Thanks to a dramatic increase in computational power, the field of biomolecular 

simulation has been able to generate more and more data. While the use of quantum 

mechanics (QM) is still limited to the modelling of small biomolecules1 composed of less 

than a couple hundred of atoms, atomistic or coarser-grain molecular representations 

http://ibiomes.chpc.utah.edu/mediawiki/index.php/Downloads
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have allowed researchers to simulate large biomolecular systems (i.e., with hundreds of 

thousands of atoms) on time scales that are biologically significant (e.g., millisecond for 

protein folding).2 Classical molecular dynamics (MD) and hybrid approaches such as 

quantum mechanics/molecular mechanics (QM/MM) are some of the most popular 

methods to simulate biomolecular systems. With the explosion of data created by these 

simulations — generating terabytes of atomistic trajectories — it is increasingly more 

difficult for researchers to manage their data. Moreover results of these simulations are 

now becoming of interest to bench scientists to aid in the interpretation of increasingly 

complex experiments and to other simulators for assessing force fields and to develop 

coarse-grain models. Opening these large data sources to the community, or at least 

within collaborative networks, will facilitate the comparison of results to detect and 

correct issues with the methods, identify biologically relevant patterns or anomalies, and 

provide insight for new experiments. While the Protein Data Bank3 is very useful as a 

central repository for structural data, the number of repositories for biomolecular 

simulations is still very limited. To the best of our knowledge the only databases that 

currently provide access to MD data for the community are Dynameomics4, 5 and MoDEL 

(Molecular Dynamics Extended Library6). Dynameomics and MoDEL were populated 

with about 11,000 and 17,000 MD trajectories of proteins, respectively. One of the 

problems with such repositories is that the published data were generated in a specialized 

environment to study a given biological process (e.g., protein folding), resulting in fairly 

homogeneous data compared to the range of methods and software available to the 

community. These repositories are somewhat tied to these environments and it is 

uncertain how one would publish data generated outside these environments or how 
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external systems would index or interface with these repositories. As more repositories 

are created the need for a common representation of the data becomes crucial to achieve 

semantic interoperability and enable the development of federated querying tools and 

scientific gateways. Note that other efforts to build repositories and scientific gateways, 

such as the BioSimGrid project7 and work by Terstyanszky et al.,8 have been undertaken 

but so far none has been widely adopted outside their original deploying institution or 

organization. 

In the computational quantum chemistry community, more progress has been 

achieved towards the development of repositories using standard data representations to 

enable collaborative networks. One of the main on-going efforts is led by the Quixote 

project9 which aims to create a federated infrastructure for quantum chemistry 

calculations where data is represented with CML CompChem (Chemical Markup 

Language – Computational chemistry10) and integrated into the semantic web through 

RDF (Resource Description Framework, http://www.w3.org/RDF/). The Chemical 

Markup Language11 (CML) and its computational component CML-CompChem aim to 

provide a standard representation of computational chemistry data. While the core CML 

XML specifies the requirements to represent molecular system topologies and properties, 

CML-CompChem supplements CML to allow the representation of computational 

chemistry data, including input parameters and output data (calculations). So far these 

extensions have mainly focused on representing quantum computational chemistry 

experiments as XML files. These files can be created by converting input and/or output 

files generated by a particular software package through file parsers such as the ones 

supported by the Blue Obelisk group12 (e.g., Chemistry Development Kit, Open Babel). 
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While CML-CompChem has a great potential for QM calculations,13 its usefulness for 

MD and biomolecular simulations in general might be limited. For example, typically 

trajectories of atomic positions need to be compressed or binary encoded for data 

movement, storage purposes, and/or accuracy. Embedding this information into a verbose 

XML file such as CML will not be the optimal solution, at least not for the description 

and formatting of the raw output. Another obstacle to the conversion of MD experiments 

to a single-file representation is the common definition of many separate input files (e.g., 

system topology, method parameters, force field) necessary to prepare an MD simulation 

and define the different iteration cycles (e.g., minimization, equilibration, production 

MD). In quantum chemistry, the targeted molecules and calculation parameters are 

typically defined in a single input file (e.g., “.com” file for Gaussian14 and “.nw” file for 

NWChem15) which makes this conversion much simpler. The output files generated by 

quantum chemistry software packages usually already contain the final results the user is 

interested in while in MD the raw output, i.e., multiple files containing the trajectories of 

atomic positions, energies and other output information, has to be further processed 

through various analysis tasks to create meaningful information. These postprocessing 

steps involve the creation of new input and output files, making the conversion of an 

experiment to a single XML file even more difficult. 

Perhaps one of the main barriers to build repositories for biomolecular 

simulations is the lack of standard models to represent these simulations. To the authors’ 

knowledge no published study has assessed the needs of the community regarding 

biomolecular simulation repository data models. Therefore it is unclear which pieces of 
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information are considered essential by researchers and how they should be organized in 

a computable manner, so that users can: 

 Index their data and build structured queries to find simulations or calculations of 

interest, not only via the annotations, but also with access to the raw data (files). 

 Summarize, present, and visualize simulation data either through a web portal or 

more static documents (e.g., PDF document, XML file). 

These models should be designed to include not only the description of the 

various independent computational tasks performed but also a high-level description of 

the overall simulated experiment. Each experiment can be related to multiple concepts 

that help understanding what was simulated, how, and in which context. These concepts 

can be grouped into the following categories: 

 Authorship: information about the author, grants and publications related to the 

experiment 

 Methods: computational method description (e.g., model building, equilibration 

procedure, production runs, enhanced sampling methodology) and associated 

inputs / parameters 

 Molecular system: description of the simulated molecules from a structural, 

chemical, and biological point of view 

 Computational platform: description of the software used to run the 

computational tasks, the host machine (computational environment), and 

execution configuration 

 Analysis: derived data that can be used for quality assessment of the simulations 
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 Files: information about the raw simulation input and output files, such as format, 

size, location, and hosting file system 

In this study we describe our efforts to formalize the needs of the community 

regarding the elements necessary to index simulation data. This work was initiated in part 

to support the iBIOMES (Integrated BIOMolEcular Simulations) project16, an effort to 

create a searchable repository for biomolecular simulations, where the raw data (input 

and output files) is made available so that researchers can rerun the simulations or 

calculations, or reuse the output to perform their own analysis. In the initial prototype a 

set of software-specific file parsers were developed to automatically extract common data 

elements (metadata) and publish the raw data (i.e., the input and output files) to a 

distributed file system using iRODS17 (integrated Rule-Oriented Data System). The 

published files and collection of files (experiments) are indexed based on the extracted 

data elements and are stored as attribute-value-unit triplets in a relational database. In this 

paper we introduce a list of common data elements and a data model that will help 

iBIOMES and future biomolecular simulation data repository developments move 

towards semantic interoperability.  

 

Motivation for a common data representation: examples 

The development of a common framework for data representation provides users 

with a large amount of flexibility to develop new tools for managing the data while 

maintaining interoperability with external resources. In this section we present three 

different examples that demonstrate the need for a standard representation of 

biomolecular simulation data, whether it is for indexing or presentation to the user. All 
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three examples have been implemented to some extent in prototype form here. The first 

example is based on our experience with iBIOMES,16 where simulation-specific metadata 

are associated at the file or directory level, through a specialized file system (iRODS17). 

The second example shows how one would use a model-based approach to build a 

repository where simulation parameters and provenance metadata are stored in a 

relational database. Finally the last example illustrates how a model-based API 

(Application Programming Interface) can be used to automatically generate XML and 

HTML summaries for the simulations being published. 

 

Example 1: building a repository based on file annotations 

One of the simplest ways to index simulations is to tag the associated files and 

directories with user annotations summarizing their content. These tags can be simply 

stored in a database or indexed via dedicated systems such as MapReduce18, 19 or Apache 

Lucene.20 This approach is well suited for fast searches based on keywords or attribute-

value pairs. In the iBIOMES system16 these tags are managed by the iRODS 

framework,17
 which enables the assignment of attribute-value-unit triplets to each file and 

directory in a distributed file system. This approach is very flexible since it allows the use 

of tags that represent common concepts such as computational methods and biological 

features, and user- or lab-specific attributes as well. In iBIOMES, a catalogue of common 

attributes was defined for users to annotate their data. The definition of such attributes is 

important as they can be tied to actionable processes, such as analyses, visualizations, and 

ultimately more complex workflows. It is then possible to build a user interface that 

presents the data and performs certain actions based on the existence of certain attributes 
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or their associated values. For example if the format of a file is PDB (File format = 

“PDB”), then the user interface could enable 3D rendering of the associated molecules 

through Jmol.21 A data dictionary that would offer possible values for a particular 

attribute is important as well. Each term should be well defined to leave no ambiguity to 

the user. A dictionary of force fields, for example, could list all the common force fields 

with a textual description, a type (e.g., classical, polarizable, coarse-grained), and the 

associated citations for each entry. A catalogue of common data elements, associated to a 

data dictionary, is also useful for users to pick from to facilitate annotations and build 

queries. The catalogue used in iBIOMES was defined internally by our lab and probably 

is not yet sufficiently exhaustive for the community at large. However, creating a 

catalogue of common data elements (CDE) supported by the community is a first step 

towards the standardization of biomolecular simulation data description. Defining a 

subset as recommended (i.e., the core data elements) would go a step further and set a 

criterion to assess the quality of the data publication process. Finally, linking these CDEs 

to existing terminologies or ontologies would bring semantic meaning to the annotations, 

enabling data discovery and query via external systems. 

 

Example 2: building a repository based on a relational database 

While a CDE catalogue is important, it lacks the representation of relationships 

between elements unless it is linked to a well-structured taxonomy. For example, if a user 

is interested in simulations of nucleic acids, a hierarchical representation of biomolecules 

could be used to infer that the user is actually looking for any simulation of DNA or 

RNA. The aim of a logical data model is to give a representation of the domain that 
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captures the business needs and constraints while being independent from any 

implementation concern.22 Such a model can provide the foundations for the design of a 

database and can be used to automatically generate API skeletons using modern 

modelling tools (e.g., Enterprise Architect, ArgoUML, Visual Paradigm). Since it is a 

domain-specific representation of the data, it can also serve as a starting point to develop 

a terminology or ontology specific to this domain. In this second example we 

demonstrate how a data model could be used to prototype a repository for biomolecular 

simulations where simulation parameters and provenance metadata are organized and 

stored in a relational database. We created a UML (Unified Modeling Language, 

http://www.uml.org/) model including logical and physical entities to build a relational 

database that could eventually be wrapped as a Grid service. The Grid23 represents a great 

infrastructure for collaboration because of the underlying authentication scheme and data 

discovery services available, but also because of the semantic and syntactic integration. 

For this example we decided to mock up a data grid service using the caGrid24 

framework. caGrid was supported by the National Cancer Institute (NCI) and aimed to 

create a collaborative network for researchers to share cancer data, including 

experimental and computational data. The caCORE (cancer Common Ontologic 

Representation Environment) tools that were developed in this context facilitate the 

creation of the grid interfaces by automatically generating the necessary Java code from a 

UML model. These tools are now maintained by the National Cancer Informatics 

Program (NCIP) and available at: https://github.com/NCIP/. For this example we mapped 

the logical model to a data model using the caAdapter graphical tool. The final UML 

model and database creation scripts for MySQL (http://www.mysql.com/) are available 
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for download at: http://ibiomes.chpc.utah.edu/mediawiki/index.php/Downloads. More 

details about the UML model are provided in the section introducing the logical data 

model. The caCORE SDK (Software Development Kit) was then used to generate the 

Hibernate (http://www.hibernate.org/) interfaces to the database along with a web 

interface that can be used to create simple queries or browse the published data. A 

screenshot of the generated interface is given in Figure 3.1 (listing of various published 

computational tasks). To actually build and deploy the data service onto a Grid, one 

would have to use the Introduce module. Semantic integration is also possible via the 

Semantic Integration Workbench (SIW), which enables tagging of the domain model with 

concepts from standard terminologies (e.g., ChEBI, Gene Ontology). 

 

Example 3: representing experiments using XML 

While a database provides a single endpoint to query data, other types of data 

descriptors become necessary when moving data between file systems, or simply to 

provide a light-weight description of the data. XML has been widely adopted by the 

scientific community to represent structured data because of its flexibility and support by 

web technologies. In the field of computational chemistry CML-CompChem10 aims to 

provide a detailed representation of computations but currently lacks support in the 

molecular dynamics community. BioSimML25 (Biomolecular Simulation Markup 

Language) was developed specifically for biomolecular modelling and supports QM/MM 

simulation representations but its current status is uncertain. The Unified Molecular 

Modeling (UMM) XML schema26 is currently being developed by ScalaLife (Scalable 

Software for Life Sciences, http://www.scalalife.eu/) and will attempt to provide a 
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detailed description of MD runs, so that these files can be used as a standard input to run 

within various MD engines. So far these XML-based formats have focused on giving a 

low-level representation of the simulation runs so that data can be converted between 

legacy formats. In this example we generate an XML-based representation of the 

experiment as a whole (multiple tasks), with a limited granularity for the description of 

each task. For this purpose we developed a Java API based on our logical model to 

generate XML representations of experiments (Figure 3.2). Format-specific file parsers 

developed for the iBIOMES project16 read in input and output files associated to an 

experiment to create an internal representation of the experiment and associated 

computational tasks. In the Java code, classes are annotated with Java Architecture for 

XML Binding (JAXB, https://jaxb.java.net/) annotations to map the logical model to an 

XML schema. The JAXB API can then be used to automatically output XML documents 

based on the internal Java representation of the experiment or read in an XML file to 

build the Java objects. The same process could be implemented in various languages, 

using CodeSynthesis XSD (http://www.codesynthesis.com/products/xsd/) in C++ or 

PyXB (http://pyxb.sourceforge.net/) in Python for example. 

The XML output does not aim to be sufficient to recreate input or output files in 

legacy formats but it will provide enough information for users to rapidly understand the 

computational methods and structures represented by the associated raw data. This type 

of XML document can be used as a way to give a detailed summary of experiments when 

exchanging data, compressed with the raw data for example. These documents can be 

transformed through XSLT (eXtensible Stylesheet Language Transformations) to be 

rendered as HTML pages and build repository web interfaces. A sample XML output 
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along with an HTML-based tree view generated through XSLT are presented in Figure 

3.3. For this example a set of AMBER-specific27 file parsers was used to parse a directory 

containing all the input and output files associated to an MD study of RNA. Common 

data elements related to the molecular system topology were extracted from the AMBER 

parameter/topology file while task (minimization and MD runs), parameter set (e.g., 

implicit solvent, number of iterations), and computational platform information were 

extracted from the AMBER MD output files. 

 

Summary 

These three prototypes serve as examples demonstrating the need for a catalogue 

of CDEs and the representation of relationships between concepts through a data model. 

The catalogue of CDEs, associated to a data dictionary, provides the basis for a controlled 

vocabulary that can be used to annotate experiment data (e.g., files and directories) and 

build queries. The data model provides extra information as it links concepts together and 

allows more complex and structured queries, through a relational database, for example. 

The second example showed how modern software engineering tools can use data models 

to generate database schemas and APIs for repository developments. Finally the last 

example showed that XML representations can be easily generated if the API follows a 

model-based approach.  

In this paper we introduce a list of CDEs built upon community feedback, and a 

logical model that ties dictionaries and common data elements together. Common data 

elements for simulation data indexing and presentation were identified through a survey, 

while recommendations are made for trajectory and analysis data description. The 
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common data elements were organized through a logical data model, which was refined 

to include dictionaries and minimize data redundancy. Finally the design and 

implementation for a subset of these dictionaries are introduced. 

Experimental 

Identification of core data elements 

Survey 

A survey was distributed to the community to assess the list of data elements that 

was defined in iBIOMES16. This initial list of common data elements was based on the 

BioSimGrid7 data model and supplemented with new elements to reflect the needs of our 

lab and various collaborators at the University of Utah, and to add descriptions of 

quantum chemistry calculations. The main goal of the survey was to identify which 

elements were missing and which ones were not so important according to the 

community. A list of 47 data elements describing simulation runs and the associated files 

was presented to experts. These data elements were grouped into 6 categories for 

organizational purpose: authorship (user information and referenced citations related to a 

particular run), platform (hardware/software), molecular system (molecules being 

studied, independently from the model chosen), molecules (info about the molecules 

composing the system), methods (can apply to any method, including QM and MD), 

molecular dynamics, and quantum mechanics. The experts were asked to score the data 

elements based on how important they are to them to describe their own data and/or to 

index community data and build search queries. Scoring was based on a Likert scale (1 = 

“Not important at all”, 2 = “Not very important”, 3 = “Not sure”, 4 = “Important”, 5 = 
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“Very important”, and “N/A” for nonapplicable). In each group, the experts were also 

allowed to propose missing data elements and/or comment on the listed elements.  

The survey was made available online (see extract in Appendix A) in March 2012 

for about a month and promoted through the Computational Chemistry List (CCL) and 

the AMBER developers’ mailing list. The CCL list is a fairly well known group for 

general discussions related to computational chemistry, perhaps with an emphasis on 

QM-related methods. The AMBER developers group represents a variety of theoretical 

disciplines (MD, QM, QM/MM), with developments targeting various types of systems 

(e.g., proteins, nucleic acids, lipids, carbohydrates, small compounds) and discussions on 

how to best use the software, methods and force fields. Individual emails were also sent 

to different research groups at the University of Utah that are specialized in 

computational chemistry. 

 

Trajectory and analysis data 

The survey did not include any analysis- or file-related data elements. The Dublin 

Core metadata (http://dublincore.org/documents/dces/) can be used as a good reference to 

describe files at a high level (e.g., author, format). Analysis data on the other hand is very 

complex to describe because of its direct relation to the raw data it derives from (e.g., use 

of multiple input files representing experimental and computed data) and the existence of 

numerous analysis methods that can be problem-specific (e.g., Protein vs. RNA, QM vs. 

MD). In most cases it will not make sense to use analysis data to index an experiment 

either. For example looking for MD trajectories with a particular RMSD (root mean 

square deviation) value would be irrelevant without providing more context about the 
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system and the method used to calculate the value. Although analysis data is a key factor 

to assess the quality of a simulation, its use for data indexing and retrieval is not trivial 

and therefore was not included in the survey. A generic framework for the description of 

trajectory and derived data is nevertheless provided in the Results section. 

 

Logical model 

Overview 

The logical model presented here was derived from a conceptual model that 

organized all the identified common data elements into a defined domain. The conceptual 

model was reduced into a logical model with the assumption that the raw input and 

output files are made available (in a repository similar to iBIOMES or MoDEL) and that 

the model would be used to index the data rather than providing a complete view of the 

results (e.g., calculation output, structures defined in each MD trajectory frame). 

Although analysis data and quality criteria are crucial to provide an objective perspective 

on experiment results, no associated concept was included in the current model. The 

granularity of the model was limited to a sufficient level of details that makes it 

computable. For example, the description of the theory behind modelling methods is not 

part of the model. The end-goal being to share the results of the simulations or 

calculations with the community, we limited our model to include only popular methods 

that are used for the study of biomolecules or smaller ligands. 
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Use of dictionaries 

One of the main features of this logical model is the integration of dictionaries to 

avoid data redundancy. For example a dictionary containing definitions of force fields 

(e.g., name, type, citations) can be referenced by molecular dynamics tasks, instead of 

creating individual force field definition entries every time the force field is used. The 

integration of dictionaries into the model should not enforce mappings to standard 

definitions but rather enable links between specific values and standard definitions only if 

they exist. If no mapping exists the user should still be able to publish the data. This is 

achieved through the storage of “specific names” outside the dictionaries with an optional 

reference to the term definition, where the standard version of the name (not necessarily 

different) is defined. For example if the basis set “LANL2DZ” is used in a QM 

calculation, but no corresponding entry exists in the basis set dictionary, the name of the 

basis set will still be stored in the database when publishing the data to allow queries on 

the calculation. 

 

Units 

Certain attributes need to be associated to a unit to be understood by a human or a 

computer. Different software packages might use different units to represent the same 

attribute. For example, distances in AMBER27 are measured in Ångströms while 

GROMACS28 uses nanometres. When publishing data to a repository one should either 

convert the values using units previously agreed upon or make sure that the units are 

published along with the values. In both cases, mechanisms should be in place to provide 

a description of the units when pulling data from the repository. For the description of 
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this model we assume that the units are already set in the repository. Therefore they are 

not included in the description of the model. 

 

Dictionaries 

While most of the data described in a logical model for biomolecular simulations 

can be directly parsed from the input and output files, dictionaries containing standard 

definitions and values for certain data elements need to be prepopulated. In this paper we 

present the design and implementation of several dictionaries that can be used to facilitate 

data publication and queries. For example, if a user is interested in QM calculations based 

on Configuration Interaction (CI) theory, a dictionary of all CI methods will be needed to 

return all the calculations of interest (e.g., CISD, CISD(T)). Another interesting use of 

these dictionaries is within the code of the file parsers. Instead of defining standard 

values within the code, one can use these dictionaries to look up information on the fly, 

and possibly use it to publish the data into the target repository. 

An initial set of dictionaries was populated using the BiosimGrid7 database 

dictionaries (source code available at: http://sourceforge.net/projects/biosimgrid/). They 

were then refined internally and supplemented with new dictionaries, especially to 

include QM-related definitions (e.g., basis sets, QM methods). 

Results 

Identification of core data elements 

Survey 

At the closing of the survey we were able to collect 39 responses (20 through 

CCL, 10 through the AMBER developers list, and 9 through emails). The results of the 
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survey are presented in Appendix A. The respondents listed a few data elements they felt 

were missing from the proposed list or that needed to be refined (see comments in 

Appendix A). For instance, in the authorship category, a data element representing 

research grants was missing. For the representation of the molecular system, data 

elements representing important functional groups of the solute molecules should be 

added, along with, optionally, the apparent pH of the solvent. Adjustments should also be 

made to distinguish the different species in the system and flag them as part of the solvent 

or the solute. For the computing environment information, a respondent showed interest 

in knowing whether the software package is compiled in single, double, or mixed 

precision, what the memory requirements are for a run, and even what parallelization 

scheme is used. All these elements are very technical and might interest only a very 

limited number of users, even in the developer’s community. The notion of hardware 

architecture was not clearly defined in the survey since it should have already included 

the use of GPU (see comment in Appendix A). A better representation of the hardware 

architecture can be done through three different data elements: the CPU architecture (e.g., 

x86, PowerPC), the GPU or accelerator architecture (e.g., Nvidia GeForce GTX 780, 

AMD Radeon HD 7970, Intel PHI), and possibly a machine or supercomputer 

architecture identification (e.g., Cray XK7, IBM Blue Gene/Q, commodity Infiniband 

cluster, etc.) and name (stampede.tacc.utexas.edu, h2ologin.ncsa.illinois.edu, 

keeneland.gatech.xsede.org, etc.). For the computational methods, data elements were 

missing for the representation of both MD and QM-specific parameters. In QM, the 

following elements were missing: exchange-correlation functionals (for DFT), 

pseudopotentials and plane wave cut-offs, and whether frozen core calculations are 
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performed or not. Some comments pointed out the fact that the notion of convergence can 

be very subjective, especially when dealing with MD trajectories where multiple minima 

(conformations) can be found over time (see comments in Appendix A). The convergence 

flag and criteria were assigned as QM-specific data elements to reflect this. For MD, the 

context of the run (i.e., whether it is a minimization, an equilibration, or a production run) 

was missing. Representations of restraints and advanced sampling methods (e.g., replica-

exchange, umbrella sampling) were also missing. More detailed properties were listed by 

the respondents. These included the order of expansion for LINCS-based constraints and 

the order of interpolation for Particle-Mesh Ewald. At this point it is not clear if such 

parameters need to be tracked since users would hardly use these to create queries and we 

assume that they can be directly read from the raw input files if necessary. 

Based on the results of the survey and the various comments of the community we 

propose a set of common data elements for biomolecular simulation data indexing, listed 

in Appendix A. The identified elements were reorganized by making a distinction 

between data elements (concepts) and attributes (properties). For example the barostat 

data element has at least one property: an implementation name (e.g., Andersen, 

Berendsen). Depending on the type of barostat other properties could include a time 

constant and a chain length (e.g., Nose-Hoover barostat). We also included “derived” 

properties that would be inferred from other properties if the right terminology or 

dictionary is available. For example, the name of a QM method (e.g., MP2, B3LYP) 

should be enough to infer the level of theory (e.g., Møller-Plesset, DFT), and the name of 

the force field (e.g., AMBER FF99SB) should be sufficient to infer its type (e.g., 

classical). This distinction is important as it can help the developers choose which 
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properties should be actually stored (e.g., in a database or an XML file) and which ones 

could be inferred. The set also contains recommended and optional data 

elements/attributes. An attribute is marked as recommended if its average score (i.e., the 

sum of Likert scale scores divided by the number of responses for that element) is greater 

than 4.0 (“Important”). Otherwise it is marked as optional. Attributes proposed by the 

respondents were categorized through an internal review performed by our lab, composed 

of researchers running molecular dynamics simulations and quantum chemistry 

calculations on a daily basis. A data element is considered recommended if it has at least 

one recommended attribute. The current list contains 32 data elements and 72 attributes 

(including 30 recommended attributes). 

We recognize that the process by which the data elements were defined and 

characterized is not perfect. Although the number of respondents was fair (between 37 

and 39 depending on the data element), certain data elements had to be added or 

redefined based on an internal review by some of our lab members, which might have 

created some bias towards the needs of our lab rather than a general consensus in the 

community. Despite these limitations the list of data elements proposed here may be 

considered the first attempt to summarize the needs of the computational chemistry 

community to enable biomolecular simulation data indexing and queries. This list should 

be a good starting point to create a list of standard metadata to tag files using simple 

attribute-value pairs or attribute-value-unit triplets, as is the case for iBIOMES via the 

iRODS metadata catalogue.17 Although this list is fairly exhaustive, it is not complete and 

we hope that by publishing it the community will be able to provide more feedback and 

build on it, with the intent of this data model being extensible. The list is available on the 
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iBIOMES Wiki at: http://ibiomes.chpc.utah.edu/mediawiki/index.php/Data_elements. 

Field experts who want to contribute to the list can request an account on the wiki. 

 

Trajectory files 

In most MD software packages the computed trajectories of atomic coordinates 

are stored in large files (~MB-TB) with each containing one or multiple time frames (e.g., 

PDB, AMBER NetCDF, DCD). This is the raw data that repositories would actually store 

and index for retrieval. Until now we have been focusing on the description of the 

computational tasks that were used to generate these data, i.e., the provenance metadata. 

These metadata can be used to find a given experiment and all associated trajectory files. 

On the other hand new attributes need to be assigned at the trajectory file level to 

describe their content and ultimately enable automatic data extraction and processing by 

external tools (e.g., VMD,29 CPPTRAJ,30 MDAnalysis31). Such attributes include the 

number of time frames, time between frames, number of atoms in the system and/or 

reference to the associated topology file, presence or absence of box coordinates, velocity 

information, and so on. It is important to note that the use of self-descriptive formats such 

as NetCDF (http://www.unidata.ucar.edu/software/netcdf/) would allow trajectory files to 

carry not only the description of the dataset, but also the provenance metadata, for 

example using the CDEs previously defined. Perhaps one of the most important attributes 

to give context within a full experiment is the index of a trajectory file within the set of 

all trajectory files representing a given task or series of tasks. Although self-descriptive 

formats could easily keep track of this information, it is nontrivial to generate such an 

index as tasks can be run independently outside of a managed workflow such as 
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MDWeb,32 which would be able to assign these indexes at file creation time. The order of 

trajectory files is therefore commonly inferred from their names (e.g., “1.traj, 2.traj, 

3.traj”). This approach usually works well although some errors might occur when trying 

to automate this ordering process. For example “10.traj” would be ranked before “2.traj” 

if a straight string comparison is performed (vs. “02.traj”). Strict naming conventions for 

trajectory data (raw, averaged, and filtered on space or time) should help circumvent 

these problems. 

 

Analysis data 

Although some analysis tasks are common to most biomolecular systems for a 

particular method (e.g., RMSD calculations of each frame in the trajectory to a reference 

structure) the number of analysis calculations one can perform is virtually infinite. There 

is currently no standard to describe the output of the analysis. Some formats might enable 

the description of the values (e.g., simple CSV or tab-delimited file with labelled columns 

and/or rows) but more structured files are required to describe the actual analysis process 

that generated the set of values contained in the file. Formats such as NetCDF are adapted 

to store this kind of description but are not commonly used to store biomolecular 

simulation analysis data. Instead comma- or tab-delimited files formats are usually 

preferred for their simplicity, readability, and support by popular plotting tools (e.g., MS 

Excel, OpenOffice, XmGrace). Assuming that the dataset is physically stored in such a 

file or in a relational database, a minimal set of attributes should be defined to facilitate 

reproduction of the analysis, as well as enable reading and loading into visualization tools 

with minimal user input. We believe that the strategy used in the NetCDF framework to 
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break down data into variables with associated dimensions is a simple and logical one, 

and so we follow a similar strategy here: 

 Data dimensions: Defines dimension sizes for defined data sets (i.e., variables). 

Any number of dimensions (including zero if data are scalar) can be defined. 

 Data variables: The actual data. Report type (e.g., integer, float), labels, and units 

for all the values contained in a given set. One or more dimensions can be 

associated with a given variable based on its overall dimensionality. Zero 

dimensions correspond to a single value (e.g., average RMSD value), one 

dimension is an array (e.g., RMSD time series), two dimensions are a matrix (e.g., 

coordinate covariance), etc. 

Another set of attributes need to be defined to represent the provenance metadata, 

i.e., how the analysis data were derived from the raw trajectories. Although different 

analysis tasks will require different input data types and parameters, a list of common 

attributes can be defined to provide a high-level description of the analysis task: 

 Name (e.g., “RMSD”) and description (“Root mean square deviation calculation”) 

of analysis method (see entries defined in our MD analysis method dictionary) 

 Path to the input file describing the task (if applicable) 

 Name and version of the program used, along with the actual command executed 

 Execution timestamp 

 Reference system, if any (self, experimental, or other simulated structure) 

While these attributes might not be sufficient to automatically replicate the results 

they should provide enough information for users other than the publisher to understand 

how the analysis data were generated and how the analysis task can be replicated. 
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A further set of attributes can be defined to provide additional details on the scope 

of the analysis and describe in detail the data from which the current data have been 

derived: 

 File dependencies 

 Filter on time 

 Filter on space (e.g., heavy atoms only, specific residue) 

These would facilitate maximum reproducibility as well as enable detailed 

searches on very specific types of analysis. The ‘File dependencies’ attribute may include 

information like the trajectory used in a given calculation, which could also be used to 

check if the current analysis is up-to-date (e.g., if the trajectory file is newer than the 

analysis data, the analysis can be flagged as needing to be updated). The ‘Filter on time’ 

attribute might describe a specific time window or subset of frames used in the analysis. 

Since these attributes are perhaps not as straightforward for analysis programs to report 

as the other attributes, they could be considered optional and/or set by the user after the 

data are published. The ‘Filter on space’ attribute could be particularly useful, since it 

would allow one for example to search for all analyses of a particular system done using 

only protein backbone atoms or only heavy atoms, etc. However, this would require 

translation of each individual analysis program’s atom selection syntax to some common 

representation, which is no small task and would increase the size of the metadata 

dramatically for certain atom selections. In many cases it is likely that the atoms used in 

the analysis could be inferred from the command used, so this attribute could also be 

considered optional. Two examples of how these attributes might be applied to common 

analysis data are given in Appendix B. 
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Logical model 

Overview 

In this model the central concept is the virtual experiment, a set of dependent 

computational tasks represented by several input and output files. The goal of this model 

is to help create a common description of these virtual experiments (stored in a database 

or distributed file system for example) for indexing and retrieval. The overall 

organization of virtual experiments is illustrated in Figure 3.4. For the rest of this paper 

virtual experiments will be simply denoted as experiments. The organization of an 

experiment as a list of processes and tasks was inspired by the CML-CompChem10 

schema. In CML-CompChem the job concept represents a computer simulation task and 

can be included into a series of consecutive subtasks designated as a job list. The 

concepts of experiment, process group, process, and task are introduced here to handle 

the representation of tasks that might be run in parallel or sequentially, and that might 

target the same or different systems. An experiment process group is defined as a set of 

computational processes targeting the same molecular system, where a process is defined 

as a set of similar tasks (e.g., minimization tasks, MD tasks, QM tasks). In MD, the 

minimization-heating-production steps can be considered as a single process group with 3 

different process instances. If multiple copies of the system are simulated, each copy will 

be considered a separate process group. In QM, a process would represent a set of 

sequential calculations on a compound. If various parts of the overall system are studied 

separately (e.g., ligand vs. receptor), each subsystem should be assigned to a different 

process group. 
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Within the scope of an experiment, multiple tasks and group of tasks will be 

created sequentially or in parallel, and based on intermediate results. To keep track of this 

workflow, dependence relationships (dependencies) can be created between tasks, 

between processes, and between process groups. 

 

Notations 

In the following sections we present the overall organization of the model through 

an object-oriented approach where the concepts (e.g., experiments, tasks, parameter sets, 

and molecular systems) are represented by classes with attributes. The description is 

supported by several class diagrams using the UML notation. For example inheritance is 

characterized through a solid arrow with an unfilled head going from the child to the 

parent class. Along with standard UML notations, we defined the following colour 

scheme to guide the reader: 

 Blue: classes giving a high-level description of the experiments and tasks 

 Yellow/orange: method/parameter description 

 Green: classes describing the molecular system independently from the 

computational methods 

 Pink: classes related to authorship and publication (e.g., citations, grants) 

 Grey: description of the hardware or software used to run the tasks 

Finally, classes representing candidates for dictionary entries are marked with 

wider borders. 
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Experiments, processes, and tasks 

Figure 3.5 presents the concepts that can be used to describe the context of an 

experiment. Each experiment can be given a role, i.e., the general rationale behind the 

experiment. Examples of experiment roles include simulation (dynamics), geometry 

optimization, and docking. These roles should not be associated to any computational 

method in particular. Each experiment can be linked to a particular author (including 

institution, and contact information) to allow collaborations between researchers with 

common interests. Publications related to a particular experiment (citations) or that use 

the results of the experiments can be referenced. Grant information is important as well 

since it allows researchers to keep track of what their funding actually supports. 

Experiment sets (Figure 3.2) are collections of independent experiments that are 

logically associated together, because of similar context (e.g., study of the same system 

using different methods) or simply for presentation purpose or to ease retrieval by users 

(e.g., all the experiments created by a certain working group). An experiment can be 

assigned to multiple experiment sets. 

An experiment task corresponds to a unique computational task defined in an 

input file. Figure 3.6 presents the main concepts associated to experiment tasks. These 

include the definition of the actual calculation (e.g., frequency calculation and/or 

geometry optimization in QM, whether the dynamics of the system are simulated), the 

description of the simulated conditions (reference pressure and temperature), and the 

definition of the method (e.g., QM, MD, minimization) and input parameters (e.g., basis 

set, force field). More details about the different types of tasks and simulation parameters 

are given in the computational method section. Each task is executed within a computing 
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environment, i.e., the set of hardware and software components used to run the 

simulation software package. These components include the operating system, the 

processor architecture, and the machine/domain name. Information about the task 

execution within the computing environment, including execution time, start and end 

timestamps, and termination status can be tracked as well. The software information 

includes name (e.g., “AMBER”) and version (“12”). In certain cases a more specific 

name for the executable is available. This can provide extra information about the 

compilation step and/or the features available. In Gaussian,14 for example, this 

information can be found in the output files: “Gaussian 09” would give a generic version 

of the software package while “EM64L-G09RevC.01” would give the actual revision 

number (“C.01”) and the target architecture of the executable (e.g., Intel EM64). For 

AMBER, the executable name would be either “SANDER” (Simulated Annealing with 

NMR-Derived Energy Restraints) or “PMEMD” (Particle-Mesh Ewald Molecular 

Dynamics), which are two alternatives to run MD tasks within the software package. 

 

Computational methods 

The most common methods for biomolecules include QM, MD, and hybrid 

QM/MM. In this model we focus on these methods but we allow the addition of other 

methods by associating each task to one or multiple parameter sets that can be combined 

to create new hybrid approaches. This decomposition was applied to MD, minimizations 

(e.g., steepest descent, conjugate gradient), QM, and QM/MM methods as illustrated in 

Figure 3.7. 
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Common attributes of any computational method are represented at the 

ExperimentTask level. These include names (e.g., “Molecular dynamics”), description 

(e.g., “new unknown method”), types of boundary conditions (periodic or not), and the 

type of solvent (in vacuo, implicit, or explicit). Method-specific tasks (MinimizationTask, 

MDTask, QMTask, QMMMTask) are created to capture the parameters that would not be 

shared between all methods. Simulation parameters include any parameter related to the 

method or task that would be set before a simulation is run. These parameters are 

aggregated into sets that can be reused between methods. For example, the MD-specific 

task (MDTask) references MDParameterSet, which includes the definitions of the 

barostat, thermostat and force fields. The QM/MM-specific task (QMMMTask) 

references the same parameter set since these definitions are necessary to describe the 

computational method to treat the MM region. It also references a QM-specific parameter 

set to describe the QM method and a QM/MM-specific parameter set to describe the 

treatment of the QM/MM boundary. A new task type could be created for multilevel 

quantum calculations. In this case the task would reference multiple QM parameter sets 

and a new type of parameter sets that would define at least the algorithm or 

implementation used to integrate the different levels (e.g., ONIOM33). 

In molecular dynamics, the behaviour of the simulated system is governed by a 

force field: a parameterized mathematical function describing the potential energy of the 

system, and the parameters of the function, with dynamics propagated using Newton’s 

equations of motion and the atomic forces determined from the forces or first derivatives 

of the potential energy function. Different parameters will be used for different types of 

atoms (or group of atoms in the type of coarse grain dynamics). A given force field 
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parameter set is usually adapted to particular types of residues in molecules (e.g., 

nucleobases in nucleic acids vs. amino acids in proteins). For a single molecular 

dynamics task multiple force fields and parameter sets can be used simultaneously. When 

simulating an explicit water-based solvent for example, the specific force field parameter 

set used to represent these water molecules (e.g., TIP3P, TIP4P, SPC/E34) will typically 

be different from the set used to parameterize the atoms of the solute or the ions. The 

ForceField class presented in Figure 3.8 represents instances of force fields referenced by 

a particular run while ForceFieldDefinition represents an entry from the dictionary listing 

known force fields. Force field types include classical, polarizable, and reactive force 

fields. 

Molecular dynamics methods can be classified into more specific classes of 

methods. For example in stochastic dynamics (Brownian or Langevin Dynamics), extra 

parameters can be added to represent friction and noise.35 In coarse-grain dynamics the 

force field is applied to groups of atoms rather than individual atoms. The differentiation 

between atomistic and coarse-grain dynamics is then achieved solely based on the type of 

force field used. In this model Langevin dynamics and coarse-grain dynamics are not 

represented by different types of tasks as they share the same parameter set as classic 

molecular dynamics. The collision frequency attribute used specifically by stochastic 

dynamics was added to the MD parameter set while a flag specifying whether the force 

field is atomistic or coarse grain is set in the force field dictionary. 

Each parameter set can be associated to a barostat and a thermostat to define how 

pressure and temperature are constrained in the simulated system (Figure 3.8). The 

ensemble type (microcanonical, canonical, isothermal–isobaric, or generalized) can be 
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defined directly in the parameter set. The model also includes the concepts of constraints 

and restraints. Both have a target (i.e., the list of atoms they apply to), which can be 

described by an atom mask or a textual description (e.g., ‘:WAT’, ‘water’). The type of 

constraint is defined by the algorithm used (e.g., SHAKE, LINCS) while the type of 

restraint is characterized by the property being restrained (e.g., bond, angle). 

Enhanced sampling methods are gaining interest in the MD community as larger 

systems and longer time scales can be simulated faster than with classic approaches.36 

These methods usually involve the creation of multiple ensembles or replica that can be 

run in parallel (e.g., temperature replica-exchange, umbrella sampling). A dictionary of 

such methods was created to list popular enhanced sampling methods. At the core the 

runs based on these methods can still be represented with multiple molecular dynamics 

tasks. Depending on the method, the implementation, and the definition of the input files, 

the set of MD tasks corresponding to a given enhanced sampling run can be grouped into 

processes where each process represents either a separate ensemble/replica or a group of 

tasks run in parallel. For a replica exchange MD (REMD) run using 4 replicas, one could 

either group the 4 MD tasks into a single process representing the whole REMD run or 4 

separate processes with a single task each. 

In quantum chemistry the two main elements that define the theory and 

approximations made for a particular run are the level of theory (or QM method) and the 

basis set (Figure 3.9). Basis sets provide sets of wave functions to create molecular 

orbitals and can be categorized into plane wave basis sets or atomic basis sets. They are 

defined in a dictionary (BasisSetDefinition). Different levels of theory are available to 

approximate the selected basis set and find a discrete set of solutions to the Schrödinger 
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equation. Popular methods include Hartree-Fock and post-Hartree-Fock methods (e.g., 

Configuration Interaction, Møller-Plesset, Coupled-Cluster), multireference methods, 

Density Functional Theory (DFT), and Quantum Monte Carlo.37 The classification of QM 

methods is not trivial because of the range of features dependent on the level of theory. 

For example, DFT method names typically correspond to the name of the exchange-

correlation functional while semiempirical method names provide a reference to the 

empirical approximations of the method. For this model we defined the concepts of QM 

method, class and family. At the highest level the family defines the method as ab initio, 

semiempirical, or empirical. The class defines the level of theory for ab initio methods 

(e.g., Hartree-Fock, Møller-Plesset, Configuration Interaction, DFT, Multireference), or 

the type of semiempirical method (pi-electron restricted or all valence electron restricted). 

Note that one method can be part of multiple classes (e.g., Multireference configuration 

interaction, hybrid methods). At the lowest level the method name (e.g., MP2, B3LYP, 

AM1) corresponds to a specific method, as it would be called by a particular software 

package. Approximations of pure ab initio quantum methods can be used to reduce the 

computational cost of the simulations. Typical approximations include the use of frozen 

cores to exclude inner shells from the correlation calculations and pseudopotentials 

(effective core potentials) to remove the need to use basis functions for the core electrons. 

The use of such approximations is noted at the QM parameter set level. 

Molecular dynamics methods can be “improved” by injecting quantum 

characteristics to the models (semiclassical methods). In ab initio molecular dynamics, 

the forces for the system are calculated using full electronic structure calculations, 

avoiding the need to develop parameters a priori. In hybrid QM/MM, the simulation 
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domain is divided into an MM space where the MD force field applies, and a QM space 

where molecular orbitals will be described. Different methods exist to treat the 

boundaries between the two spaces. The decomposition of runs into tasks and parameter 

sets make the integration of such methods possible and fairly straight forward. For 

example, one could create a new type of tasks for ab initio molecular dynamics that 

would have at least two parameter sets: the QM parameter set defined earlier and a new 

parameter specific to ab initio molecular dynamics that would define the time steps 

(number, length) and the type of method (e.g., Car-Parinello MD, Born-Oppenheimer 

MD). 

 

Molecular system 

In this model a distinction is made between biomolecules (e.g., RNA, protein) and 

“small molecules” (Figure 3.10). Here we define a small molecule as a chemical or small 

organic compound that could potentially be used as a ligand. They are defined at the level 

of a single molecule while biomolecules are described by chains of residues. Typically, 

QM calculations will target small molecules while MD simulations will target larger 

biomolecules and ligand-receptor complexes. Properties such as molecular weight and 

formula are worth being tracked for small compounds but their importance is not that 

obvious when dealing with larger molecules. 

Three dictionaries are necessary to provide definitions for standard residues, 

atomic elements (as defined in the periodic table), and element families (e.g., Alkaline, 

Metals). Note that here we minimize the amount of structural data by keeping track of 

occurrences of residues (ResidueOccurrence) and atom types (AtomOccurrence) in a 
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particular molecule, rather than storing individual instances. For example, in the case of 

water, there will be a single entry for the hydrogen atom with a count set to 2, and 

another entry for the oxygen atom with a count set to 1. The same approach is used to 

keep track of the various molecules in the system. For example explicit solvent using 

water would be represented by the definition of the water molecule and the count of these 

molecules in the system. To enable searches of specific ligands a simple text 

representation of the compound is necessary. Molecule identifiers such as SMILES 

(Simplified Molecular-Input Line-Entry System38) or InChI (International Chemical 

Identifier39) strings can be associated to small molecules to enable direct molecule 

matching and similarity and substructure searches. The residue sequence is also available 

to search biomolecules based on an ordered list of residues. The residue sequence can be 

represented by two different strings: the original chain, or specific chain, as referenced in 

the input file defining the molecular topology, and a normalized chain. The specific chain 

can potentially give more information about the individual residues within the context of 

the software that was used, and reference nonstandard residues defined by the user. The 

normalized chain on the other hand uses a normalized nomenclature for the residue: one-

letter codes representing either amino-acids or nucleobases. The normalized chain can be 

used to query the related molecule without prior knowledge about the software used, and 

enables advanced matching queries (e.g., BLAST 40). 

Both residue and atom occurrences can be given a specific symbol, which 

represents a software-specific name, usually referencing a computational model for the 

entity. In MD the specific symbol would be the force field atom type while in QM this 

would be used to specify which basis set should be applied. 
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The description of the biomolecules should include at least a generic type such as 

DNA, RNA or protein to classify the simulated molecules at a high level. Other 

biological information such as species (e.g., Mus musculus, Homo sapiens) and molecule 

role can be added as well. As defined by the Chemical Entities of Biological Interest 

(ChEBI41), each molecule can have one or multiple roles (application, chemical role, 

and/or biological role). This data element is very important as it would allow researchers 

to query molecules based on their function rather than their structure. On the other hand 

this type of information is not included in the raw simulation files, which means that it 

would have to be entered manually by the owner of the data. To avoid this one can 

imagine populating this information automatically by referencing external databanks that 

already store these attributes (e.g., Protein Data Bank3). This is reflected in this model by 

the reference structure concept, which keeps track of the database and the structure entry 

ID. If the topology of a simulated system is actually derived from a reference structure an 

extra field can be used to describe the protocol used to prepare the reference structure so 

that it serves as an input of the simulations. Possible steps include choice of the specific 

model number if several are available in a single PDB entry or which PDB entry if 

multiple entries are possible, possible addition of missing residues from disordered 

regions, or specification of homology or other putative models. 

 

Files and file system 

So far the description of the model focused on the data elements related to the 

experiment itself to explain why the different tasks were run and what they represent. 

Another important aspect of this model is the inclusion of a reference to the files (input 
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and output) that contain the actual data being described. This is illustrated in Figure 3.11. 

Each experiment can be associated to one or several file collections stored on local or 

remote file systems (e.g., NFS, Amazon S3, iRODS server). For each of these collections 

no assumption should be made on the location or the implementation of the file system. 

Therefore it is necessary to keep track of the type of file server and host information to 

find a route to the host and access the files using the right protocol and/or API. The 

individual files should be associated to the tasks they represent and a distinction between 

input (parameters and methods) and output (e.g., logs, trajectories) files should be made. 

The topology files should be associated to the molecular system instead. Note that in 

certain cases, especially for QM calculations, the topology and input parameters might be 

contained in the same file. Each file reference should at least contain a unique identifier 

(UID) within its host file system and a format specification. 

 

Extended attributes 

It is obvious that no single data model will be able to capture the needs of any lab 

running biomolecular simulations. The intent of this logical model is to provide a simple 

yet fairly exhaustive description of the concepts involved. To allow the addition of new 

properties, to provide more details about the experiment or to keep track of user- or lab-

defined attributes, the notion of extended attribute can be introduced to the model. Each 

extended attribute would be an attribute-value-unit triplet referenced by a given class to 

extend its own attributes, as defined in the logical model. For example one user might 

want to keep track of the order of interpolation and the direct space tolerance for PME-

based simulations. These parameters are currently not represented in the model, which 
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only keeps track of the name of the electrostatics model (“PME”). To add these two 

parameters, one could add two extended attributes to the MD parameter set class (Figure 

3.8) called “PME interpolation order” and “PME tolerance.” 

From an object-oriented perspective, all the classes introduced in the logical 

model could inherit from a single superclass that would reference extended attributes, 

where each extended attribute would be an attribute-value-unit triplet with a possible link 

to a concept identifier defining the attribute in an existing terminology. From a database 

perspective, an extra table would be needed to store all the extended attributes. Such table 

would need the necessary columns to represent the attribute-value-unit triplet, a possible 

concept identifier, and the name of the table each attribute would extend. Although this is 

an easy way to gather all the extended attributes in a single table this approach is not 

rigorous from a relational approach. To allow SQL queries that do not involve injection 

of table names each table would have to be associated to an extra table storing its 

extended attributes. 

 

Summary 

The logical model presented here defines a domain that should be sufficient to 

index biomolecular simulation data at the experiment level. In total over 60 classes were 

defined to represent the common data elements identified through the survey, along with 

new elements and dictionaries that should avoid data redundancy and facilitate queries 

using standard values. From a developer’s perspective this model provides some 

guidelines for the creation of a physical data model that would be more dependent on a 

particular technology, whether it is for the implementation of a database or an API. At a 
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more abstract level the concepts introduced in this logical model provide a good starting 

point for the creation of a new terminology or ontology specific to biomolecular 

simulations. 

 

Dictionaries 

Overview 

The current list of dictionaries include: force field parameter set names and types 

(e.g., classical, polarizable), enhanced sampling methods, MD analysis functions, 

barostats, thermostats, ensemble types, constraint algorithms, electrostatics models, basis 

sets and their types, calculation types (e.g., optimization, frequency, NMR), residues, 

atomic elements (periodic table) and their families, functional groups, software packages, 

and chemical file formats. The list also includes a dictionary of computational methods 

(e.g., Langevin dynamics, MP2, B3LYP) with their class (e.g., MD, Perturbation Theory, 

DFT) and family (e.g., ab initio, semiempirical, empirical). All these dictionaries are 

available for browsing and lookups at: http://ibiomes.chpc.utah.edu/dictionary/. 

Examples of dictionary entries are also provided in Appendix C. 

 

Implementation 

All our dictionaries follow the same implementation method. The raw data are 

defined in CSV files and can be loaded into a database for remote queries and/or indexed 

using Apache Lucene20 for local access via Java APIs (Figure 3.12). Apache Lucene is a 

text search engine written in Java that uses high-performance indexing to enable exact 

and partial string matching. Each CSV file contains a list of entries for a given dictionary 
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with at least three columns representing: the identifiers, the terms (e.g., “QM/MM”), and 

the term descriptions (e.g., “Hybrid computational method mixing quantum chemistry 

and molecular mechanics”). More columns can be defined depending on the type of 

dictionary, either to represent extra attributes or to link to other dictionaries (foreign 

keys). For example the CSV file listing the QM method classes would have an extra 

column with the IDs of the associated QM method families. A set of SQL scripts was 

written to automatically create the database schema necessary to store the dictionaries 

and to load the CSV data into the tables. These scripts become very useful if one wants to 

integrate these dictionaries into a repository. Another script was written to automatically 

build the Lucene indexes. The script calls a Java API which parses the CSV files and uses 

the Lucene API to build the indexes. These indexes can then be used locally by external 

codes via the Lucene API, avoiding the need for static definitions of these dictionaries 

within the code or the creation of dependencies with remote resources such as a database. 

They should also help future developments of chemical file parsers and text processing 

tools for chemical information extraction from the literature (i.e., natural language 

processing). The Lucene-based dictionaries can be directly queried through a simple 

command-line interface. Examples in Appendix D demonstrate how one would look up a 

term using this program. This design is fairly simple and enables updates of the 

dictionary entries directly through the CSV files. One limitation is the lack of synonyms 

for the terms defined. To create richer lists it will be necessary to add an extra CSV file 

for each dictionary that would contain the list of all the synonyms and the ID of the 

associated terms. Successful implementations of terminologies in other domains, such as 

the UMLS42 (Unified Medical Language System), should be used to guide the 
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organization of the raw data and facilitate the integration of existing terminologies 

representing particular aspects of the biomolecular simulations (e.g., chemical data, 

biomolecules, citations). 

 

Maintenance and community support 

Until this point the development of the dictionaries has been restricted to an 

internal effort by our lab. To support the work of the community at large these 

dictionaries have to be extended and adjusted based on user feedback. For this purpose 

the dictionaries are now available on our project Wiki at 

http://ibiomes.chpc.utah.edu/mediawiki/index.php/Dictionary, which enables discussions 

and edits by identified users. This will serve as a single endpoint to draft new versions of 

the dictionaries. The source code for the dictionaries, including the CSV files, SQL 

scripts, and Java API, is available from GitHub at: https://github.com/jcvthibault/biosim-

repository. Updates on the CSV files hosted there should occur according to the status of 

the dictionaries in the Wiki. With time we might find that a dedicated database with a 

custom user interface becomes necessary for a defined group of editors to update existing 

terms, add new entries, add new dictionaries, and keep track of changes (logs). In any 

case, the number of editors should be limited to a small group of experts, actively 

participating and working together.43, 44 

Discussion 

In this paper we introduced a set of common data elements and a logical data 

model for biomolecular simulations. The model was built upon community needs, 

identified through a survey and refined internally. Elements described by the model cover 
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the concepts of authorship, molecular system, computational method and platforms. 

Although the model presented here might not be complete, it integrates the methods that 

are the most significant for simulations of biomolecular systems: molecular dynamics, 

quantum chemistry and QM/MM. We introduced a new representation of the method 

landscape through method-specific parameter sets, which should allow the integration of 

more computational methods in the future. The addition of extended attributes to the 

model should enable customization by labs to fit their specific needs or represent 

properties that are currently not described by the model. The use cases presented here 

showed how the model can be used in real applications, to partially automate the creation 

of database schemas and generate XML descriptions. Multiple dictionaries, populated 

through reviews of online resources and literature, were implemented to supplement the 

model and provide developers with new tools to facilitate text extraction from chemical 

files and population of repositories. Although the current version of the dictionaries is 

fairly exhaustive they will become a powerful tool only if they are updated by the 

community. A missing piece in this model is a catalogue of available force field 

parameter sets and atom types that could be used to generate force field description files 

and serve as an input for popular MD software packages. The EMSL Basis Set 

Exchange45 already offers something similar for basis sets, and provides a SOAP-based 

web service to access the data computationally. 

While it is important to allow the whole community to provide input on the CDEs 

and dictionaries, eventually a consensus needs to be made by a group of experts 

representing the main stakeholders: simulation engine developers, data repository 

architects, and users. The creation of a consortium including users, developers and 
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informaticians from the QM and the MD community could help formalize this process if 

such entity leads: 

 Active polling, for example via annual surveys assessing the need for changes or 

additions in the CDEs, dictionaries, or the data model. Information about the 

respondents such as software usage, preferred computational methods (e.g., all-

atom or coarse-grain MD, DFT) and target systems (e.g., chemical compounds, 

biomolecules) will provide more details for the development of more adequate 

recommendations for specialized communities. 

 Monitoring of community discussions, which might take place on a dedicated 

online forum or a wiki such as the one introduced here 

 Recurring creation and distribution of releases for the CDEs, dictionaries, and 

data model. The CDEs in particular should include at least 2 levels of importance 

(recommended or optional) to provide some criteria about the completeness of the 

data descriptors. A third level characterizing certain CDEs as mandatory might 

provide a standard for developers and data publishers to populate repositories. 

Our current focus is on indexing data at the experiment level so that the associated 

collection of input and output files can be retrieved. While the CDEs can be used to tag 

individual files it is not clear yet how much metadata are necessary to enable automatic 

data extraction (e.g., extract properties for a single frame from a time series) and 

processing, and if such metadata can be extracted directly from the files without user 

input. The popularization of self-explanatory formats (e.g., NetCDF, CML) to store 

calculation results or MD trajectories would certainly help. The ongoing work within the 

ScalaLife programme should help the community move in this direction, while the data 
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model presented here will provide a good framework to organize, describe, and index 

computational experiments comprising multiple tasks. By publishing this model and the 

list of CDEs we hope to encourage developments of new repositories for biomolecular 

simulations, whether they are part of an integrated computational environment (e.g., 

MDWeb) or not (e.g., iBIOMES). Both approaches should be addressed. On one hand, 

computational environments can easily keep track of the tasks performed during an 

experiment since the input parameters and topologies are directly specified within the 

environment. On the other hand, we still need to think about the developer community 

that works on new simulation engines, new force fields and new computational methods. 

They will still need to customize their simulation runs within more flexible environments 

where they can manually edit input files or compile new codes, and use local or allocated 

high-performance computing resources. Independent data repositories where data can be 

deposited through a publication process are probably more viable to overcome these 

requirements. Finally it is not clear who will be given access to these large computational 

environments or who will have the computational, storage, and human resources to 

deploy, sustain, and make such complex systems available to the community. 

The goal of the proposed data model is to lay the foundations for a standard to 

represent biomolecular simulations, from the experiment level to the task level. For this 

purpose we wanted to integrate MD, QM, and QM/MM methods, all of which play a 

particular role in the field. Although classical MD is arguably the most popular approach 

for biomolecular simulations we believe that QM/MM approaches and ab initio MD for 

example will gain more and more interest as computational power increases and they 

should not be left out of a future standard. On the other hand we recognize that our model 
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might not be as granular as others. The UMM XML26 schema for example will be one of 

the first attempts to describe MD simulation input with enough granularity so that 

software-specific input files can be generated without information loss. Such effort is 

highly valuable for the MD community, and our data model will certainly evolve to 

integrate such models. Our short-term goal is to engage current repository and data model 

developers such as the ScalaLife (http://www.scalalife.eu/) and Mosaic 

(https://bitbucket.org/molsim/mosaic/wiki/Home) groups for MD and the Blue Obelisk 

(http://sourceforge.net/apps/mediawiki/blueobelisk/) group for QM and cheminformatics 

so that we can learn more about each other’s experience and try to align our effort 

towards an integrated data model that would fit the needs of the whole biomolecular 

simulation community. 

Conclusion 

The framework presented here introduces a data model and a list of dictionaries 

built upon community feedback and selected experts’ experience. The list of core data 

elements, the models, and the dictionaries are available on our wiki at: 

http://ibiomes.chpc.utah.edu/mediawiki/. 

As more implementation efforts are taken, the community will be able to assess 

the present data model more accurately and provide valuable feedback to make it evolve, 

and eventually support collaborative research. The list of desiderata for data model 

developments, for both conceptual and physical representations, should provide some 

guidance for the long task at play. 

http://ibiomes.chpc.utah.edu/mediawiki/
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Methods 

This paper uses semistructured interview methods to establish the community 

needs and preferences regarding biomolecular simulation data indexing and presentation. 

The common data elements were identified using an approach similar to 46, while the data 

model was built using standard modelling techniques to derive logical and physical 

models. Interested readers can find details of these techniques in 22. 
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Figure 3.2, Generating an XML representation of experiments 

using a Java API. The Java API is used to parse the input files and 

create an internal representation of the virtual experiment as a set 

of computational tasks. JAXB is then used to generate an XML 

representation of this internal model, while XSLT is used to 

perform a last transformation into a user-friendly HTML page. 
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Figure 3.4, Illustration of the data model used to represent virtual 

experiments. Each experiment is a set of tasks, grouped into 

processes (e.g., minimization, equilibration, production MD) and 

process groups applied to the same molecular system (e.g., B-DNA 

oligomer). 
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Figure 3.8, Description of MD tasks and parameter sets. 
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Figure 3.11, References to the file system and hosted files 

containing the raw data. 

 

 

 

 

 

Figure 3.12, Building process for the dictionaries. Each dictionary 

can be either indexed via Apache Lucene for use via a Java API or 

loaded into a database to enable remote SQL queries. 
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CHAPTER 4 

THESAURUS AND ONTOLOGY DEVELOPMENTS 

FOR BIOMOLECULAR SIMULATION 

 DATA EXCHANGE 

Abstract 

The field of biomolecular simulation is at the crossroads of chemistry, biology 

and computer science. As such, semantic description of the data and provenance metadata 

is critical to enable effective data sharing among these scientific communities. Until now 

the number of repositories for biomolecular simulation has been limited and no standard 

is followed to enable data interoperability and integration within the semantic web, 

greatly reducing the ability to exchange data with noncomputational scientists. In this 

paper we present a new thesaurus used to describe concepts related to the computational 

methods, parameters, and output commonly used in biomolecular simulations. We also 

demonstrate how to extend the thesaurus to a Simple Knowledge Organization System 

and an application ontology following the Open Biological and Biomedical Ontology 

Foundry principles. 
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Introduction 

Biomolecular simulations aim to study the dynamics of biomolecules and 

biomolecular processes through computer simulations. While the computational methods 

mainly rely on approximations to physics and chemistry principles, the results aim to 

advance biology and medicine by providing new insights into molecular structure and 

function1, 2 and are becoming critical for enabling drug discovery.3, 4 In the last decade 

researchers in the field of molecular simulations have been able to reach timescales and 

system sizes that are biologically relevant.1, 5 As computational power increases, these 

simulations become more common, and new tools are necessary to share these data with 

other scientific communities. At present simulation data are usually confined at the level 

of a lab or to a relatively small group of researchers participating in a multilab project. 

Very seldom the data are shared with the community at large or with the method 

developers. Few informatics architectures have been proposed to allow researchers to 

store and expose their data.6-8 Even fewer repositories are openly available to the 

community to retrieve existing biomolecular simulation datasets9, 10 Some of the main 

constraints for the development of such repositories are the amount of data created by 

each simulation (~GB-TB), the distributed nature of the storage resources, partly because 

of use of external computational resources, such as national clusters. But fundamentally 

the lack of the semantic context for simulation data precludes their use by researchers 

outside of the immediate circle of collaborators of the producing lab. The need for a 

common data model to store and exchange biomolecular simulation data has been 

demonstrated in various studies11-13 but the current approaches are limited to usage within 

the biomolecular simulation community. Semantic description of biomolecular 
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simulation data and provenance metadata is critical to enable data sharing with other 

communities, especially between the fields of experimental and computational chemistry. 

In this paper we report our advances in improving the semantic description of concepts 

related to the computational methods, parameters, and output of biomolecular 

simulations. Semantic description would not only allow federations of repositories based 

on different architectures, but it would also allow researchers from other scientific 

domains, such as experimental chemistry or biology, to gain more productive access to 

simulations data via the semantic web. 

In previous work11 we introduced a data model and a set of dictionaries to 

represent various concepts associated to the input parameters and output of biomolecular 

simulations. One of the limitations of these dictionaries is the lack of flexibility to 

represent hierarchies, especially when defining computational methods at different levels 

of granularity (e.g., “MP2” vs “Perturbation theory” vs. “Quantum chemistry”). This can 

be avoided by including “is a” relationships between concepts to create a detailed 

taxonomy. Such taxonomy can be enriched with associative relationships (e.g., 

“simulates,” “is executed on”) to give more meaning to the concepts through a thesaurus. 

Examples of such taxonomies include the various sources of the UMLS Metathesaurus14 

(e.g., NCI thesaurus, SNOMED-CT). Finally the thesaurus can be supplemented with 

implicit associations and definitions within an ontology to allow reasoning and infer 

relationships between concepts.  

In this study we introduce a new controlled vocabulary for biomolecular 

simulations, BIOSIO (BIOmolecular SImulation Ontology), which can be used to 

describe published data using semantic web components. Our experience with iBIOMES6 
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showed that complex queries cannot be built if the tags (i.e., metadata) associated to the 

published experiments do not have any semantic meaning. For example if a user is 

looking for all simulations that use molecular dynamics, one should expect the query 

engine to search for both classical and ab initio MD simulations. This type of inference 

assumes the existence of a controlled vocabulary representing hierarchical relationships 

between available tags. 

The controlled vocabulary is defined as a thesaurus stored as a relational database 

based on the UMLS Metathesaurus model14 to facilitate a future integration with other 

standard biomedical terminologies. The thesaurus was converted to a Knowledge 

Organization System (KOS) encoded as a Simple Knowledge Organization System15 

(SKOS), a W3C recommendation for the publication of controlled vocabularies within 

the semantic web. Finally, the thesaurus was extended to a simple ontology, to integrate 

concepts, relationships, and axioms of well-known biomedical ontologies.  

Methods 

Scope 

The BIOSIO thesaurus and ontology aim to represent the following concepts: 

 Theoretical chemistry methods, including quantum chemistry and molecular 

dynamics 

 Analysis methods (e.g., Root mean square deviation calculations, principal 

component analysis) 

 Computational tasks, including input and output description 

 Software packages and file formats 
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Theoretical and computational methods are not actually described by the 

ontology. Instead BIOSIO provides a reference to the associated literature or web content 

when applicable. Such references are also used when describing software packages and 

file formats. BIOSIO was implemented in 3 different formats: as a relational database, as 

a Simple Knowledge Organization System15 (SKOS), and as an OWL 2 document.16  

 

Implementation 

Thesaurus database 

A database was first designed to store the concepts represented by the data model 

and dictionaries presented in previous work and validated by the user community as 

explained elsewhere.11 The database schema (Figure 4.1) was inspired by the UMLS 

metathesaurus.14 Each concept (i.e., meaning) is defined in the CONCEPT table and can 

be associated to several terms (i.e., synonyms), citations, and textual descriptions. Some 

of the classes and attributes from the initial data model were used to manually create new 

concepts in the database. A set of scripts was created to automatically create a new 

concept with its textual description and citations (if applicable) for each dictionary entry. 

For example, a “computational method” concept was created to be the parent of “Ab 

initio methods,” “Empirical method,” and “Semiempirical method,” which were defined 

as part of the dictionary of computational methods. These concepts were supplemented 

with various concepts that did not appear in the original data model but that were 

necessary to bring more granularity to the hierarchical organization of the controlled 

vocabulary. For example, the force field parameter sets were grouped by publisher (e.g., 

AMBER, CHARMM) and targets (e.g., ions, water). Relationships between concepts are 
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defined in the RELATIONSHIP table, while types of relationships (e.g., “is a,” “has 

part”) are defined in the CONCEPT table and differentiated from regular concepts via the 

IS_REL flag. Concepts can also be mapped to concepts from external terminologies or 

ontologies via the CONCEPT_MAPPING and EXTERNAL_ONTOLOGY tables, which 

store the mappings and ontology definitions respectively. The SEMANTIC_TYPE table 

stores the various categories used to provide a high-level classification of all concepts in 

the thesaurus: the semantic types. Each concept can be associated to one or multiple 

semantic types via the CONCEPT_SEMANTIC_TYPE table. Just like in the UMLS, 

semantic types are defined to reduce the complexity of the thesaurus.17 They can be used 

to group similar concepts together and facilitate searches and result filtering. For the 

design of this thesaurus we created a simple semantic network that would enable targeted 

searches based on the different parameters and methods (i.e., molecular dynamics vs. 

quantum chemistry) one could choose to setup the simulation. Each concept in the 

thesaurus can be assigned to at least one semantic type. 

 

SKOS and ontology 

A Java API was developed to enable the creation of SKOS and OWL documents 

from the thesaurus defined in the relational database. The API queries the database and 

iterate through all the concepts to write the associated triples into a SKOS or OWL Turtle 

file.18 The API can also be used to populate the database from a SKOS or OWL 

document, using the OWL API19  and the SKOS API.20 The following assumptions were 

made when developing the API: (1) High-level relationships such as “is a,” and “has 

parts” are mapped using external ontologies (Table 4.1) that are assumed to be referenced 
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in the thesaurus or the OWL ontology; (2) In SKOS, hierarchical relationships are 

represented through the “narrower” and “broader” associations. For example “DNA” is a 

“broader” concept than “Nucleic acid,” and “all-atom molecular dynamics” is narrower 

than “molecular dynamics.” In OWL, “is a” relationships are expressed using the 

subClass predicate. For example the “Nucleic acid” class is a sublcass of “DNA.”  

The BIOSIO ontology development follows the principles of the Open Biological 

and Biomedical Ontology (OBO) Foundry, a group of developers aiming at creating 

interoperable ontologies for the biomedical domain. BIOSIO builds upon the Basic 

Formal Ontology21 (BFO) as its upper-level ontology. BFO defines abstract concepts 

such as “continuant,” i.e., an entity that exists and persists through time (e.g., a material 

entity, a spatial region), and “occurent”, i.e., an entity that has temporal parts (e.g., a 

process, an event, a temporal region). These concepts serve as a foundation for most 

OBO ontologies to facilitate interoperability and future developments. BIOSIO also 

builds upon more concrete ontologies derived from BFO: the Information Artifact 

Ontology (IAO), which describes information entities such as data sets, documents, 

software and algorithms, and the Ontology for Biomedical Investigations (OBI), which 

aims to describe the wide spectrum of biological and clinical investigations, from their 

design to the analysis methods and resulting data sets.22 BIOSIO, like many other OBO 

ontologies, uses the ChEBI23 (Chemical Entity of Biological Interest) ontology to define 

chemical and molecular entities, such as atoms, ions, molecules, nanostructures, nucleic 

acids, and proteins. Biological concepts can be derived from ChEBI by linking to other 

OBO ontologies, such as the Gene Ontology24 (GO) or the Protein Ontology25 (PRO). 
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The final OWL document only stores references to these ontologies. One can 

explicitly import these ontologies via tools such as Protégé26 if the associated concepts 

are necessary for the use case. The SKOS-encoded controlled vocabulary on the other 

hand does not include references to external sources, such as ChEBI, which is necessary 

to represent concepts related to molecular and chemical entities. Conversion tools such as 

skosify (https://code.google.com/p/skosify/) and the OBO-to-SKOS converter from the 

University of Manchester (http://www.cs.man.ac.uk/~sjupp/skos/index.html) could be 

used to generate a SKOS version of ChEBI and represent these missing pieces. 

 

Comparison with the UMLS 

One of the long-term goals for this thesaurus is to become part of a larger source 

of biomedical concepts such as the UMLS to supplement existing concepts with new 

concepts relating to biomolecular simulations. In order to evaluate the novelty of the 

concepts introduced in this thesaurus we compared the overlap between the UMLS 

concepts and the BIOSIO thesaurus concepts. A quantitative evaluation of this overlap 

was performed by looking at the matches between concept terms. If all concepts 

introduced in this thesaurus are novel no overlap should be found with the UMLS. On the 

other hand, matches help identify where mapping is necessary. To facilitate this process 

we developed a simple dictionary lookup program to automatically compare strings of 

concept names from both sources. About 10 million concept terms from the 2012AB 

UMLS were indexed using Apache Lucene,27 a high-performance text search engine. A 

Java program based on the Apache Lucene API was developed to check exact matches 

between normalized concept terms from our thesaurus and the UMLS. The normalized 

https://code.google.com/p/skosify/
http://www.cs.man.ac.uk/~sjupp/skos/index.html
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version of a term is obtained by removing common stop words (e.g., “a”, “and”, “with” 

“to”) and by using the canonical form of each word using the Lexical Variant Generator28 

(LVG) tool. For example, plural nouns become singular, and conjugated verbs are 

transformed to their infinitive root. This normalization step is performed on each UMLS 

term when building the index and on each thesaurus concept term that is looked up in the 

index. This process tends to reduce the number of false negatives when comparing 

strings. To facilitate the analysis of the matches proposed by our program, each concept 

term in the index is associated to its CUI (Concept Unique Identifier), its original term, a 

normalized version of the term, and the source terminology for the concept (e.g., ICD-10, 

MESH, NCI).  

 

SKOS use case 

iBIOMES builds upon the iRODS29 framework, which provides a distributed file 

system where files are indexed using Attribute-Value-Unit (AVU) triplets. One of the 

current directions undertaken by the iRODS developers is the integration of KOS within 

their indexing system. More specifically, they are in the process of integrating HIVE 

(Helping Interdisciplinary Vocabulary Engineering30) to manage and index SKOS-

encoded controlled vocabularies. HIVE provides a core server to load SKOS documents 

and to enable keyword and SPARQL31 searches. HIVE also supports automatic document 

tagging using keyphrase extraction, based on the KEA (Keyphrase Extraction 

Algorithm32) tool. Assuming that a model is trained within KEA, this could enable 

automatic biomolecular simulation literature tagging and indexing. To assess such 
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framework within iBIOMES, we installed a local instance of HIVE and loaded the 

BIOSIO SKOS to enable concept browsing and searches. 

Results 

Concept network 

Summary 

In total 697 concepts (i.e., OWL classes) and 870 associated terms (i.e., OWL 

labels) are represented in BIOSIO. Twelve high-level concepts were mapped to external 

OBO ontologies, as listed in Table 4.2. For example the “software package” concept does 

not have any explicit parent in BIOSIO but it is mapped as a child of the concept 

“software” in the IAO ontology. All these parent-child mappings provide a higher level of 

abstraction for BIOSIO if integration with other biomedical ontologies is necessary.  

The core concepts (i.e., without external ontology mappings) are organized 

through 677 “is a” relationships and 13 “has part” relationships. The resulting 

hierarchical network of core concepts is presented in Figure 4.2. Each node represents a 

concept explicitly defined in the thesaurus and each edge represent an “is a” relationship. 

BIOSIO also includes 139 citations (127 unique references), most of which were 

already published in our dictionaries.11 The thesaurus also includes 12 semantic types to 

provide a high-level classification of the concepts similar to the UMLS semantic type 

network. These semantic types were organized into a simple network, as illustrated in 

Figure 4.3. Each concept in BIOSIO is considered a simulation feature that relates to the 

computational methods (e.g., molecular dynamics and associated parameters), the 

molecular system (e.g., topology, structure) or the computing environment (i.e., software 

or hardware used to run the simulation). 
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Comparison with the UMLS 

Out of the 697 BIOSIO thesaurus concepts, 94 had at least one term name that 

matched a UMLS metathesaurus concept name. Some of these term matches, including 

true and false positives, are presented in Table 4.3. Out of the 94 BIOSIO concepts being 

mapped by the program, 33 concepts were mapped correctly to either an equivalent or a 

parent UMLS concept. Most of the false positives were caused by acronyms that did not 

have the same meaning in both sources. For example the acronym SAS (surface-

accessible surface) in BIOSIO matched different gene names (“NANS,” “TSPAN31”) 

that use this string as alternate identifiers in the UMLS. Most of the true positives are 

related to software or hardware components (e.g., CPU, GPU, file). This is expected since 

our thesaurus includes concepts related to the computing environment, but leaves out the 

description of biomolecular systems, which would have great overlap with the UMLS. 

Another source of false positives is the difference in granularity between matching 

concepts. For example the concept “Analysis task” in our thesaurus really represents 

computational analysis tasks, and not a generic “analysis” (C0936012) or “analysis of 

substances” (C0002778). Although we considered these mappings as false positives they 

can actually help identify child-parent mappings.  

 

Indexing SKOS concepts with HIVE 

The SKOS document was successfully validated using the online quality checker 

available at http://qskos.poolparty.biz/ and loaded into HIVE. A screenshot of the web 

interface of our local HIVE instance is presented in Figure 4.4. Although the original 

version of the SKOS successfully passed the quality tests, it did not fulfill all the 

http://qskos.poolparty.biz/


  

 

98 

requirements of the HIVE system to be successfully loaded. The database-to-SKOS 

converter had to be updated to 1) explicitly define each “is a” relationship with both 

“narrower” and “broader” associations (although in SKOS “A narrower B” implicitly 

means “B broader A”), 2) define a SKOS scheme (skos:ConceptScheme) for all the 

concepts (skos:inScheme) and explicitly define the top-level concepts 

(skos:hasTopConcept), and 3) define document-level metadata (e.g., creation date, 

author). An extract of the final document is given in Figure 4.5.  

A few SPARQL31 queries were run against HIVE using the HIVE-core Java API 

(version 2.2). Two example input SPARQL queries are provided in Figure 4.6 and Figure 

4.7 to show how one would retrieve broader and narrower concepts. 

Discussion 

In this paper we presented a new controlled vocabulary for biomolecular 

simulations, BIOSIO, that focuses on the representation of the computational methods, 

parameters and environments (i.e., software and hardware) relating to biomolecular 

simulations. A preliminary analysis was performed to check for overlaps between this 

thesaurus and the UMLS, one of the largest sources of biomedical concepts. Our results 

show that a future integration of the BIOSIO thesaurus into the UMLS metathesaurus 

will require some manual work but semiautomatic mappings between concepts will 

facilitate the process. The precision of our current mapping algorithm, based on a simple 

index lookup, could be largely improved. For example one could remove acronyms from 

the automatic mapping step and rely only on expanded labels to compare strings. In our 

analysis we used the whole UMLS, although we are only interested in computational 

methods and computing environment components. To avoid false positives such as gene 
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and protein names, we could filter out certain UMLS semantic types representing 

biomolecular and chemical entities, since these are not directly represented in our 

thesaurus and are not expected to match any concept. The recall of the algorithm will be 

highly dependent on the richness of the vocabularies being mapped. Even though the 

normalization step used for indexing and lookups should provide a good recall, some 

concept mappings might have been missed because of poor representation of synonyms 

for the associated concepts in either source.  

A SKOS-encoded controlled vocabulary and a simple ontology were derived from 

the thesaurus. The SKOS was validated and loaded into HIVE to enable concept 

browsing and searches. Sample SPARQL queries were run to show the value of SKOS to 

expose biomolecular simulation data in a semantic web context. The derived ontology 

links to popular OBO ontologies to integrate detailed descriptions of biomolecule and 

chemical entities, but also for the integration of more abstract concepts that should 

facilitate its reuse in future OBO developments. Future directions include the integration 

of the ontology into the Chemical Information Ontology33 (CHEMINF), which describes 

a domain that is similar to biomolecular simulations in many aspects. It aims to provide a 

description of cheminformatics tools and calculations within a semantic web context. 

This includes the description of the algorithms, their execution process, the input and 

output, and the actual chemical descriptors being calculated. Although CHEMINF 

focuses on cheminformatics applications, its higher-level concepts are adapted to most 

subfields of computational chemistry, including quantum chemistry and molecular 

dynamics, two of the main classes of methods for biomolecular simulations. Finally the 

current ontology presented here is very simple since it does not include any axiom other 



  

 

100 

than the ones inherited from the parent ontologies (e.g., BFO, OBI). The inclusion of 

more associative relationships and axioms specific to the domain of biomolecular 

simulation should help infer certain characteristics of computational experiments. For 

example, when publishing incomplete metadata into a repository, a reasoner such as 

HermiT (http://hermit-reasoner.com/) or Pellet (http://clarkparsia.com/pellet/) could be 

used to generate missing or more specific metadata. 

At this point the concepts and relationships defined in the thesaurus and the 

ontology have not been formally evaluated, although they build upon a previously 

published data model.11 This work was mostly done within the context of a single 

computational lab and did not involve outside experts. A survey could be used to receive 

general feedback but a detailed evaluation using a divide-and-conquer approach might be 

more beneficial. For example a group of experts would be responsible to evaluate and 

refine the ab initio methods while another group would be responsible for the classical 

MD methods. More complete methodologies for the evaluation of controlled vocabularies 

and ontologies could be used.34, 35 Coverage of the domain should be evaluated as well. 

There are numerous computational methods and parameters one can use to run 

biomolecular simulations. The computational protocols are rarely described in detail in 

the literature, which usually prevents reproducibility. Automatic term extraction using 

existing algorithms36 could be useful to generate a list of common terms that represent 

biomolecular simulation methods. Since the associated literature is usually focusing on a 

higher level of theory and on the actual results of the simulations, the use of various QM 

and MD software user manuals might be more adapted to the scope of our work.  

 

http://hermit-reasoner.com/
http://clarkparsia.com/pellet/
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Figure 4.2, Hierarchical network of BIOSIO core concepts without 

external ontology mappings. Each leaf represents a concept and 

each branch represents an “is a” relationship. 
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Figure 4.3, Thesaurus semantic network 

 

 

 

 

Figure 4.4, Screenshot of the Hive web interface for SKOS concept 

browsing 
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@prefix skos: <http://www.w3.org/2004/02/skos/core#> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 

@prefix owl: <http://www.w3.org/2002/07/owl#> . 

@prefix dc: <http://purl.org/dc/elements/1.1/> . 

@prefix dct: <http://purl.org/dc/terms/> . 

@prefix ib: <http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#> . 

@base <http://edu.utah.bmi.ibiomes/skos/ibiomes.owl> . 

 

ib:IBIOMES rdf:type skos:ConceptScheme ; 

  rdfs:label "IBIOMES"@en ; 

  rdfs:comment "Vocabulary for biomolecular simulations"@en ; 

  dc:title "Vocabulary for biomolecular simulations"; 

  dc:date "2014-03-23"; 

  dc:creator "Julien Thibault" . 

 

ib:MTH10000 rdf:type skos:Concept ; 

  skos:inScheme ib:IBIOMES ; 

  skos:prefLabel "Computational method"@en ;  

  skos:altLabel "Method"@en ; 

  skos:definition "Computational method"@en ; 

  skos:narrower ib:MTH11000 ; 

  skos:narrower ib:MTH12000 ; 

  skos:narrower ib:MTH13000 ; 

  skos:narrower ib:MTH14000 . 

 

ib:IBIOMES skos:hasTopConcept ib:MTH10000 . 

 

ib:MTH11000 rdf:type skos:Concept ; 

  skos:inScheme ib:IBIOMES ; 

  skos:prefLabel "Empirical method"@en ; 

  skos:definition "Computational method that uses empirical parameters"@en ; 

  skos:broader ib:MTH10000 ; 

  skos:narrower ib:MTH11100 ; 

  skos:narrower ib:MTH11200 . 

 

ib:MTH11100 rdf:type skos:Concept ; 

  skos:inScheme ib:IBIOMES ; 

  skos:prefLabel "Classical molecular dynamics"@en ;  

  skos:altLabel "Classical MD"@en ; 

  skos:definition "Molecular mechanics-based molecular dynamics"@en ; 

  skos:broader ib:MTH11000 ; 

  skos:narrower ib:MTH11110 ; 

  skos:narrower ib:MTH11120 ; 

  skos:narrower ib:MTH11300 . 

 

Figure 4.5, SKOS document extract in RDF/Turtle format 
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SPARQL query 
 

PREFIX skos: <http://www.w3.org/2004/02/skos/core#> 

PREFIX ib: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#>  

SELECT ?uri ?label  

WHERE { 

ib:MD00900 skos:narrower ?uri .  

?uri skos:prefLabel ?label 

} 

 

Output 
 

[1] label: "Classical force field"@en 

    uri: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#C17501 

 

[2] label: "Polarizable force field"@en 

    uri: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#C17502 

 

[3] label: "Reactive force field"@en 

    uri: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#C17503 

 

[4] label: "Coarse-grain force field"@en 

    uri: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#C17504 

 

Figure 4.6, SPARQL query example: retrieving the concepts that 

are narrower than the ‘Force field’ concept (MD00900). 

 

 

 
SPARQL query 
 

PREFIX skos: <http://www.w3.org/2004/02/skos/core#> 

PREFIX ib: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#> 

SELECT ?uri ?label  

WHERE { 

ib:MTH11100 skos:broader ?uri .  

?uri skos:prefLabel ?label 

} 

 
Output 
 

[1] label: "Empirical method"@en 

    uri: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#MTH11000 

 

Figure 4.7, SPARQL query example: retrieving the concepts that 

are broader than the ‘Classical molecular dynamics’ concept 

(MTH11100). 
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Table 4.1, Relationship mappings between thesaurus, SKOS, and ontology 

Relationship SKOS equivalents OWL equivalents 

[A] is a [B] 
[A] skos:narrower [B] 

[B] skos:broader [A] 
[A] rdfs:subClassOf [B] 

[A] has part [B] [A] skos:relatedHasPart [B] [A] <http://purl.obolibrary.org/obo/BFO_0000051> [B] 

[B] part of [A] [B] skos:relatedPartOf [A] [B] <http://purl.obolibrary.org/obo/BFO_0000050> [A] 

 

 

 

 

Table 4.2, Mappings between BIOSIO concepts and external OBO ontologies 

OBO parent BIOSIO children 

Ontology Concept Label Concept Label 

BFO BFO_0000019 Quality MTH00100 Descriptor 

BFO BFO_0000028 
Three-dimensional spatial 

region 
SYS11000 Box 

BFO BFO_0000030 Object 
CPE00002 

HW01000 

Computing platform 

Hardware component 

BFO BFO_0000031 
Generically dependent 

continuant 

PRM00001 

PRM00101 

Parameter 

Parameter set 

IAO IAO_0000010 Software 
SW01100 

SW01200 

Operating system 

Software package 

IAO IAO_0000030 Information content entity FS01000 File system 

IAO IAO_0000098 Data format specification FS01110 File format 

IAO IAO_0000104 Plan specification MTH10000 Computational method 

IAO IAO_0000115 Definition #citation Citation 

IAO IAO_0000310 Document FS01100 File 

OBI OBI_0200000 Data transformation 
TSK10000 

TSK00001 

Computational process 

Computational task 

CHEBI CHEBI_24431 Chemical entity 
SYS10000 

SYS01000 

Molecular system 

Molecular system component 
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Table 4.3, Sample matches between thesaurus concept terms and UMLS concept 

names. 

Concept Matching term 
UMLS 

CUI 

UMLS concept 

name 
UMLS sources Match 

Hartree-Fock HF 
C3273279 CFH wt Allele NCI No 

C1538440 CFH gene OMIM No 

Solvent-

accessible 

surface 

SAS 

C1426104 NANS gene OMIM, HGNC No 

C1823519 TSPAN31 gene OMIM No 

Protein Data 

Bank 

Protein Data 

Bank 
C1705318 Protein Data Bank MTH, NCI Yes 

Graphics 

Processing 

Unit 

GPU C1881002 
Graphics Processing 

Unit 
NCI Yes 

Central 

Processing 

Unit 

CPU 
C1707144 

Central Processing 

Unit 
NCI Yes 

C1413666 CPB2 gene OMIM, HGNC No 

Volume Volume 

C0449468 Volume 

LNC, FMA, NCI, 

MTH, 

SNOMEDCT… 

Yes 

C1705102 
Volume 

(publication) 
NCI No 

Analysis task Analysis 
C0002778 

Analysis of 

substances 
SNOMEDCT No 

C0936012 Analysis MTH, PSY Parent 
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CHAPTER 5 

IBIOMES: MANAGING AND SHARING BIOMOLECULAR 

SIMULATION DATA IN A DISTRIBUTED 

ENVIRONMENT1 

Abstract 

Biomolecular simulations, which were once batch queue or compute limited, have 

now become data analysis and management limited. In this paper we introduce a new 

management system for large biomolecular simulation and computational chemistry 

datasets. The system can be easily deployed on distributed servers to create a minigrid at 

the researcher’s site. The system not only offers a simple data deposition mechanism but 

also a way to register data into the system without moving the data from their original 

location. Any registered dataset can be searched and downloaded using a set of defined 

metadata for Molecular Dynamics and Quantum Mechanics, and visualized through a 

dynamic web interface. 

                                                 
1 Reproduced in part with permission from Thibault, J.C., Facelli, J.C., and Cheatham III, T.E. (2013). 

iBIOMES: Managing and Sharing Biomolecular Simulation Data in a Distributed Environment. Journal of 

Chemical Information and Modeling, 53(3), 726-736. Copyright 2014 American Chemical Society. 
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Introduction 

Biomolecular simulations aim to study the structure, dynamics, interactions, and 

energetics of complex biomolecular systems. Understanding biological phenomena with 

these methods may facilitate the design of better drugs, therapies, catalysts and 

nanotechnology.1-3 With the recent advances in hardware, it is now not only possible to 

use more complex and accurate models, but also to reach time scales that are biologically 

significant. When simulating biomolecular dynamics on the microsecond time scale for 

example, one can easily generate molecular dynamics trajectories of the time series of 

atomic positions that represent terabytes (TB) of data on disk. More recently, special-

purpose hardware such as the Anton machine has allowed researchers to reach 

millisecond time scales,4 increasing the size of the resulting data even further. While the 

computing power has dramatically increased in the last decade, our ability to manage, 

store, analyze, and move large datasets is still limited. Central repositories for the 

community or even at the lab level are desirable to facilitate data management, analysis, 

and sharing. This will require both new methods to catalog existing datasets by keeping 

them in place and improved mechanisms for facilitating and cataloguing data storage and 

movement. 

Biomolecular simulations and computational chemistry are dominated by two 

classes of methods: Molecular dynamics (MD) and quantum mechanics (QM). Many 

variations (based on parameter choice or approximations) of the methods exist, along 

with hybrid approaches that combine different methods. A wide variety of MD and QM 

codes are available to the scientific community. AMBER,5 NAMD,6 CHARMM,7 

GROMACS,8 and LAMMPS,9 are some of the most popular MD simulation codes in use 
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today to simulate proteins, nucleic acids, or even larger molecules. Gaussian,10 

NWChem,11 GAMESS,12 Q-Chem,13 Jaguar,14 and VASP15 on the other hand, are popular 

QM packages, typically used to study small molecules such as drug compounds. The 

heterogeneity of the data resulting from the simulations (e.g., QM calculation vs. MD 

atom trajectories), and the format of input and output files makes data management non-

trivial. Moreover, each simulation software package has its own way to represent 

simulation parameters (e.g., simulated time, method), molecule topologies, and resulting 

data (e.g., trajectories of the times series of atomic positions). Additionally, each lab has 

multiple researchers (including students, post-docs, staff) using local and national 

resources, different software packages and methods, different file naming conventions, 

and different analysis workflows. As a result it can become quite complicated for 

investigators to manage this distributed multiuser environment and retrieve summaries of 

simulations that were run in the past. 

The heterogeneity of biomolecular simulation data and the distributed nature of 

the resources used by researchers become even more obvious as we move towards 

collaboration between labs, and across institutions. Nevertheless, sharing data outside the 

owner’s institution has a scientific purpose. As theoretical models (e.g., basis sets, force-

fields) and implementations evolve developers need to validate their code by comparing 

results to existing implementations. Creating collaborative networks for developers of a 

particular software package would increase the number of testing and validation datasets 

available to them. For biomedical researchers, the more datasets become available to the 

community, the easier it is to expose correlations between experiments and provide 

insight into biological structure and function. A successful example is the ABC (Ascona 
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B-DNA Consortium) initiative, led by multiple laboratories distributed all over the world. 

A large series of MD simulations of B-DNA were run by the many groups in a divide-

and-conquer manner to expose sequence-specific nucleic acid structure and dynamics.16-

19 A significant challenge has been to aggregate the data. Such initiatives could be 

facilitated if labs had tools to manage and share their data within a collaborative network 

or with the community at large. 

Sharing raw simulation data with the community would also facilitate replication 

of results and increase the trustworthiness of related publications. For a single software 

package, there might be hundreds of different parameters a user can set, and related 

publications typically will not include all of them. Replication of a simulation run will 

then require guesses if the original input files are not made publicly available. Finally, 

there may be unanticipated uses of MD data that will prove community-level databases to 

be desirable (e.g., the development of coarse-grained force fields parameterization or 

novel analyses of the existing data). 

Because of the amount of data researchers have to deal with, it is not always 

practical to centralize the data for collaboration. Distributed systems offer a good solution 

for scientific research in general. Distributed data sources can be aggregated as a single 

resource despite being physically distant, and local control over the data at each node can 

be conserved. This is very important as researchers tend to be reluctant to expose all their 

data or give up ownership. Distributed systems, such as the Grid,20 allow researchers to 

keep control over their own data (storage, backup, security) while offering the tools to 

expose them to the community with authentication and authorization mechanisms. 
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Although data management systems at the community level are important, new 

mechanisms are needed to facilitate or even automate the integration of local data owned 

by individual researchers into collaborative or public repositories. While local data are 

usually unorganized (file system versus database) and dynamic by nature, public 

repositories tend to be more static and more structured to enable domain-specific queries 

by researchers. Mapping these two approaches seamlessly is not a trivial task. Three 

levels of granularity for data management should be considered. First, at the lowest level, 

tools should provide a means for individual researchers to effectively catalogue, browse, 

and search their data, and expose features across datasets. In the case of MD simulation 

data, such features might include, beyond the raw simulation data and input files, 

summaries of the analysis such as root-mean-squared deviation (RMSD) plots versus 

time, molecular graphics of average structures, and/or sequence/topology information. 

The tools used to catalogue and collect these data should not be onerous or complicated. 

They also need to run in closed environments where the data owner might not have root 

privileges (e.g., national computer resources). Finally, data presentation should be 

customizable so that the user can specify which analysis results should be considered for 

display to summarize a particular experiment.  At the next level, data management tools 

should allow users to share information (and customizations) within their group or lab. 

Ultimately, these tools should allow users to share their data with the community either 

by granting access to their existing data in a secured fashion or by copying the data and 

its description (i.e., the metadata) to a public repository. 

An important aspect of biomolecular simulation data management is the ability to 

catalogue the data not only at the level of an individual simulation – typically physically 
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represented by a single set of files or a single directory of data on a file system – but also 

across larger experiments or projects distributed among multiple file systems and 

directories of data. In the context of this work we consider an experiment or project as a 

set of dependent QM or MD runs. For example MD experiments usually require a 

minimization and an equilibration preprocessing phase. Here the minimization-

equilibration-production runs would be considered as a single experiment. Experiments 

can be grouped together to form experiment sets, for example, independent runs of a 

similar system with different force fields or simulation protocols (i.e., related but 

independent simulations, results and files). By providing organization not only at the 

level of individual simulations but across related experiment sets, the user is provided 

with a greater ability to manage and search physical data (files and directories) and 

logical sets. 

In this paper, we introduce iBIOMES (integrated BIOMolEcular Simulations), a 

distributed system for biomolecular simulation data management. Input and output files 

can be easily registered into the system and indexed using a set of metadata, 

automatically generated by format-specific parsers. Servers containing existing datasets 

can be easily integrated into the system to avoid large data movements and still benefit 

from the indexing capabilities of iBIOMES. A prototype is deployed at the University of 

Utah and is being developed to expose a subset of the MD and QM datasets generated by 

our lab over the years. Data are managed via a Java API and exposed via a web portal 

(http://ibiomes.chpc.utah.edu). 

Several projects have tried to tackle the problem of molecular simulation data 

storing and/or sharing. We can distinguish two types of infrastructure: one that is purely 

http://ibiomes.chpc.utah.edu/
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based on relational databases, and one that keeps references to the raw input and output 

files and only stores simulation metadata in a relational database. The BioSimGrid 

project21 and the Dynameomics project22 belong to this first category, where trajectory 

information is stored directly into database tables, using one entry for each atom and for 

each time frame. Scalability of pure relational databases using this approach becomes 

problematic as we reach larger molecular systems and biologically-relevant time scales. 

For example, in our lab we have over 200 TB of raw MD simulation data including 

multiple microsecond scale simulations containing millions of frames of trajectory data; 

replicating the raw data into a database is impractical, wasteful of disk resources, and 

would be extremely slow to process. Another issue for these databases is the lack of 

analysis tools as most current analysis tools perform their calculations on the raw files, 

and not on database tables. The eMinerals project23,24 and the MoDEL (Molecular 

Dynamics Extended Library)25,26 databases adopted a different approach where the raw 

output files (or a compressed version) are made available and searchable through a 

database that stores information about the runs (e.g., PDB ID, molecule name). The 

advantage of keeping the raw files is that it becomes easier to replicate the results if 

necessary and existing tools can be used to perform the analysis of trajectory files.  

For the iBIOMES project, we designed and implemented a distributed solution to 

data storage and sharing across research labs using this second approach. Simplicity was 

one of the key concerns for the development of this system. Users should be able to 

deposit, search, and retrieve data into and from the system easily through simple 

commands, similar to those offered by the Bookshelf system.27 The iBIOMES system 

provides such a command-line interface along with a web interface which offers extra 
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visualization components. Another key concern was the ability to deploy the system 

locally without interfering with the lab workflow. Data can be “deposited” into the 

system – i.e., copied from a remote resource to a resource that is part of the system – or 

simply “registered” in place if the host server is integrated into the system. This becomes 

a crucial necessity as labs tend to have multiple servers storing terabytes of data and 

moving these data to be tracked by the system is not practical. The underlying data 

handling system, based on the iRODS (Integrated Rule Oriented Data System) 

framework,28 creates a virtual data warehouse at the researcher’s site, where data can be 

distributed among multiple servers and searched through metadata query.  Metadata 

include system information (e.g., file location, file name, permissions, registration date) 

and iBIOMES-defined metadata (e.g., simulation description, title, force field used) that 

are used to index MD simulations or QM calculations. iRODS provides a command-line 

interface to manage all the servers and the files that are registered into the system. 

iBIOMES offers several other commands that are used to publish simulation files into the 

system and automatically generate metadata. A web portal and a REST (REpresentational 

State Transfer29) interface are also available to facilitate queries of MD and QM data for 

the end-user and external systems. In the next sections, we will give more details about 

the iRODS data-handling system, the metadata being used, and the different user 

interfaces that were specifically developed for iBIOMES.  

The iRODS data-handling system 

The Integrated Rule Oriented Data System (iRODS)28 is a file management 

system that provides the tools to register, move, and lookup files that are distributed over 

the network and stored in different types of disk (e.g., HPC servers, files servers, archive 
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tapes). iBIOMES uses iRODS as its underlying data handling system to manage 

distributed resources. Files that are registered into an iRODS zone are accessed using a 

virtual path that hides the physical location of the files (and servers), which makes it 

simple for users to logically organize their own data in a distributed environment. 

Information about the resources and the files registered into an iRODS zone are stored 

into the iCAT (iRODS CATalog) database. This database keeps track of the system 

information (e.g., file location, file name, owner) and user-defined metadata that allow 

any triplet “attribute, value, unit” (AVU). A simplified example of a user metadata table is 

given in Table 5.1. User-defined metadata can be used to search and retrieve distributed 

data that are registered in iRODS. 

A command line interface is available to manage this virtual warehouse. The “i-

commands” provide the necessary functionalities one would need in a Unix-like 

environment to move data between servers, manage file permissions, users and groups, 

etc. Commands are also available to check data integrity, i.e., whether a registered file 

physically exists and if its content has not been altered outside iRODS. The ifsck 

command can be used to compare the size or checksum of the physical file with its 

corresponding entry in the system, while the iscan command can parse the file system to 

check if a physical file or directory is already registered into iRODS. iRODS also 

provides a powerful rule engine to manage policies and respond to specified conditions 

(e.g., registration of a new file) by applying a defined rule (e.g., synchronize the file with 

another server). Command-line and web interfaces are provided to lookup files based on 

user-defined metadata or system metadata. iRODS is supported by the Data Intensive 

Cyber Environment (DICE), which is also responsible in part for the development of the 
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Storage Resource Broker (SRB).30 Although SRB is still supported, iRODS became the 

DICE-recommended framework to manage distributed data. Several national and 

international scientific projects have already successfully adopted iRODS for their 

cyberinfrastructure needs. The Wellcome Trust Sanger Institute and the Broad Institute 

currently use iRODS to manage sequencing data.31 The iPlant Collaborative project32 

uses iRODS to manage data gathered from all plant sciences, including genotypic and 

phenotypic data. iRODS has also been used to manage astronomy data, typically images 

in the gigabyte range (National Optical Astronomy Observatory (NOAO), International 

Virtual Observatory Alliance (IVOA)). National computational Grids have also started to 

use iRODS for data management in their widely distributed environments. XSEDE 

(Extreme Science and Engineering Discovery Environment, https://www.xsede.org), a 

large cyberinfrastructure project in the US, now offers data replication services based on 

iRODS at a number of its sites (e.g., National Center for Supercomputing Applications, 

Pittsburgh Supercomputing Center, Texas Advanced Computing Center). The Open 

Science Grid (OSG) is following the trend and is currently integrating iRODS into their 

cyberinfrastructure (www.opensciencegrid.org). This adoption by major computational 

centers is very important. First it creates a strong community of users and developers. 

Then it facilitates the federation of remote sites together, and therefore the deployment of 

systems such as iBIOMES to fulfill the needs of scientists in a particular area. While 

iRODS provides generic data and metadata storage and query capabilities, iBIOMES 

offers a domain-specific metadata catalog and customized user interfaces for 

biomolecular simulation data. 

https://www.xsede.org/
http://www.opensciencegrid.org/
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iBIOMES architecture 

The general architecture of iBIOMES is presented in Figure 5.1. At the lowest 

level, iRODS stores the file/collection metadata in a PostgreSQL database 

(http://www.postgresql.org), and provides interfaces to manage the distributed resources 

integrated into the system. A MySQL database (http://www.mysql.com) was added to 

store MD and QM related metadata definitions and dictionaries such as lists of force-

fields, basis sets, software, and definitions of experiment sets. Each experiment set can be 

assigned a name, description, and a set of metadata. While each experiment is assumed to 

be a physical directory somewhere in the system, sets are logical groups of experiments 

where each experiment can be part of multiple sets. A Java API (iBIOMES-core) was 

created to programmatically access iRODS resources and to manage metadata that are 

specific to biomolecular simulations. The API also helps to generate metadata by parsing 

the files that are being registered into the system in order to avoid manual annotation by 

the data owner. Access to iRODS functionalities is facilitated through the Jargon Java 

API provided by iRODS. Finally, a RESTful interface and a web portal provide access to 

the registered data in a more user-friendly fashion. 

Metadata 

When working with biomolecular simulation data, several pieces of information 

are needed to summarize and index the experiments. Our current list of metadata covers 

the following categories: authorship (e.g., owner, related publications), methods (e.g., 

MD or QM, basis set, force field, parameters), molecular system (e.g., topology, type of 

molecule), platform (hardware and software information), and files (e.g., format). Our 

goal is to develop a list of core metadata that would be software-independent, and 

http://www.mysql.com/
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sufficient to retrieve raw data files that contain the necessary details to replicate an 

experiment. The metadata schema database contains the current list of metadata attributes 

and their definitions. A subset of the metadata attributes defined in iBIOMES is given in 

Table 5.2. This database also contains several dictionaries such as lists of force fields, 

basis sets, or software packages that users can use to facilitate queries or annotations of 

experiments. This list is extensible and allows custom user-defined metadata.  

The distinction between experiment and experiment set is important when 

registering data into iBIOMES. Metadata are automatically generated for the files 

through the API’s parsers then pushed up to the experiment level. For example, in a 

directory containing AMBER simulation data, the topology-related metadata are parsed 

from AMBER topology files, or PDB files if not available. The new topology metadata 

set is then added to the root directory, which is considered to be the representation of the 

experiment. Currently, no metadata are generated for experiment sets, but the owner can 

easily pick one of the experiments or a file to push metadata to the experiment set level. 

For example if the topology information is the same for all experiments within the set, 

this information can be easily pulled and applied to the set level via the web interface. 

Currently, automatic metadata generation is supported for PDB files, MOL/SDF 

files, Mol2 files, AMBER topology, input, and output files, GROMACS Include 

Topology (.itp), System Topology (.top), and parameter input (.mdp) files, Protein 

Structure Files (.psf), NWChem, Gaussian, and GAMESS input files. Each parser 

implementation is based on the conceptual model summarized in Figure 5.2.  

File parser classes inherit from AbstractTopologyFile, AbstractParameterFile, or 

AbstractParameterAndTopologyFile, whether the target file format defines topology 
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information, calculation parameter, or both. For example the Gaussian input file parser 

inherits from AbstractParameterAndTopology since it needs to parse the QM calculation 

parameters (e.g., basis set, level of theory) and the compound topology, while the PDB 

parser only looks at topology information and inherits from AbstractTopologyFile.  

In order to implement a new parser one needs to create a new Java class that 

inherits from one of the abstract classes and write a parsing function that will build the 

Method and/or MolecularSystem (i.e., a set of molecules) objects. Mapping between this 

data model and the iBIOMES metadata is done through the getMetadata() method 

available for each of the classes inheriting from Method and Molecule. This method is 

automatically called when registering the files into iBIOMES. 

While in most cases rules for parsing files can be applied solely based on the file 

name extension (e.g., .pdb), there are cases where the format of a file cannot be 

determined based on its extension. To overcome this issue and enable automatic metadata 

assignment and extensibility, a set of rules can be defined in an XML descriptor file. 

Rules can define metadata for files or directories with names matching a specified 

pattern. Examples of such rules are given in Figure 5.3. In this example the first rule 

defines possible file extensions for AMBER topology files (.prmtop, .topo, .top, 

or .parm). The second rule targets files that are the result of an MD trajectory clustering 

algorithm. The clustering tool generates averaged structures in PDB format but omits 

the .pdb file extension. By applying this rule these files are recognized as PDB files when 

registered into the system and viewable as 3D structures. The last rule targets a CSV 

(comma-separated value) file that represents a time series, generated by an analysis 

script. As the same script and name conventions are used in our lab, this rule helps define 
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the labels (e.g., Time, Density), titles (e.g., Evolution of density over time), and units 

(e.g., ps, g/cm3) for the data contained in the file. Once registered, this file can be 

automatically displayed through the web interface as a 2D plot with the correct legends 

and axis titles. 

This rule set can be customized to fit the needs of a particular lab or user. 

Experience showed that file name convention for a particular software package run (e.g., 

AMBER) and the following analysis vary only slightly for the same user. Therefore the 

XML file will be reusable. Once a simulation and its associated files are registered into 

iBIOMES, the owner or the authorized users can still edit the metadata through the web 

interface (or any iRODS interface). 

Interfaces 

Web interfaces 

A REST interface was developed to offer web services for access to the metadata 

catalog and dictionaries. The metadata catalog is open access as it only contains general 

definitions of biomolecular simulation related metadata. The related services are mainly 

used to auto-complete user entries in the web interface (e.g., software name, force field). 

The current web portal builds upon this REST interface and allows authenticated and 

authorized users to manage and search data registered in iBIOMES (Figure 5.4 and 5.5). 

Users can create queries based on the standard metadata catalog to retrieve simulations of 

interest. The queries can either target files, experiments (collections of files), or 

experiment sets. A simple web interface is available to query data files and experiments 

based on common attributes such as methods, molecule type (e.g., DNA, RNA, protein) 

or residue chain (nucleotide or amino acid sequence). Residue chains are normalized and 
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used as file or experiment metadata, along with the software-specific residue chains. The 

normalized residue chains are sequences of 1-letter nucleotide or amino acid codes. For 

example one could search for a particular protein / RNA system using the following 

AVUs:  

RESIDUE_CHAIN_NORM = “%GGCUCGUGUAGCUCAUUAGCUCCGAGCC%” 

RESIDUE_CHAIN_NORM = “%SGPRPRGTRGKGRRIRR%” 

Or using AMBER-specific residue chains: 

RESIDUE_CHAIN = “%RG5 RG RC RU RC RG RU RG RU RA RG RC RU RC RA RU RU 

RA RG RC RU RC RC RG RA RG RC RC3%” 

RESIDUE_CHAIN = “%SER GLY PRO ARG PRO ARG GLY THR ARG GLY LYS GLY ARG 

ARG ILE ARG ARG%” 

Although the first approach enable searches through experiments generated by 

different software packages, the second approach is still useful as certain residue codes 

are meaningful only in the context of a particular software package or within a 

community. 

Experiments can also be retrieved by simply entering keywords, in which case the 

metadata attribute is bypassed and the query only uses the value component of the AVU 

triplets to find matches. Advanced queries can be built as well. The user can pick and 

choose metadata attributes from the iBIOMES metadata catalog or manually enter user-

specific attributes, then assign values to each attribute. Figure 5.6 shows how one could 

build a query through the web interface using the catalog of standard iBIOMES metadata.  

Matching experiments and files can be downloaded and data content can be 

summarized directly through different applets if the user has the right permissions. For 

example Jmol33 is used for 3D rendering of molecules described in PDB, Mol2, 

MOL/SDF or Gaussian log files (Figure 5.7). Users can pick Jmol-supported files and 
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load them into the applet to compare structures or create multiframe animations. Two-

dimensional data such as time series in comma-separated or tab-delimited value format 

can be dynamically plotted through a service based on the JFreeChart 

(http://www.jfree.org/jfreechart/) library (Figure 5.8a-b). Supported graphs include 

multiline plots (e.g., comparison of RMSd of multiple runs), scatter plots, and heatmaps 

(2D-RMSd matrix). A “shopping cart” based on DICE’s iDrop applet 

(https://code.renci.org/gf/project/irodsidrop) also allows users to pick and choose files or 

collections of files they want to download in a bulk fashion (Figure 5.9). 

Experiment sets can be created through the web interface as well. Set owners can 

define the list of referenced experiments and metadata for a particular set directly from 

the corresponding experiment set summary page. Experiment sets can be made public or 

private. 

More options are available to experiment data owners or users with write 

permissions. For example they can manage permissions at the collection or file level and 

update the associated metadata. iBIOMES-defined metadata can be easily edited using 

the available dictionaries. User-defined metadata that are not defined in the iBIOMES 

catalog can be added as well, and used to build queries. While metadata are automatically 

generated during data publication into the system, the set of metadata might be 

incomplete or not totally accurate. The web interface allows the user to update topology-

specific metadata or method-specific metadata by specifying which files should be used 

as templates. In the case of the topology for AMBER data, this could be a topology file or 

a PDB file; for the methods, this could be an MD input or output file. Finally, the main 

page for a particular experiment can be customized by specifying which 3D structures 

http://www.jfree.org/jfreechart/
https://code.renci.org/gf/project/irodsidrop
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should be displayed, and which files should be presented to summarize the results. 

Related publications and published structures (e.g., from the Protein Data Bank,34 

PubChem,35 or the Cambridge Structural Database36) can be added as well for reference. 

The web portal was built with Java Server Pages (JSP) and Spring MVC 

(http://www.springsource.org/). This code, along with the main Java API (iBIOMES-

core) was integrated into Maven (http://maven.apache.org/) to manage external 

dependencies and automate builds. 

 

Data registration 

One of the goals of iBIOMES is to make the data publication process as easy as 

possible. Two scenarios are supported: registration of data into the system without 

moving the files, and registration after data transfer from a local or remote resource (e.g., 

desktop, remote computational resource) to an iBIOMES node. Both registration options 

are available through Unix-like commands that can be run from the machine where the 

data reside. For in-place registration, the host needs to be integrated to the target 

iBIOMES zone. Usage of these commands is given in Figure 5.10. 

Deployment at the University of Utah 

iBIOMES installation requirements 

iBIOMES requires a Java Runtime Environment (1.7) to be installed on the host 

machine. iBIOMES-core is packaged into a single JAR (Java ARchive) file including all 

the dependencies (e.g., iRODS Java API).  As iBIOMES is dependent on iRODS, iRODS 

should be installed first on the servers that need to be integrated to the system, then the 

iBIOMES-core library and scripts can be copied on these machines. To host the web 

http://www.springsource.org/
http://maven.apache.org/
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application, a web server such as Apache Tomcat (http://tomcat.apache.org) is required to 

deploy the iBIOMES-web and iBIOMES-ws codes, which are packaged as two WAR 

(Web application ARchive) files.  

 

iRODS configuration 

The current iBIOMES setup for our lab is presented in Figure 5.11. Although all 

the components of iBIOMES could be installed on a single physical server, we decided to 

deploy the system in a distributed environment to assess a more likely scenario where 

data need to be scattered among multiple disks. The primary iRODS server along with 

the iCAT database were installed on a Linux server (CentOS 5.8). Two file servers (Red 

Hat Enterprise Linux Server 6.3) were integrated into the same iRODS zone 

(“ibiomesZone”) to provide over 10 TB of disk space overall. Each file server runs an 

iRODS server instance, and each disk on the servers is exposed as an iRODS resource. 

Resources can be grouped together to apply data storage policies managed by iRODS. 

For example one could define a policy to enforce data replication on all resources of the 

same group, or to order resources in the group to define which resource should be used 

for storage first. For our case, the 5 resources (5 disks in 2 separate servers) were grouped 

together and managed through a load balancing policy defined in iRODS. A rule 

periodically triggers the activation of a resource monitoring system and calculates the 

load factor on each machine. The iRODS administrator can customize the way the load 

factor is calculated by assigning a weight to the disk space resource, the CPU load, the 

memory load, etc. The administration of iRODS servers (start/stop, resource definition, 

http://tomcat.apache.org/
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rule control) is made simple through the i-commands and other scripts that can be run 

only by an iRODS administrator. 

 

iBIOMES deployment 

An Apache Tomcat 7 server was installed on the first server to host the web portal 

and the REST services. The iBIOMES metadata schema database (MySQL) was installed 

on a second Linux server (CentOS 5.8). This was done through a set of SQL scripts that 

create the database schema and populate the biomolecular simulation metadata catalog 

and the dictionaries. The iBIOMES client tools (scripts and JAR file) can be copied to 

remote resources (e.g., HPC facility) by users to enable data transfer and registration into 

the system directly from resources outside the defined iRODS zone. 

 

Data summary 

Our lab currently owns over 200 TB of both MD simulation and QM calculation 

datasets. For this prototype we decided to expose a subset of these data that would still be 

representative of the type of simulation that is done in our lab. Our current projects 

involve mainly nucleic acid force field developments and P450 QM studies. This is 

reflected in the datasets currently published in our iBIOMES instance, which for now 

contain MD simulations of RNA for force-field assessment (AMBER FF 10), and QM 

calculations that were performed in Gaussian 03 to generate AMBER-compatible heme 

parameters for various states of the P450 cycle.37 Because of licensing restrictions, our 

Gaussian datasets could not be released for public access yet. On the other hand a series 

of MD simulations of RNA was released, along with a subset of the data derived from the 



  

 

130 

ABC consortium’s study on B-DNA.17 The ABC set currently includes a series of 

experiments with final stripped trajectories (~20-60 GB each) and basic analysis data 

(e.g., RMSd, radial plots). 

A guest account was created to enable read access for anybody interested in these 

public datasets. Guests can search experiments, read summaries, and graphically 

visualize data from this subset. Currently the shopping cart service for bulk downloads is 

not available for guest logins. Guests can still download files individually. The iBIOMES 

prototype can be accessed via the guest login option at: http://ibiomes.chpc.utah.edu.  

Discussion 

In this paper we presented a new distributed system developed to manage large 

biomolecular simulation datasets. The underlying data handling system based on the 

iRODS framework creates a virtual data warehouse at the researcher’s site, where data 

can be distributed among multiple servers. Both iRODS and iBIOMES are easy to deploy 

through a set of scripts. Existing archive servers can be integrated into iBIOMES without 

a need for a physical reorganization of the files, saving the cost of moving terabytes of 

data. The current implementation of iBIOMES uses the native iRODS password 

mechanism to authenticate users. iRODS also supports the Grid Security Infrastructure 

(GSI) which will facilitate the integration of iBIOMES into scientific Grids. Support for 

LDAP has been recently added as well. The burden of creating and maintaining iRODS-

specific accounts can then be avoided by system administrators, who in turn can deploy 

iRODS in closed environments with existing security mechanisms and user accounts. 

The publication process is facilitated by parsers that automatically generate 

metadata during file registration, and can be customized for the need of a particular user 

http://ibiomes.chpc.utah.edu/
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or lab through XML descriptors. Although our efforts have mainly focused on supporting 

AMBER and Gaussian datasets, we are currently working on improving our parsers for 

other popular MD and QM software packages, including GROMACS, CHARMM, 

Gaussian, GAMESS, and NWChem. Experiments registered into iBIOMES can be easily 

retrieved through simple keyword searches or queries built upon data elements defined in 

a metadata catalog for MD simulations and QM calculations. We are currently gathering 

feedback from the community to define a list of core metadata that would be sufficient to 

search and retrieve simulation datasets. A data model will be designed to define 

relationships between the concepts represented by these metadata, and facilitate future 

semantic integration with external systems, such as scientific grids. In order to enable 

researchers outside the field of computational chemistry to query data in a meaningful 

way, it will be necessary to facilitate the annotation of experiments using biological 

metadata (e.g., molecule name, organism). Currently this type of metadata would have to 

be entered manually via the web interface after data publication. This process could be 

facilitated in the future through a web service that would query common databases such 

as the Protein Data Bank to automatically generate these data elements based on the PDB 

ID.   

Metadata are represented by AVU triplets that can be either tied to the iBIOMES 

metadata catalog, or customized to represent concepts that are specific to a user or a lab. 

This provides a very flexible data annotation model compared to a standard relational 

database schema, where model modifications require an intervention from the database 

administrators. One limitation of the AVU model is the lack of relations between AVUs. 

For example, one cannot assign properties to two different molecules (e.g., name, type, 
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residue chain) represented in the same experiment, as attribute names will be the same for 

both molecules, and cannot be distinguished, as shown in the following example: 

MOLECULE_TYPE = “RNA” 

RESIDUE_CHAIN = “GGCUCGUGUAGCUCA…” 

MOLECULE_TYPE = “Protein”  

RESIDUE_CHAIN = “SER GLY PRO ARG PRO ARG…” 

In the current implementation of iBIOMES relations between AVUS cannot be 

determined. While this is not required for indexing purposes, this becomes necessary to 

provide a clear conceptual view of the data to the users. To create a more structured 

metadata schema the iCAT database can be extended with custom tables and enable 

queries on these tables via the standard iRODS interfaces. Such capability could help us 

keep track of metadata in a more structured way, especially for multimolecule systems 

and experiments based on multiple runs using different methods. 

The current prototype deployed for our lab demonstrated the ability of iRODS and 

iBIOMES to manage large biomolecular simulation datasets in a distributed environment. 

The iBIOMES web portal provides a rich and dynamic user interface to search, 

download, and visualize data registered into the system. Advanced features are available 

for data owners to manage permissions, annotate experiments, and customize data display 

in the web interface. Direct data analysis via iBIOMES is currently not supported. The 

analysis output has to be explicitly registered into the system and described via metadata 

to enable visualization through Jmol or the plotting service. This can be achieved 

automatically by customizing the XML rule set descriptor before data publication or 

directly via the web interface after data deposit. Thanks to these features users can easily 

extend the web interface to include new pictures, spreadsheets, or links to any type of 
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data file. The current focus of iBIOMES is not to enable deep analysis of the derived data 

but instead to provide the means to display, catalogue and share information about 

biomolecular simulations. As we move forward the system will be enhanced to add 

simple analysis support (e.g., RMSd calculations, data extraction from time series 

datasets). Our long-term goal is to provide a complete framework where data can be 

tracked locally, analyzed via automated processes, and registered seamlessly into a global 

system such as iBIOMES. For now we hope to learn more from the current iBIOMES 

system, and define more clearly the needs of the users, such as: 

 Which data elements are required or missing for indexing and search purpose? 

 How would users interact with iBIOMES to execute complex analysis 

workflows? 

 What can be improved to facilitate education, networking or collaboration 

between users?  

Conclusion 

iBIOMES is a new distributed system for biomolecular simulation data 

management. The data registration process is simple and supported by metadata 

generators, customizable by the user if needed. Registration does not require physical 

transfer of the data, which makes it a great solution for researchers who want to expose 

existing datasets. Finally data summarization and management are facilitated through a 

rich web interface that offers different visualization components for 3D structures and 

analysis data (e.g., time series). Guest access to our web portal is currently available at 

http://ibiomes.chpc.utah.edu. 

http://ibiomes.chpc.utah.edu/
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With the adoption of iRODS across the world, and across scientific domains, we 

believe that iBIOMES has a strong potential to create collaborative networks within the 

field of biomolecular simulation, for users, developers, and newcomers to the field. 
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Figure 5.1, General architecture of iBIOMES. At the lowest level, 

iRODS stores the file metadata while a separate MySQL database 

enforces standard metadata use and allows definitions of 

experiment sets. A REST interface and a web client provide query 

and update capability to the metadata catalog through the iRODS 

API (Jargon) and an iBIOMES-specific API (iBIOMES-core). 

 

 

 

 

Figure 5.2, Simplified class diagram representing the file parser 

implementations 
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Figure 5.3, Example of XML rule set used to customize the 

publication process. The first rule associates file extensions to a 

particular file format (AMBER topology). The second and third 

rules associate a particular set of metadata to analysis output files 

that follow a standard nomenclature in our lab. 
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Figure 5.4, iBIOMES web interface: summary page for an MD 

simulation of DNA including analysis data and a representative 3D 

structure. 
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Figure 5.5, iBIOMES web interface: file listing for a particular 

experiment. 
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Figure 5.6, Advanced experiment search through the web interface. 

Users can pick metadata attributes and values from the standard 

catalog or create free-text criteria. This particular example shows 

how one would search MD simulations of protein/RNA complexes 

run with AMBER. 
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Figure 5.7, Integration of Jmol to render and manipulate 3D 

structures.  
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Figure 5.9, Integration of the iDrop Lite applet to enable bulk 

downloads of files through the shopping cart service. 
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For in-place registration: 
 

ibiomes register -i local-dir [-o irods-vpath] [-s software] \  

[-x xml-descriptor] 

 

For data deposit with transfer: 
 

ibiomes push -i local-dir [-o irods-vpath] [-s software] \ 

 [-x xml-descriptor] [-r default-resc] 

 

Arguments: 
 

[local-dir] Path to the local directory to parse/register 

[irods-vpath] Virtual path to the iRODS collection to be created 

[software] Name of the software package used to run the simulation 

(e.g., amber, nwchem) 

[xml-descriptor] Path to the XML descriptor that specifies metadata 

generation rules 

[default-resc] Name of the default iRODS resource to use for storage 

 

Figure 5.10, iBIOMES commands for in-place registration and 

standard publication with data transfer 

 

 

 

 

Figure 5.11, Configuration of the iBIOMES infrastructure at the 

University of Utah (Cheatham lab). Storage resources are 

distributed over 2 servers and currently offer a 10 TB capacity. 
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Table 5.1, Simplified view of the iRODS user-metadata table 

File ID Attribute Value Unit 

1 molecule type Protein  

1 simulated time 0.5 ms 

1 software AMBER  

2 molecule type RNA  

2 temperature 300 K 

 

 

 

 

 

Table 5.2, A subset of the metadata attributes defined in iBIOMES 

Category Attribute  Example values 

Molecular  

System 

Water count  Integer 

Atom count  Integer 

Ion count  Integer 

Molecule type Protein, RNA, DNA, chemical compound 

Residue sequence ATTCGAAT, ALA PRO HIS LEU, APHL 

Reference structure PDB:1BIV, PubChem:2733526 

Method  

(general) 

General method  
Molecular dynamics, Quantum Mechanics, Coarse-grain Dynamics, 

QM/MM 

Boundary conditions Periodic, non-periodic 

Solvent Implicit, explicit, in vacuum 

Molecular 

Dynamics 

Force field AMBER FF 99, GROMOS 43A1 , ReaxFF 

Barostat Andersen, Berendsen, Parrinello-Rahman 

Thermostat Berendsen, Nose, Nose-Poincare 

Molecular mechanics 

integrator 
Verlet, Leapfrog 

Electrostatics modeling Cutoff, Classic ewald, PME, reaction field 

Quantum 

Mechanics 

General QM method Hartree-Fock, Moeller-Plesset, DFT, Configuration interaction 

Level of theory SCF, MP2, MP4, CCSD(T) 

Basis set STO-3G, 6-31++G*, cc-pCDVZ 

Spin multiplicity  0, 2 

Total charge -1, 0, 1, 2 
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CHAPTER 6 

IBIOMES LITE: SUMMARIZING BIOMOLECULAR 

SIMULATION DATA IN LIMITED SETTINGS1 

Abstract 

As the amount of data generated by biomolecular simulations dramatically 

increases, new tools need to be developed to manage these data at the individual 

investigator or small research group level. In this paper we introduce iBIOMES Lite, a 

light-weight tool for biomolecular simulation data indexing and summarization. The main 

goal of iBIOMES Lite is to provide a simple interface to summarize computational 

experiments in a setting where the user might have limited privileges and limited access 

to IT resources. A command-line interface allows the user to summarize, publish, and 

search local simulation datasets. Published datasets are accessible via static HTML pages 

summarizing the simulation protocol and presenting analysis data graphically. The 

publication process is customized via XML descriptors while the HTML summary 

template is customized though XSL stylesheets. iBIOMES Lite was tested on different 

platforms and at several national computing centers against various datasets generated 

through classical and quantum molecular dynamics, quantum chemistry, and QM/MM. 

                                                 
1 Reproduced in part with permission from Thibault, J.C., Cheatham III, T.E., and Facelli, J.C. (2014). 

iBIOMES Lite: Summarizing Biomolecular Simulation Data in Limited Settings. Journal of Chemical 

Information and Modeling, 54 (6), 1810-1819. Copyright 2014 American Chemical Society. 
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The associated parsers currently support AMBER, GROMACS, Gaussian, and NWChem 

dataset publication. The code is available at: https://github.com/jcvthibault/ibiomes. 

Background 

The use of high-performance computing resources to push the limits of 

biomolecular simulations has been a necessity for decades. As more computational power 

becomes available, researchers can tackle larger systems and longer time scales. While it 

was common practice to run the simulations on remote clusters and bring back the 

resulting data to the home institution, this paradigm now breaks down. Data have to be 

postprocessed directly at the source to minimize data movements and minimize the 

amount of disk space necessary for storage. For example trajectories can be compressed 

and/or stripped of unnecessary information (e.g., solvent) before being copied over. 

Another approach is to simply run the analysis remotely, where the data reside. No matter 

which approach is preferred, researchers need to deal with huge amount of data 

distributed over local and national resources.  

Several repository architectures have been proposed to manage large biomolecular 

simulation datasets in a distributed environment. BioSimGrid1 was deployed in the UK to 

integrate several computational centers into a grid, where data could be deposited, 

searched and analyzed. Trajectory and provenance metadata were stored in a relational 

database. iBIOMES2 on the other hand offers a distributed infrastructure that allows 

biomolecular simulation data indexing with data deposit (explicit copy) or in-place 

registration to avoid data movements. Trajectory files are stored and indexed via the 

iRODS distributed file system,3 where metadata are represented as Attribute-Value-Unit 

triplets. While these approaches might work well to manage large distributed 

https://github.com/jcvthibault/ibiomes
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environments, the deployment of such infrastructure depends on access to substantial IT 

expertise and resources, such as web servers, relational databases, and distributed file 

systems, which may not be available to many single investigators or small research 

groups. Many researchers also depend on local or national computational and storage 

resources that are allocated for a finite period of time. Usage of these resources is usually 

very restrictive for security reasons and the installation of heavy components such as 

databases is not an option to manage the data hosted at these remote locations. Another 

limitation of current repositories is the need to copy the simulation data to a remote 

server for publication. This can be a tedious task that requires extra storage cost if a copy 

of the data has to be kept at its original location. In this paper we introduce iBIOMES 

Lite, a new tool for biomolecular simulation data indexing and summarization, designed 

to run in limited settings, where the users might have limited privileges and limited 

access to IT resources. A command-line interface allows the user to summarize, publish, 

and search simulation datasets locally or remotely via secure shell (SSH). Published 

datasets are summarized through a static web interface that describes the simulation 

protocols and graphically represent analysis results. iBOMES Lite can be easily installed 

on any data server to enable summarizations of old datasets and figure out what their 

content is and what methods were used, or to facilitate progress tracking by exposing 

current simulation results. In contrast with simple tools such as Bookshelf4 and UMM-

MoDEL5 that have been proposed to publish simulation data, but exhibit dependencies on 

database components, iBIOMES Lite allows data indexing and summarization while 

removing dependencies on external components that would require root access or special 

support for deployment. 
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Design 

Scope and requirements 

iBIOMES Lite’s goal is to provide the means for researchers to index and 

summarize simulation data in limited settings, so they can keep track of their lab work 

and share progress or results with collaborators. The main user action supported by 

iBIOMES Lite is the publication of experiments: the user specifies a file directory or 

subdirectory that contains all the simulation files (input and output data), then with 

minimal input from the user, the tool generates a detailed description of the 

computational experiment workflow along with textual and graphical summaries, 

rendered through a simple web interface. Once an experiment is published it can be 

searched via keywords representing the experiment metadata (e.g., molecule name, 

residue sequence, computational method). Unlike the full fledge iBIOMES repository,2 

iBIOMES Lite does not provide access to the files associated to the published 

experiments. All files are categorized and listed, but only files presenting analysis data 

are made available for download. This limitation was required to keep simplicity as a key 

design criterion for this tool. This criterion was applied at 3 different levels: deployment, 

usage, and customization as follows: 

 Deployment: the tool should be able to run in most environments, independently 

from the operating system running on the host (e.g., Unix, Windows). The tool 

should also be able to run whether a graphical user interface is available or not. 

Root permissions should not be a prerequisite to install the program. This can be 

achieved by removing dependencies on heavy-weight components such as 

databases, web servers, or specific file systems. 
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 Usage: the tool should be usable in a multiuser and distributed environment by 

providing simple commands. The command-line interface provides a Unix-like 

interface to summarize simulation data, publish them into a static HTML web site, 

and perform keyword searches.  

 Customization: the publication process should be easily customizable by the user 

so that the resulting summaries provide an accurate and pertinent representation 

of the raw data. The actual code should not have to be modified to perform such 

customization. Instead customization should be enabled through templates, and 

configuration files. 

 

Web interface 

The entry point for the web interface is a page listing all the published 

experiments, as shown in the iBIOMES Lite demonstration instance presented in Figure 

6.1. General information about the experiments (e.g., method, targeted molecular system, 

software package) is provided and can be used to sort the listing. By selecting one of the 

listed experiments the user can access more details. Currently, each experiment is 

associated to 4 different HTML pages. The summary page (Figure 6.2) presents a 

summary of the experiment protocol along with possible analysis data, plots and 3D 

structures, rendered via Jmol.6 A second HTML page provides a tree view of the protocol 

used in the experiment, so that the user can access the details of interest, while keeping 

the overall picture of the workflow (Figure 6.3). A third HTML page provides a tree view 

that allows the user to browse the directory and subdirectories associated to the 

experiment and list their content (Figure 6.4).  
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Finally a last HTML page gives details about the execution of the tasks and the 

computing environment (Figure 6.5). Execution times and resources used to run the tasks 

(e.g., number of CPUs and GPUs) are reported, along with hardware information (e.g., 

GPU architecture). Tasks that did not terminate correctly are flagged. This view is 

intended for users to track the progress of current simulations and assess the performance 

of their simulation engine within the host environment. 

Implementation 

Overview 

iBIOMES Lite was implemented in Java 7 to ease the development of a platform-

independent tool. Although Java 6 is arguably a more popular version, Java 7 offers 

enhanced file I/O libraries (NIO 2) that might prove to be useful for future developments 

(e.g., file change listeners, file tree searches), and it is still available at most US 

computing centers. A set of Bash scripts for Unix-like operating systems (i.e., Linux and 

Mac OS-X) and Win32 (.bat) scripts for Windows were written to wrap the Java calls into 

simple commands. These scripts can be easily called in a console locally or remotely, via 

SSH for example. 

 

Publication process 

Users publish computational experiments to iBIOMES Lite to create HTML 

summaries and index their data for searches. A user publishes a computational 

experiment by specifying a directory or subdirectory that contains all the simulation files 

(input and output) and the name of the software package that was used to generate these 

files (Figure 6.6). A set of file parsers extract topology, method, and parameter 
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information to generate a representation of the simulation workflow, based on the data 

model introduced in previous work.7 The workflow and file tree structures are stored as 

XML files then transformed into several HTML pages via XSL (eXtensible Stylesheet 

Language8). Plots are generated for analysis files when applicable then stored in the 

iBIOMES Lite web directory along with the HTML files.  

The final output of the publication process is a set of XML files, static HTML 

files, images, and other analysis data files (e.g., spreadsheets). These output files can be 

exposed via an HTTP server such as Apache (http://httpd.apache.org/), or viewed locally 

if a graphical user interface is available. If neither option is available, the files can also be 

copied to a different host for rendering. Since the HTML is not generated on-the-fly by 

server-side code the web content can always be copied without information loss. 

In the next sections we describe in more details the data extraction step performed 

by the file parsers and the data transformation step used to generate the HTML 

summaries. 

 

Parsers 

The role of the parsers is to map a given computational experiment file tree on 

disk to a logical representation of the protocol and output of the experiment. The data 

model introduced in 7 was used to guide the logical representation, for both the definition 

of the Java classes and the XML schema used to represent individual computational 

experiments, i.e., the simulations. The parsers work at the file level, extracting important 

data or metadata for file summary, and at the file tree level, trying to build the logical 

model based on the file directory structure and the file-extracted data.  

http://httpd.apache.org/
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File parsers 

The file parsers are format-specific, although they are expected to build certain 

common objects based on their type: topology, parameter/method, or hybrid. For example 

both the AMBER parameter/topology and Protein Structure File (PSF) parsers are 

expected to build an object representing a molecular system, composed of one or multiple 

molecules, each represented by residues and/or atoms. On the other hand the AMBER 

MD input and NAMD configuration file parsers are building objects representing the 

methods and parameters used to run a computational task. Implementation of the parsers 

then requires understanding of the target format and the expected object(s) to build. All 

parsers target the data model introduced in7 to provide a common representation of the 

computational protocol that is not software-specific. The list of current parsers provides 

different levels of support for various software packages, including AMBER,9 

GROMACS,10 NAMD,11 NWChem,12 and Gaussian.13  

 

File tree parsers 

The implementation of file tree parsers is not as straight forward. The structure of 

a file is inferred from its format while the structure of a directory does not follow any 

strict rule. While we cannot force users to store their files following a given directory 

structure, manual inspection of files structure from many computational experiments 

performed in our lab by numerous graduate students and post docs lead us to assume that 

the protocol of the computational experiment can be inferred by parsing certain files if 

the original owner can provide a description of the file tree structure and the naming 

conventions used to organize the data.  
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The preprocessing step in the mapping process is to parse all the files in the input 

directory and its subdirectories using the file-specific parsers. The resulting file tree 

associates each file with a set of descriptive data about the molecular system or 

computational methods. The second step is to build a logical representation of the 

computational experiment protocol using these objects. When publishing a new 

experiment the user needs to specify the main software package that was used to run the 

simulations (e.g., AMBER, NAMD, Gaussian, NWChem). Depending on this argument 

different rules are used to build the logical representation of the experiment. For example 

in AMBER, both MD input and MD output files can be used to retrieve the methods and 

parameters of a run. As for most software packages the output/log files are preferred over 

input files to extract this type of data. Output files are typically richer as they usually 

repeat information from the input file(s) and provide explicit values to parameters that 

have not been set in the input, but which are used as the default values in the particular 

software. Output files can also present some calculation details, such as the evolution of 

the energy of system over a certain cycle of iterations, that can be easily exposed and of 

potential value to better understand the experiment protocol. 

Other rules can be triggered based on the computational method used or the type 

of calculation performed. For example if minimization tasks and MD tasks are detected 

within the experiment, minimization tasks are grouped together, while MD tasks are 

divided into a “heating” process, an “equilibration” process and a “production MD” 

process. Heating tasks represent MD runs where temperature of the system is slowly 

increased, to eventually reach a reference temperature for the production runs. Distinction 

between equilibration and production runs is currently made based on the textual 
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description of the task if it is available. Regular expressions were created to detect 

keywords such as “production,” “prod,” “equilibration,” and “equil.” 

For Replica-Exchange MD (REMD), some extra step might be needed to group 

replicas for the same run together. In AMBER for example, an output file is created for 

each replica. In our data model, all replicas for a single run are grouped together under a 

single REMD task instead of having separate MD tasks representing individual replicas. 

Each REMD task is described like any other MD task and it also has a certain number of 

replicas and a type of exchange (e.g., temperature, Hamiltonian, multidimensional). This 

representation helps summarizing the data, especially when running REMD simulations 

with hundreds of replicas. By default REMD output files stored in the same folder are 

assumed to represent replicas from the same group. This would apply for example if a 

user stored 3 4-replica REMD runs in 3 different folders with each 4 output files. 

Experience shows that this approach is not unique, and some people might prefer to have 

all REMD output in a single folder. Replica identification and grouping is then based on 

file naming conventions. Using the same example, a user could store all the REMD 

output files in a single folder and name the files using the pattern that identifies both the 

run and the replica within this run, such as: 

remd.[IDRUN].[IDREPLICA].out, 

where 0 ≤ IDRUN ≤ 2 and  0 ≤ IDREPLICA ≤ 3. 

The user can specify this type of naming convention in the iBIOMES Lite general 

configuration file or at run time using the –remd command line argument. If no run 

identifier is present in the name pattern then grouping is solely based on the directory 

structure. This type of rule-based grouping is currently applied to REMD tasks only but it 

could be expended to include any type of parallel enhanced sampling task. 
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Data transformations 

XML representation 

After the logical model of an experiment is built within the Java code it is stored 

on disk as an XML file. Mapping between the Java object-oriented data model and the 

XML schema is performed via JAXB (Java Architecture for XML Binding). An example 

of such XML is presented in Appendix E. A second XML file is generated based on the 

file tree structure, where each file is associated to a set of metadata, represented as 

attribute-value-units (AVU) triplets. This representation is very similar to the approach 

used for the iBIOMES repository2 to enable indexing within iRODS (Integrated Rule-

Oriented Data System3). An example of such an XML file tree is illustrated in Appendix 

E. The AVUs are derived from the objects extracted by the file parsers, such as molecular 

system definitions or parameter sets. Each of these entities implement a getMetadata() 

method that translates the logical entity (object) into a list of AVUs. For example the 

getMetadata() method for the Thermostat class will generate AVUs for the followings 

attributes: THERMOSTAT_ALGORITHM (e.g., Berendsen, Langevin) and 

THERMOSTAT_TIME_CONSTANT if applicable.  

These XML documents provide two different perspectives on the data: one that 

emphasizes on the experiment protocol, the logical view, and another one that emphasizes 

on the physical organization of the input and output files. While the first view can 

provide some insight on the protocol used to run the simulations, the second view enables 

simple data indexing via keywords. A copy of these XML files is stored directly in the 

experiment folder. Another copy is pushed to the iBIOMES Lite web folder, in a 

subdirectory dedicated to the experiment. A separate XML document representing the list 
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of published experiments is also updated by copying experiment-level AVUs from the 

XML document storing the experiment file tree. 

 

Analysis data 

Beside the experiment protocol and the file tree, iBIOMES Lite can present 

analysis data in the experiment summary page. The user can edit an XML configuration 

file to define which piece of data should be presented and how it should be presented. 

This is achieved by associating file name patterns to analysis descriptions, as introduced 

in iBIOMES.2 Any file that is marked as analysis data is copied to the iBIOMES Lite web 

folder to enable display and/or download. For example PDB files that are marked as 

analysis data can be rendered via Jmol,6 and image files (e.g., PNG, JPEG) are presented 

as thumbnails linking to a copy of the original picture. For column delimited text files 

(e.g., tab- or comma-delimited files) the tool attempts to create a graphical representation 

of the content. The XML configuration files can be used to define the type of plot to be 

generated (e.g., line plot, histogram, heatmap), its labels, units, and title. The resulting 

plot is exported as an image and copied over to the iBIOMES Lite web folder, along with 

the original data file. 

 

Transformation 

Once the XML files and data files have been copied to the iBIOMES Lite web 

directory, all data and metadata of interest are ready to be visually rendered by 

transforming the XML into HTML. Multiple XSL stylesheets define the mappings 

between the XML and the various HTML pages necessary to list the published 
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experiments and provide details about individual experiments. The actual XSL 2.0 based 

transformation process in the Java code is performed via the Saxon processor.14 Since 

XSL stylesheets are defined as separate documents one could easily customize these 

HTML templates to fit their need. 

 

Shared iBIOMES Lite web folder for multiuser use 

iBIOMES Lite allows multiple users to share the same web directory to publish 

experiments. This means that all the members of a lab for example can publish 

experiments stored on a shared file system to a single portal. From a user-interface 

perspective, information about the publication event needs to be tracked: each experiment 

is associated to a publication date (different from the dataset creation date) and a 

publisher (i.e., the file system username). From a publication perspective, safeguards 

have to be created to ensure data integrity when two users try to publish an experiment 

simultaneously. If both users try to publish the same experiment then one should be 

blocked to allow the other user’s action to parse the associated directory and generate the 

descriptor files. Whether the target experiments are different or not, the web directory 

containing the listing and the index of experiments should not be updated concurrently.  

A locking system was implemented to prevent concurrent updates. If somehow 

two users are trying to publish the same experiment folder concurrently, the second user’s 

publication action is automatically cancelled and the user is warned. If two users are 

trying to publish different experiments simultaneously, updates from the second user on 

the experiment listing will be queued until the first users’ publication process is over.  
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Commands 

Various Unix-like commands are available to manage the published experiments 

in iBIOMES Lite. A complete description of these commands is available on the 

iBIOMES Wiki (http://ibiomes.chpc.utah.edu/mediawiki/). Here we only present a 

summary of the most important ones: the publish (ibiomes-lite-publish), the search 

(ibiomes-lite-search), and clean (ibiomes-lite-clean) commands. 

 

Publish experiments 

To publish an experiment into iBIOMES Lite – i.e., to parse the experiment folder 

and generate the associated web content – one should use the ibiomes-lite-publish 

command: 

ibiomes-lite-publish -i <experiment-dir> [-s software] [-x xml-

descriptor] [...] 

[experiment-dir] Path to the root of the experiment directory 

[software] Name of the software package used to run the 

simulation/calculations (e.g., amber, nwchem) 

[xml-descriptor] Path to the XML descriptor that specifies metadata 

generation rules. If no file is specified default values defined in the 

API are used. 

 

Search experiments 

iBIOMES Lite offers a simple search function: the user provides a list of 

keywords that are matched against the AVU values in the XML document listing all the 

published experiments. Paths to experiments that contain all provided keywords are 

returned. Searches are performed via the ibiomes-lite-search command, defined as: 

http://ibiomes.chpc.utah.edu/mediawiki/
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ibiomes-lite-search < keywords > 

[keywords] List of keywords separated by '+' character. Wildcards can 

be specified using '%'. Example:  

ibiomes-lite-search %dynamics+rna+amber.  

2 experiment(s) found: 

[0] /home/user1/ibiomes/test/amber/rnamodrd 

[1] /home/user1/ibiomes/test/amber/tutorial1 

 

Clean web content 

Remove content (XML and HTML) from iBIOMES Lite website. XML 

descriptors at the experiment directory level are conserved, and can be published again. If 

the -i option is not specified then all experiments are removed: 

ibiomes-lite-clean 

ibiomes-lite-clean -i < experiment-dir > 

[experiment-dir] Physical path to the experiment to remove from iBIOMES 

Lite. 

Tests in limited settings 

Methods 

A critical test for iBIOMES Lite is to demonstrate its ability to work in a variety 

of environments, including large computational clusters hosted by national centers and 

single PI labs. A successful deployment here is defined by the following criteria: 

1. All prerequisites (i.e., Java 7) are installed or can be installed on the targeted 

system  

2. The user can install iBIOMES Lite on the targeted system, i.e., copy the files and 

set up the necessary environment variables, and configuration parameters. 
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3. The user can publish datasets within the targeted system and visualize the 

generated website within this system or an external one (e.g., home institution).  

4. To demonstrate these capabilities iBIOMES Lite was deployed on various 

machines, such as desktop computers and laptops running different operating 

systems, and at various US computational centers.  

 

Results 

iBIOMES Lite was successfully deployed on different desktop computers and 

laptops, running the following operating systems: Linux (Fedora Core 18), Windows 7, 

and Mac OS X 10. iBIOMES Lite was also deployed at the following facilities: the 

Center for High Performance Computing (CHPC) at the University of Utah, the National 

Center for Supercomputing Applications (NCSA), the Texas Advanced Computing 

Center (TACC), and the San Diego Supercomputing Center (SDC). The actual 

computational environments targeted for testing purpose are described in Table 6.1.  

More detailed benchmarking on the parser was performed on Blue Waters 

(NCSA) and Stampede (TACC). The dataset descriptions and associated directory parsing 

timings are reported in Table 6.2. All the reported timings were obtained by submitting 

several batch jobs to these two clusters, using a single computational node. The reported 

average and standard deviation (Std. dev.) for the processing times were calculated based 

on 10 jobs for each dataset. 

Dependence between log file (AMBER MD output) sizes and parser execution 

times is presented in Figure 6.7. As expected, the larger the aggregated size of all log files 

the longer the execution time since MD output files are the main target of the parsers. The 
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timings presented here are only presented as a rough estimate for various types of 

AMBER datasets. In our example datasets the number of topology files (e.g., PDB, 

AMBER parameter/topology) is fairly small compared to the number of MD output files 

but the timings are still dependent on these files. For example if a large number of PDB 

files representing trajectory snapshots or representative structures with solvent 

information are present in the input directory, the MD output might not have as much 

impact on the overall parsers’ performance. Note that trajectory files (e.g., AMBER 

NetCDF, CHARMM DCD) are not actually parsed since they are typically very large 

(~MB-TB) and they do not provide extra information about the topology or methods used 

in the simulation.  

The parsers were also tested on Blue Waters using an interactive session. The 

parsers seem to be faster with an average execution time of 94.20 seconds, versus 119.4 

seconds for the equivalent batch job. The standard deviation was higher (14.85 seconds 

vs. 2.1 seconds), which can be explained by the fact that the interactive node was shared 

with other users running various tasks. 

Discussion 

Thanks to its simplicity, iBIOMES Lite can be deployed in limited environments 

where users have limited permissions and no access to heavy components such as 

database system managers. More importantly, we showed here that iBIOMES Lite can be 

used at major computational centers where Big Data is generated. Our current parsers and 

protocol model builders may not be adapted to all types of directory structure, but this 

limitation should be circumvented in the future by including more configurable rules 

based on naming conventions, file content, computational methods, and textual 
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descriptions to enable an accurate representation of the experiment protocol with minimal 

input from the user. 

Summarization does not require bringing back the raw data to the home 

institution: iBIOMES Lite can be run at the source despite the limitations due to security 

concerns in such infrastructures. Since the published summaries are static and provide a 

compressed view of the simulation, the results of the publications can be easily copied to 

a new location for rendering via the web, or simply to centralize the summaries from 

different computing centers at a single location. Scripts could be created to automate this 

process, as well as to regenerate the summaries to make sure that they are up to date with 

the associated raw data. Since the publication process is performed via a command line 

interface, the iBIOMES Lite summarization step can be added to a regular simulation job 

description when running in a cluster. Another alternative when targeting data hosted at a 

computational center is to run the publication process via an interactive session. For very 

large datasets with thousands of files the parsers might take over half an hour to go 

through all the files. Running such tasks on the login nodes of a cluster is usually not 

recommended by the hosting institution as other users might observe a dramatic 

slowdown when trying to access their data or submit a job. Most computing centers allow 

users to request interactive sessions, which are usually provided within minutes, unlike 

batch job submissions which might stay queued for hours or days.  

Although most demonstrations for iBIOMES Lite have been done through the 

publication of AMBER-generated datasets, the parsers support datasets generated by 

other MD engines such as GROMACS and NAMD. The development of the data model 

and parsers has been guided by our experience with AMBER but the support for other 
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software packages has allowed us to avoid software-specific data representations and 

parsing rules. Parsers for QM datasets (e.g., GAUSSIAN, NWChem) were also 

developed to demonstrate the generalizability of the data model and the web interface. 

Although nowadays MD is a de facto standard approach to run biomolecular simulations, 

QM cannot be excluded from this realm. First MD can be dependent on QM when new 

force field parameters have to be created for nonstandard residues or small ligands. Then 

QM has promise in the study of biomolecules, at least for small systems.15  The inclusion 

of less common and more complex methods in the data model such as Replica-Exchange 

MD, QM/MM and Quantum MD has proven the decomposition of parameters into sets of 

method-specific parameters to be fairly generalizable. These methods are currently 

supported only for the AMBER software package, which enables QM/MM MD,16 Semi-

empirical Born-Oppenheimer MD (SEBOMD17), and replica-exchange MD. The initial 

rationale behind the development of iBIOMES Lite was the need for a simple tool that 

would be able to mimic the features offered by the iBIOMES repository2 in a non-

distributed environment controlled by a strict security policy. This has been a successful 

attempt as iBIOMES Lite can create rich summaries with graphical rendering (Jmol, 

plots) and basic search capabilities. One advantage of iBIOMES Lite over the distributed 

repository is the ability to provide a detailed and logical description of the computational 

experiment protocol via XML transformation. The current AVU model used by the 

iBIOMES repository to index data is very flexible but relationships between data 

elements cannot be described. The addition of a relational database to the repository 

architecture to keep track of the experiment workflow is part of our effort to provide a 

generic infrastructure for biomolecular simulation data sharing.7 One of the major 
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limitations of iBIOMES Lite, by design, is the fact that the web interface does not 

provide access to the raw data. iBIOMES Lite is not a replacement for data repositories. 

Instead it should be seen as a way for researchers to summarize data at the source for 

progress tracking and result sharing. Our end-goal is to enable the integration of 

iBIOMES Lite summaries into the iBIOMES repository. Researchers would be able to 

summarize their data within a computational center that does not support iRODS-based 

data transfers, and publish the summary into the iBIOMES repository. The raw data 

would not be available for download but users would be able to search for both full 

experiments datasets and experiment summaries via a single entry point: the repository 

web portal. This effort is currently supported by a common data model, a common set of 

parsers, and similar web interfaces.  

Conclusion 

iBIOMES Lite provides the means for researchers to track and share biomolecular 

simulation datasets via automatic summarization. Summaries are supported by a 

software-independent data model that can describe quantum chemistry, classical and 

quantum MD, REMD, and QM/MM datasets. Thanks to a simple design, the tool can be 

easily installed on machines where users have limited privileges, whether they are hosted 

locally or at a national computing center. iBIOMES Lite is an open-source project and is 

part of the iBIOMES distribution, available at: https://github.com/jcvthibault/ibiomes. 

 

  

https://github.com/jcvthibault/ibiomes
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Figure 6.3, Workflow details of an experiment within the 

iBIOMES Lite website 

 



  

 

172 

 

 

 

 

Figure 6.4, Experiment file listing within the iBIOMES Lite 

website 
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Figure 6.6, iBIOMES Lite publication process. 

 

 

 

 

 

Figure 6.7, Dependence between parsing execution time and total 

output/log file size 
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Table 6.1, List of computing centers where iBIOMES Lite was successfully 

deployed. 

Resource Center Description OS Java version 

Blue Waters NCSA 
Cray XE6/XK7 system, over 25,000 nodes, 

including NVIDIA GK110 GPUs 
UNICOS 1.7.0_07-b10 

Stampede TACC 
6,400 nodes, InfiniBand Mellanox 

Switches/HCAs 
BusyBox 1.7.0_45-b18 

Gordon SDSC 1,024 nodes, QDR InfiniBand interconnect CentOS 1.7.0_13-b20 

Ember  CHPC 
262 nodes, 3144 cores, InfiniBand and 

Gigabit Ethernet interconnects 
RHEL 6.4 1.7.0_03-b04 

 

 

Table 6.2, Parsers’ benchmarking on Blue Waters (NCSA) and Stampede (TACC).  

 

Dataset 1 2 3 4 5 6 

Resource Blue Waters Blue Waters Blue Waters Stampede Stampede Stampede 

System 

description 
RNA tetraloop RNA tetraloop RNA tetraloop 

polymer-ligand 

complex 

Coiled-coil 

dimer 
Protein 

Replicas/copies 
192 REMD 

replicas 

360 REMD 

replicas 

576 REMD 

replicas 

8 ligand 

configurations 
5 config. 1  

Number of 

atoms 
7,622 6,071 15,599 ~122,000 38,744 ~22,500 

Number of 

runs 
1 1 1 147 / config. 8 / config. 12 

Trajectory 

length* 
9,600 ns 7,200 ns 17,280 ns 6,960 ns 1,000 ns 300 ns 

Number of 

files 
1,160 2,536 4,043 3,425 357 404 

Total directory 

size 
659 GB 54 GB 315 GB 816 GB 221 GB 24 GB 

Log write 

interval 
2 ps 10 ps 2 ps 10 ps 2 ps 2 ps 

Average log 

file size 
16 MB 1.8 MB 9.5 MB 0.5 MB 8 MB 20 MB 

Total 

processed 

size** 

3072 MB 648 MB 5472 MB 588 MB 320 MB 240 MB 

Execution time       

Average (sec) 264.2 119.4 504.6 64.8 26.4 14.9 

Std. dev. (sec) 58.3 2.1 43.7 1.2 0.7 0.3 

*Aggregated length of all trajectories in the input folder. 

**Sum of the sizes of all the MD output files in the directory. 
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CHAPTER 7 

DISCUSSION 

Summary 

Biomolecular simulation data representation 

Chapter 3 introduced a common data model for biomolecular simulations. 

Elements described by the model cover the concepts of authorship, molecular system, 

computing environments, and computational method. The model introduced here is the 

first attempt to provide a common representation for biomolecular simulation 

experiments as a set of computational tasks that can use different levels of theories and 

different sets of parameters. The model is extensible and allows the representation of a 

wide variety of computational methods, including molecular dynamics, quantum 

chemistry and QM/MM. This model was successfully used for the design of file parsers 

that provide a software-independent representation of the computational experiments. 

Both the iBIOMES repository and iBIOMES Lite use these parsers to automatically 

generate common metadata and/or a logical representation of the experiments being 

published in these systems. The model was also used to guide the development of 

different prototypes, including a Grid data service that maps the logical data model to a 

physical database schema. 
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The data model was supplemented with a set of dictionaries to provide standard 

values and definitions for certain data elements such as computational method names. In 

Chapter 4 the data model and dictionaries were reorganized into a controlled vocabulary 

inspired by the UMLS metathesaurus. The controlled vocabulary introduces a new 

hierarchy between concepts and a set of semantic types to provide high-level categories 

for concept search and filtering. The controlled vocabulary was extended to a Simple 

Knowledge Organization System and a simple OWL ontology for use in a semantic web 

context. The ontology builds upon various OBO ontologies to enable interoperability 

with other popular biomedical ontologies. 

 

Biomolecular simulation data summarization and sharing 

Chapter 5 introduces the iBIOMES repository, a distributed environment to 

publish, index, search, and download large datasets generated by biomolecular 

simulations. The repository architecture builds upon the iRODS data handling system to 

manage files stored in distributed resources. Files and directories published in iBIOMES 

can be indexed using common data elements (Chapter 3) and user-specified data 

elements. The common data elements are defined in a separate database that includes 

textual descriptions and known value sets. Before a computational experiment is 

published into iBIOMES, the file parsers automatically extract the common data elements 

that summarize the experiment protocol. iBIOMES includes a web portal that can be used 

to build distributed queries using these data elements. Raw data can be downloaded either 

from the web portal or directly via the iRODS command-line interface, without prior 

knowledge about the physical location of the data. iBIOMES is the first open architecture 
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for a distributed repository enabling biomolecular simulation data sharing. The system 

can be deployed by researchers at their own sites, independently from the computational 

resources that are used to generate the data. iBIOMES provides an alternative to simple 

centralized repositories (e.g., Bookshelf1) that cannot scale to a community-level 

approach, and to full computing environments that require users to run their simulations 

under a set of constraints (e.g., limited types of biomolecules, computational methods, 

and/or software packages). With iBIOMES, researchers do not need to adopt a new 

simulation workflow or give up high-performance computing resources they already have 

access to. Data are exposed to the repository through a simple publication process. Data 

exchange is enabled by indexing the raw data via common data elements while 

collaboration is enabled through authentication and authorization mechanisms to protect 

private data and open public datasets to anonymous users.  

While the iBIOMES repository provides a distributed solution to biomolecular 

simulation data storage and indexing, other solutions are needed to manage data hosted in 

limited settings where the user does not have root privileges or access to IT support to 

deploy database components. Chapter 6 introduced iBIOMES Lite, a light-weight tool 

that can be deployed and used in these limited settings to summarize biomolecular 

simulation datasets. iBIOMES Lite is a standalone Java program that can be run in 

various operating systems and hardware architectures. The use of simple technology such 

as XSL transformation to generate HTML summaries makes it a viable solution in most 

environments. iBIOMES Lite was successfully deployed in various US national 

computing centers where big data is generated every day. Since iBIOMES Lite also uses 

the logical data model introduced in Chapter 3, a common representation of the data can 
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be provided, despite the heterogeneity of the computational methods and parameters 

available to researchers. iBIOMES Lite is the first effort aiming at summarizing data at 

the source, whether it is on a personal laptop or at national computing centers with 

thousands of computational nodes. This tool may benefit many researchers, no matter 

what their IT resources are and regardless of where their data reside. Until now 

management systems for biomolecular simulation data have focused on creating complex 

infrastructures that would provide all the services necessary to run, store, analyze, and 

share simulations.2, 3 Replication of such environments is not trivial because of the 

hardware requirements (e.g., local computational cluster, disk servers) and the IT 

expertise required to deploy and maintain such environments. While these integrated 

environments are the end-goal for simulation data management, they are currently not 

adapted to the distributed and heterogeneous resources researchers use. iBIOMES Lite is 

a simpler solution that aims to be usable by any researcher in the field, enabling data 

summarization, progress report, and old dataset rediscovery. As new users adopt the tool 

new applications for such summaries might become more obvious. The use of the raw 

XML summaries versus the HTML for example would provide a great solution to keep 

track of the provenance metadata when transferring data between institutions or when 

making the raw data available for download.  

Limitations and future directions 

The iBIOMES project 

This research proposed two different architectures to satisfy researchers’ needs of 

data indexing and sharing. On one hand iBIOMES Lite offers a simple tool that can be 

used by any researcher in any environment to summarize data. On the other hand the 
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iBIOMES repository offers an infrastructure that provides a distributed solution to data 

storage and indexing to enable sharing and collaboration. At this point these two 

architectures are not interoperable. Although the same parsers are used to extract the 

metadata and build the logical representations of the experiments published in these 

environments, some work remains to be done. A long-term goal for the iBIOMES 

repository is to allow the publication of iBIOMES Lite-generated descriptors. The 

iBIOMES environment requires that the host of the data being published is already 

integrated in the underlying iRODS zone. If in-place registration is not possible then the 

raw data need to be copied to a remote iRODS-enabled server. In certain cases, neither 

solution will be an option. For example, if terabytes of temporary data reside at a secured 

computing center, it is unlikely that these data will be copied over to another resource. On 

the other hand the data owner might still need to keep track of these data through 

summaries like the ones generated by iBIOMES Lite. By allowing the publication of such 

summaries into the iBIOMES repository, researchers would be provided with a single 

end-point to track and search their datasets. Since iBIOMES Lite and the iBIOMES 

repository use the same parsers there is no limitation in the current architectures that 

would prevent such integration. For now the AVU representation would have to be 

chosen over the richer logical representation because of the way the iBIOMES repository 

indexes data. In order to store a logical representation with the same level of granularity 

as iBIOMES Lite a new relational database will be needed. The necessary schema has 

already been developed for the Grid prototype presented in Chapter 3, where logical and 

physical data models were mapped via Hibernate.4 The logical representation built by the 

iBIOMES parsers can be persisted in this database via a Hibernate-based API module that 
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was implemented to populate and test the Grid service prototype. Most of the remaining 

work will focus on the development of the web services and interfaces to query and 

update the relational schema. One of the advantages of the current AVU model used to 

tag experiment data is its simplicity: data owners can easily add, edit and remove AVU 

triplets, whether they are standard or user-specified attributes. One of the challenges will 

be to create a new mechanism that will assure consistency between the relational model 

and the AVU model. For example a daemon could be run to regenerate the AVU triplets 

on a regular basis by checking the current state of the logical model stored in the 

relational database. Conserving this consistency would provide two ways to query the 

data: either doing a keyword search (via the iRODS AVU index) or a complex query (via 

the relational database). 

Another future direction for the iBIOMES project is the inclusion of analysis 

workflows as part of the data publication process. In the current versions of iBIOMES 

and iBIOMES Lite, analysis data can be published along with the raw data, but no 

mechanism is in place to assure that a minimal set of analysis tasks has been run before 

publication for data quality assessment. The implementation of such a mechanism will 

require the creation of new configuration files to define rules that will trigger alerts or 

actual analysis runs based on the content (i.e., file names) of the directory being 

published. The flags could be displayed in the current web interfaces to the data owner to 

provide recommendations on the analysis to run. The implementation of a process for 

automatic analysis of published data is more complex since it will likely require the 

integration of existing analysis tools and the creation of generic interfaces to wrap them 

into computational workflows. 
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Data representation 

This dissertation presented two solutions to biomolecular simulation data 

summarization and sharing, but other approaches might be required to fulfill different 

requirements. For example, MDWeb2 provides an environment to set up and run 

biomolecular simulations via a web portal. The resulting data are automatically stored, 

described, and accessed by the owner. Although this type of environment does not allow 

the publication of datasets generated outside the system it is well suited to newcomers to 

the field who might need help setting up their simulations. With the number of 

approaches available to researchers to run and store their data, a “one tool fits all” 

solution is unlikely. Therefore, one of the future challenges will be to develop data 

repositories and management tools that are interoperable. Creating a common data model 

for biomolecular simulations is a first step in this direction. In this dissertation we 

presented a new common data model that can represent biomolecular simulations at the 

experiment level, where multiple simulations and analysis tasks can be run. Although this 

model has already been applied to various tools, it will likely evolve as more 

implementations are undertaken. Nevertheless, the current model should be generic 

enough so that higher-level concepts such as “experiment,” “task,” and “parameter” will 

not be modified over time. On the other hand we can expect method-specific concepts to 

be refined and reorganized. There are several ongoing efforts in the quantum chemistry 

and the MD community that aim to provide a detailed description of computational task 

input and output.5-7 Integration of these models into our common data model would 

provide a unified and rich representation of biomolecular simulations to support data 

exchange and interoperability. The development of a standard model for biomolecular 
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simulation data exchange will take time and will need support from the major 

stakeholders, i.e., the users and the method developers. In this dissertation we presented a 

set of recommendations built upon community feedback and refined based on experience 

gained from various data exchange application implementations. These recommendations 

should not be taken as a new standard, but rather as a framework that will guide the 

development of a standard model upon which the community can agree. For example the 

logical model presented in Chapter 3 provides a common representation of biomolecular 

simulations at an abstract level, independently from any assumption about the 

technology. The creation of a standard will require making such assumptions to move 

towards syntactic interoperability. For example the definition of an XML schema will be 

necessary for researchers to provide stand-alone descriptors when compressing and/or 

moving their raw data. A standard XML schema would also enable the creation of web 

service interfaces on top of existing repositories that would return standard output 

directly reusable by external analysis or visualization tools. 

Integration into the semantic web would go a step further towards interoperability. 

A format such as OWL, which is not domain-dependent, would allow researchers to open 

their data to a wider community on one hand and benefit from described and computable 

data sources outside their field of expertise on the other hand. In this research we 

presented initial work on the development of an OWL ontology that integrates popular 

biomedical ontologies and opens the field of biomolecular simulations to the wider field 

of biomedical investigations, where computational and experimental disciplines coexist. 

A formal evaluation of the proposed ontology is still to be done, and like the logical data 

model and the future data exchange formats, this will be achieved by involving groups of 
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experts such as the Blue Obelisk8 consortium, and developers from the MOSAIC7 and the 

Scalalife5 projects. 

Conclusions 

This dissertation introduced new models for the description of biomolecular 

simulations, a new repository architecture for the management of large datasets in a 

distributed environment (iBIOMES), and a light-weight tool for data summarization in 

limited settings (iBIOMES Lite). All these components were shown to facilitate data 

indexing and sharing to help researchers manage their data and collaborate within and 

outside the biomolecular simulation community. The data model introduced in this 

dissertation is the first effort to create a computable representation of the wide spectrum 

of computational methods used in biomolecular simulations. The two architectures based 

on this common representation, iBIOMES and iBIOMES Lite, not only offer solutions to 

the current problems faced by researchers in the field, but also an assessment of common 

model-driven approaches that should guide the development of future repositories.  
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APPENDIX A 

SURVEY FOR COMMON DATA ELEMENTS 

Survey 

Figure A.1 shows the section of the online survey that was used to assess the 

computational platform-related data elements. Table A.1 presents results of the survey, 

based on the following Likert scale: 1 = “Not important at all,” 2 = “Not very important,” 

3 = “Not sure,” 4 = “Important,” 5 = “Very important,” N/A = “Not applicable.” N is the 

number of responses for a particular data element. The reported score is the average of 

points assigned by responders using the Likert scale. Table A.2 summarizes the 

comments of the respondents for each category of data elements. The last column lists 

only the comments that were either proposing new data elements or changes to the 

original ones, and that were related to the data element category. The number of 

respondents N is the number of people who provided at least one comment for the 

associated category. 

Final set of common data elements 

Tables A.3, A.4, A.5, A.6, A.7, and A.8 present the final list of common data 

elements by category. Each data element can be described through multiple attributes. 

Recommended attributes are marked with an “R” and attributes that can be derived from 
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other attributes are marked with a “D”. Attributes that should be associated to a unit are 

marked with a “U”.  

 

 

  



  

 

190 

 

 

 

 

 

 

 

Figure A.1, Online survey extract. 

 

 

 

 

 

 

 

 



  

 

191 

Table A.1, Results of the survey 

Authorship data elements 

Not 

important at 

all 

Not very 

important 

Not 

sure 
Important 

Very 

important 
N/A N Score 

Username (e.g. jthibault) 10 12 6 6 3 0 37 2.46 

Full name (e.g. Julien Thibault) 3 2 3 12 19 0 39 4.08 

Institution Name (e.g. 

University of Utah) 
5 3 3 16 11 0 38 3.66 

E-mail (e.g. 

julien.thibault@utah.edu) 
3 3 4 16 12 1 39 3.72 

Publication that is related to the 

current experiment (e.g. URL, 

DOI) 

0 2 4 13 19 1 39 4.18 

Publication that is based on the 

results of this run (e.g. URL, 
DOI) 

0 2 0 15 21 1 39 4.33 

         

Platform data elements 

Not 

important at 

all 

Not very 

important 

Not 

sure 
Important 

Very 

important 
N/A Responses Score 

Resource domain (e.g. kraken 

(NICS), CHPC (Utah)) 
5 14 8 9 3 0 39 2.77 

Operating system (e.g. Linux, 

Windows NT) 
4 12 4 13 6 0 39 3.13 

Hardware architecture (e.g. x86, 

PowerPC) 
2 11 2 18 6 0 39 3.38 

GPU-accelerated (yes/no) 3 7 5 15 9 0 39 3.51 

Execution time (e.g. 35h) 3 10 5 12 9 0 39 3.36 

Software name (e.g. AMBER, 

NAMD, CHARMM, Gaussian, 

NWChem) 

0 0 0 4 34 1 39 4.77 

Software version (e.g. 1.0, 11, 

alpha, beta) 
0 2 0 6 30 1 39 4.56 

         

Molecular system data elements 

Not 

important at 

all 

Not very 

important 

Not 

sure 
Important 

Very 

important 
N/A Responses Score 

Composition of the solvent (e.g. 

Water, Na+) 
0 1 1 7 29 1 39 4.56 

Number of water molecules in 

the system 
1 2 0 12 22 2 39 4.18 

Number of atoms in the system 0 1 1 9 27 1 39 4.51 

Number of ions in the system 0 3 1 9 24 2 39 4.23 

Molecule type (e.g. Protein, 

RNA, DNA, chemical 

compound, nano-particle) 

1 1 1 5 30 1 39 4.51 

Molecule name (e.g. Alanine, 

Sucrose, Tamoxifen) 
1 2 2 12 21 1 39 4.21 

Sequence (Amino-acid or 

nucleotide sequence) 
1 0 1 15 21 1 39 4.33 

Reference structure (e.g. 

PDB:1BIV, PubChem:2733526) 
0 0 1 13 24 1 39 4.49 

Molecular formula (e.g. 

C26H29NO) 
1 7 4 14 12 1 39 3.67 

Molecular weight (e.g. 

371.51456 g/mol) 
1 16 7 9 5 1 39 2.95 
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Table A.1, Continued 

Computational method data 

elements 

Not 

important at 

all 

Not very 

important 

Not 

sure 
Important 

Very 

important 
N/A Responses Score 

General method name (e.g. 

Molecular dynamics, QM, 
Coarse-grain Dynamics, 

QM/MM) 

0 0 0 8 30 1 39 4.67 

Method reference citation (e.g. 

DOI, URL) 
2 8 8 9 11 1 39 3.41 

Whether the method simulate 

the dynamics of the system (Yes 
/ No) 

1 2 8 12 15 1 39 3.90 

Type of boundary conditions 

(Periodic, non-periodic) 
0 1 3 6 28 1 39 4.49 

Whether the run has converged 

(yes/no) 
3 2 7 8 16 3 39 3.59 

Convergence criteria (e.g. 10^-

3) 
3 4 5 8 17 2 39 3.67 

Representation of the solvent 

(implicit, explicit, in vacum) 
1 0 1 6 30 1 39 4.56 

         

Molecular Dynamics data 

elements 

Not 

important at 
all 

Not very 

important 

Not 

sure 
Important 

Very 

important 
N/A Responses Score 

Force field (e.g. AMBER FF 99, 

GROMOS 43A1 , ReaxFF) 
0 0 0 5 33 1 39 4.74 

Force field type (e.g. classical, 

polarizable, reactive) 
0 1 1 14 22 1 39 4.38 

Unit shape (e.g. cuboid, 

octahedron, cap, shell) 
0 8 4 12 14 1 39 3.74 

Ensemble type (e.g. NVE, NVT, 

NPT, Generalized) 
0 3 2 10 23 1 39 4.28 

Barostat (e.g. Andersen, 

Berendsen, Parrinello-Rahman) 
1 7 1 14 14 1 38 3.79 

Barostat time constant (e.g. 

1000 fs) 
1 8 3 16 10 1 39 3.59 

Thermostat (e.g. Berendsen, 

Nose, Nose-Poincare) 
1 5 3 14 14 1 38 3.84 

Thermostat time constant (e.g. 

100 fs) 
1 7 3 17 10 1 39 3.64 

Molecular mechanics integrator 

(e.g. Euler, Runge-Kutta, Verlet, 
Leapfrog) 

1 11 3 15 8 1 39 3.38 

Constraint algorithm (e.g. 

LINCS, RATTLE, SHAKE, 

SETTLE) 

1 7 3 16 11 1 39 3.67 

Electrostatics modeling (e.g. 

Cutoff, Classic ewald, PME, 
reaction field) 

0 3 3 7 24 1 38 4.29 

Time step length (e.g. 1 

picosecond) 
1 3 2 13 19 1 39 4.10 

Total simulated time (e.g. 450 

picoseconds) 
0 0 0 9 29 1 39 4.64 

 

 



  

 

193 

Table A.1, Continued 

Quantum Mechanics data 

elements 

Not 

important at 

all 

Not very 

important 

Not 

sure 
Important 

Very 

important 
N/A Responses Score 

Category of QM method (e.g. 

Hartree-Fock, Moeller-Plesset, 
DFT, Configuration Interaction) 

0 0 2 3 30 4 39 4.31 

Level of theory (e.g. SCF, MP2, 

MP4, CCSD(T)) 
0 0 2 1 32 4 39 4.36 

Basis set (e.g. STO-3G, 6-

31++G*, cc-pCDVZ) 
0 0 3 2 30 4 39 4.28 

Basis set family (e.g. minimal, 

Pople, correlation consistent) 
1 7 7 8 12 4 39 3.28 

 

 

Table A.2, Summary of survey comments for each data element category 
Data element 

category 
N Proposed data elements and changes 

Authorship 4 
- Missing: grant information 

- Missing: timestamp / upload date 

Platform 

(hardware/software) 
4 

- Missing: software compiled in single or double precision  

- Change: GPU-accelerated is part of hardware architecture 

- Missing: memory requirement, problems encountered during run 

Molecular system 5 

- Change: number of water molecules should be number of solvent molecules 

- Missing: rigid parameters (e.g. some coordinate) 

- Missing: water model is important 

Molecule 5 

- Missing: apparent pH 

- Missing: information about the ligand (geometry and parameters) 

- Missing: important functional groups 

Method (all) 7 

- Missing: broad classification of methods (empirical, semi-empirical, DFT, ab initio 

or combo of these) as well as static vs. dynamic. 

- Change: convergence is both case dependent (energy vs. entropy vs. heat 

capacity...), and is also quite subjective. 

- Change: convergence criteria would be difficult to track as the user will decide how 

to judge this 

- Change: convergence is a moving target at best. Maybe there should be an overall 

convergence criteria metric, and if this minimum is met, it could be filed under 

"converged." 

MD methods 6 

- Missing: advanced sampling details, output details (e.g. steps per write), simulation 

scheme (whether this was a production run with such and such minimization and 

equilibration) 

- Missing: restraints 

- Missing: for PME, order of interpolation. For LINCS, order of expansion of the 

series. 

- Missing: parallelization scheme 

QM methods 4 

- Missing: general property classifications (e.g. electron properties, pseudopotentials, 

frozen core) 

- Missing: set of output properties available, and if QM method uses density 

functional theory related choices of exchange correlation and cut-offs 
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Table A.3, Data elements related to authorship 

Authorship (scope: experiment) Attribute U R D 

Author 

Full name (e.g. John Doe) 
 

R 
 

Institution name (e.g. university, company) 
   

E-mail (e.g. john.doe@my.university.edu) 
   

Citation  
Identifier (e.g. DOI, PubMed ID) 

 
R 

 
URL 

   

Publication based on the experiment results 
Identifier (e.g. DOI, PubMed ID) 

 
R 

 
URL 

   

Grant 

Identifier 
 

R 
 

Source 
   

Title 
   

 

 

 

Table A.4, Data elements related to the computational platform (hardware/software) 

Platform (scope: task) Attribute U R D 

Computational 

environment 

Resource domain (e.g. Kraken (NICS), Gordon (SDSC)) 
   

Machine/supercomputer architecture (e.g. Cray XK7, IBM Blue 

Gene/Q)    

Operating system (e.g. Linux, Windows NT) 
   

CPU architecture (e.g. x86, PowerPC) 
   

GPU architecture (e.g. Nvidia GTX 780) 
   

Execution 

Execution time (e.g. 35h) U 
  

Normal termination 
 

R 
 

Number of CPUs used    

Number of GPUs used    

Software 
Name (e.g. AMBER, NAMD, CHARMM, Gaussian, NWChem) 

 
R 

 
Version (e.g. 1.0, 11, alpha, beta) 

 
R 
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Table A.5, Data elements related to the molecular system definition 

Molecular system Attribute U R D 

System 

Composition of the solvent (e.g. Water, Na+) 
 

R 
 

Number of solute molecules 
 

R 
 

Number of solvent molecules 
 

R 
 

Number of atoms in the system 
 

R 
 

Number of ions in the system 
 

R 
 

Apparent pH 
   

Molecule 

Type (e.g. Protein, RNA, DNA, chemical compound, nano-particle) 
 

R 
 

Name (e.g. Alanine, Sucrose, Tamoxifen) 
 

R 
 

Residue sequence (Amino-acid or nucleotide sequence) 
 

R 
 

Reference structure (e.g. PDB:1BIV, PubChem:2733526) 
 

R 
 

Molecular formula (e.g. C26H29NO) 
   

Molecular weight (e.g. 371.51456 g/mol) U 
  

Whether it is part of the solvent or the solute 
 

R 
 

Main functional groups 
   

 

 

 

 

Table A.6, Data elements common to any type of computational method 

Method (scope: 

task) 
Attribute U R D 

Method 

General method name (e.g. MD, QM, Coarse-grain Dynamics, 

QM/MM)  
R 

 

Method reference citation (e.g. DOI, URL) 
   

Whether the method simulates the dynamics of the system (Yes / No) 
   

Boundary conditions Type (Periodic, non-periodic) 
 

R 
 

Solvent model 
Representation of the solvent (implicit, explicit, in vacuum) 

 
R 

 
Implicit solvent model name (e.g.  GB HCT) 
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Table A.7, Data elements specific to molecular dynamics 

MD (scope: task) Attribute U R D 

Electrostatics model Name (e.g. Cutoff, Classic ewald, PME, reaction field) 
 

R 
 

Unit shape Type (e.g. cuboid, octahedron, cap, shell) 
   

Ensemble Type (e.g. NVE, NVT, NPT, Generalized) 
 

R 
 

Molecular mechanics integrator Name (e.g. Euler, Runge-Kutta, Verlet, Leapfrog) 
   

Constraint 
Algorithm (e.g. LINCS, RATTLE, SHAKE, SETTLE) 

   
Target 

   

Restraint 
Type (e.g. bond, angle) 

   
Target 

   

Force field 
Name (e.g. AMBER FF 99, GROMOS 43A1 , ReaxFF) 

 
R 

 
Type (e.g. classical, polarizable, reactive) 

 
R D 

Barostat 
Name (e.g. Andersen, Berendsen, Parrinello-Rahman) 

   
Time constant (e.g. 1000 fs) U 

  

Thermostat 
Name (e.g. Berendsen, Nose, Nose-Poincare) 

   
Time constant (e.g. 100 fs) U 

  

Time 

Time step length (e.g. 1 picosecond) U R 
 

Number of time steps 
 

R 
 

Total simulated time (e.g. 450 picoseconds) U R D 

Context of the run Type (minimization, equilibration, or production) 
   

Enhanced sampling method Name (e.g. umbrella sampling, replica-exchange) 
   

 

Table A.8, Data elements specific to quantum chemistry 

QM (scope: task) Attribute U R D 

QM method 

Specific name (e.g. SCF, MP2, MP4, CCSD(T), B3LYP) 
 

R 
 

Family (e.g. Hartree-Fock, Moeller-Plesset, DFT, Configuration 

Interaction)  
R D 

Basis set 
Name (e.g. STO-3G, 6-31++G*, cc-pCDVZ) 

 
R 

 
Family (e.g. minimal, split-valence, plane-wave) 

  
D 

Spin multiplicity Value 
   

Total charge Value 
   

Froze core Uses frozen core (yes/no) 
   

Pseudo-potential 
Implementation name (e.g. Martins-Trouiller) 

   
Plane-wave cutoff U 

  

Convergence 
Whether the run has converged (yes/no) 

   
Convergence criteria (e.g. 10^-3) U 

  
Exchange-correlation 

functional 
Name (e.g. B3LYP) 

   



 

 

 

APPENDIX B 

COMMON REPRESENTATION FOR ANALYSIS  

DATA: EXAMPLES 

Two examples of how the proposed data elements might be applied to common 

analysis data will be given. Note that currently the programs used in these examples do 

not necessarily report all of the metadata for these attributes; rather this is a 

recommendation of what metadata these programs could include in their output. 

The first example is the calculation of a distance between two atoms in a protein 

over the course of a molecular dynamics simulation totaling 101 ps in length, with the 

trajectory recorded at 1 frame per ps. The generated data set metadata can be as follows: 

 

Analysis Name: Distance 

Description: Distance in Cartesian space. 

File: end-to-end.dat 

Timestamp: Sat Nov 30 09:49:37 MST 2013 

Filter on space: (Residue 2 atom CA), (Residue 12 atom CA) 

Number Data Set Dimensions: 1 

 Dimension[1] size: 101 

Number of variables: 2 

 Variable[1] units: picosecond 

 Variable[1] label: Time 

 Variable[1] type: float 

 Variable[1] uses dimension: 1 

 Variable[2] units: Angstrom 

 Variable[2] label: End to end distance 

 Variable[2] type: float 

 Variable[2] uses dimension: 1 

Program: VMD 

 Version: V1.9.1 
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 Command: distance “resid 2 and name CA” “resid 12 and name 

CA” 1 end-to-end.dat distr.dat 

 

Note that there are actually two arrays sharing the same dimension, one (‘End to 

end distance’) containing the distance data and another (‘Time’) that holds the 

corresponding time steps of the data. 

The next example is the calculation of a mass-weighted coordinate covariance 

matrix for C-alpha atoms (12 atoms total) over 10 frames. Again there are two variables, 

but in this case the ‘Time’ variable would record which frames were used in generating 

the matrix, while the ‘matrix1’ variable is the 12x12 matrix itself. 

  
Name: Mass-weighted Covariance Matrix 

File: mwcovar.dat 

Timestamp: Sat Nov 30 09:58:22 MST 2013 

Filter on space: (All CA atoms) 

Number Data Set Dimensions: 3 

 Dimension[1] size: 12 

 Dimension[2] size: 12 

 Dimension[3] size: 10 

Number of variables: 2 

 Variable[1] units: picosecond 

 Variable[1] label: Time 

 Variable[1] type: float 

 Variable[1] uses dimension: 3 

 Variable[2] units: Angstrom*amu^0.5 

 Variable[2] label: matrix1 

 Variable[2] type: float 

 Variable[2] uses dimensions: 1, 2 

Program: Cpptraj 

 Version: V13.12 

 Command: matrix mwcovar out mwcovar.dat name matrix1 



 

 

 

APPENDIX C 

DICTIONARY EXAMPLES 

Table C.1 lists a few force field parameter sets available for popular MD software 

packages. Each entry in the table is described through an ID (ID), a name (TERM), a 

description (DESCRIPTION), a possible list of citations (CITATION), a force field type 

ID (TYPE_ID), and whether the force field is coarse grain or not 

(IS_COARSE_GRAIN). 

Table C.2 lists “specific” methods which can be referenced within an input file for 

a computational task. Each entry in the table is described through an ID (ID), a name 

(TERM), a description (DESCRIPTION), and a possible list of citations (CITATION).  
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Table C.1, Extract from the force field dictionary. 

ID TERM DESCRIPTION CITATION 

10 AMBER 

FF10 

AMBER FF10 force 

field 

AMBER Tools 10 manual. Available at: 

http://ambermd.org/doc10/AmberTools.pdf 

11 AMBER 

FF12SB 

AMBER FF12SB 

force field 

AMBER Tools 12 manual. Available at: 

http://ambermd.org/doc12/AmberTools12.pdf 

12 AMBER 

GAFF 

General Amber Force 

Field (GAFF) for 

small molecules 

Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollamn, P.A.; Case, 

D.A. Development and testing of a general Amber force 

field. J. Comput. Chem., 2004, 25, 1157-1174 

50 CHARMM 

19 

CHARMM 19 force 

field 

Reiher, III WH (1985). 'Theoretical studies of hydrogen 

bonding'. PhD Thesis at Harvard University. 

51 CHARMM 

22 

CHARMM 22 force 

field 

MacKerell, Jr. AD, et al. (1998). 'All-atom empirical 

potential for molecular modeling and dynamics studies of 

proteins'. J Phys Chem B 102 (18): 3586-3616. 

52 CHARMM 

27 

CHARMM 27 force 

field 

MacKerell, Jr. AD, Banavali N, Foloppe N (2001). 

'Development and current status of the CHARMM force 

field for nucleic acids'. Biopolymers 56 (4): 257-265. 

 

 

 

Table C.2, Extract from the dictionary of computational methods. 

ID TERM DESCRIPTION CITATION 

1 HF Hartree-Fock - 

2 UHF Unrestricted Hartree-Fock - 

3 ROHF Restricted open-shell Hartree-Fock - 

4 SCF Self-consistent field - 

5 MP2 Moeller-Plesset perturbation theory (second-order) - 

6 MP3 Moeller-Plesset perturbation theory (third-order) - 

7 MP4 Moeller-Plesset perturbation theory (fourth-order) - 

8 MP5 Moeller-Plesset perturbation theory (fifth-order) - 

9 CISD Configuration interaction singles and doubles - 

10 CISDT Configuration interaction singles, doubles, and triples - 

11 CISDTQ Configuration interaction singles, doubles, triples, and quadruples - 

12 CCD Coupled-cluster doubles - 

13 CCSD Coupled-cluster singles and doubles - 

 

 



 

 

 

APPENDIX D 

LUCENE-BASED DICTIONARY USAGE  

AND LOOKUP EXAMPLE 

Usage 

lucene-lookup.sh [options] 

Options: 

lookup -i <index-path> -t <term> [-f <lookup-field>] [-n <max-hits>] 

list   -i <index-path> 

 

lookup: look up a term <term> in the Lucene index at <index-path> in a 

particular field <lookup-field>. 

list: lists all the entries in the Lucene index at <index-path> 

 

Example 

Input command 

lucene-lookup.sh lookup -i /tmp/dictionary_all -t "AMBER FF*" -n 2 

 

Console output 

Lookup field: TERM 

        Term: AMBER FF* 

    Max hits: 2 

  Dictionary: /tmp/dictionary_all 

Number of entries: 939 

 

2 matches: 

-------------------------------- 

  [UID] 885 
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  [ID] 1 

  [TERM] AMBER FF94 

  [DESCRIPTION] AMBER FF94 force field 

  [CITATION] Cornell et al. (1995), JACS 117, 5179-5197 

  [TYPE_ID] 1 

  [IS_COARSE_GRAIN] No 

  [ATTRIBUTE_TYPE] force_field 

-------------------------------- 

  [UID] 886 

  [ID] 2 

  [TERM] AMBER FF96 

  [DESCRIPTION] AMBER FF96 force field 

  [CITATION] Kollman (1996), Acc. Chem. Res. 29, 461-469 

  [TYPE_ID] 1 

  [IS_COARSE_GRAIN] No 

  [ATTRIBUTE_TYPE] force_field 

-------------------------------- 



 

 

 

APPENDIX E 

XML REPRESENTATIONS FOR SIMULATION 

DATA INDEXING 

Figure E.1 presents an example of the XML representation that describes the file 

tree associated to a given computational experiment (physical view), in this case a short 

MD simulation of a DNA 10-mer helix. Each file is associated to a list of AVUs 

(Attribute-Value-Units) for indexing. Figure E.2 present an example of the XML 

representation of the experimental protocol (logical view) associated to the same 

computational experiment. 
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Figure E.1. XML representation of the file tree associated to a 

computational experiment 
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Figure E.2, XML representation of the computational experiment 

protocol.  
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