

BIOMOLECULAR SIMULATION DATA MANAGEMENT

IN HETEROGENEOUS ENVIRONMENTS

Julien Charles Victor Thibault

A dissertation submitted to the faculty of

The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Biomedical Informatics

The University of Utah

December 2014

Copyright © Julien Charles Victor Thibault 2014

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Julien Charles Victor Thibault

has been approved by the following supervisory committee members:

 Julio Cesar Facelli , Chair 4/2/2014___

Date Approved

 Thomas E. Cheatham , Member 3/31/2014___

Date Approved

 Karen Eilbeck , Member 4/3/2014___

Date Approved

 Lewis J. Frey _ , Member 4/2/2014___

Date Approved

 Scott P. Narus , Member 4/4/2014___

Date Approved

And by Wendy W. Chapman , Chair of

the Department of Biomedical Informatics

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Over 40 years ago, the first computer simulation of a protein was reported: the

atomic motions of a 58 amino acid protein were simulated for few picoseconds. With

today’s supercomputers, simulations of large biomolecular systems with hundreds of

thousands of atoms can reach biologically significant timescales. Through dynamics

information biomolecular simulations can provide new insights into molecular structure

and function to support the development of new drugs or therapies. While the recent

advances in high-performance computing hardware and computational methods have

enabled scientists to run longer simulations, they also created new challenges for data

management. Investigators need to use local and national resources to run these

simulations and store their output, which can reach terabytes of data on disk. Because of

the wide variety of computational methods and software packages available to the

community, no standard data representation has been established to describe the

computational protocol and the output of these simulations, preventing data sharing and

collaboration. Data exchange is also limited due to the lack of repositories and tools to

summarize, index, and search biomolecular simulation datasets.

In this dissertation a common data model for biomolecular simulations is

proposed to guide the design of future databases and APIs. The data model was then

extended to a controlled vocabulary that can be used in the context of the semantic web.

Two different approaches to data management are also proposed. The iBIOMES

repository offers a distributed environment where input and output files are indexed via

common data elements. The repository includes a dynamic web interface to summarize,

visualize, search, and download published data. A simpler tool, iBIOMES Lite, was

developed to generate summaries of datasets hosted at remote sites where user privileges

and/or IT resources might be limited. These two informatics-based approaches to data

management offer new means for the community to keep track of distributed and

heterogeneous biomolecular simulation data and create collaborative networks.

iv

To My Family

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF TABLES .. x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS .. xiv

ACKNOWLEDGMENTS ... xvi

Chapter

1. INTRODUCTION .. 1

Problem statement ... 1

Main objectives ... 2
Aim 1 .. 2

Aim 2 .. 3
Aim 3 .. 3

Dissertation outline ... 4
References ... 4

2. BACKGROUND .. 6

Biomolecular simulations ... 6

Introduction ... 6
Molecular dynamics .. 7
Quantum chemistry ... 9

Computing environment ... 10

Software packages .. 10
High-performance computing hardware ..11
Data storage .. 12

Data sharing .. 13
Experimental data ... 13
Molecular simulations ... 14

Dissertation ... 16
References ... 17

3. DATA MODEL, DICTIONARIES, AND DESIDERATA FOR BIOMOLECULAR

SIMULATION DATA INDEXING AND SHARING .. 25

Abstract ... 25
Background ... 25

Results ... 25
Conclusions ... 26

Background ... 26
Introduction ... 26
Motivation for a common data representation: examples ... 31

Experimental ... 38
Identification of core data elements .. 38
Logical model ... 40

Dictionaries ... 42
Results ... 42

Identification of core data elements .. 42

Logical model ... 50
Dictionaries ... 63

Discussion ... 65
Conclusion .. 69
Methods... 70

References ... 82

4. THESAURUS AND ONTOLOGY DEVELOPMENTS FOR BIOMOLECULAR

SIMULATION DATA EXCHANGE .. 87

Abstract ... 87

Introduction ... 88
Methods... 90

Scope ... 90
Implementation ... 91

Results ... 96

Concept network ... 96
Comparison with the UMLS ... 97
Indexing SKOS concepts with HIVE ... 97

Discussion ... 98

References ... 108

5. IBIOMES: MANAGING AND SHARING BIOMOLECULAR SIMULATION

DATA IN A DISTRIBUTED ENVIRONMENT ... 111

Abstract .. 111
Introduction ..112
The iRODS data-handling system ...118
iBIOMES architecture .. 121
Metadata .. 121
Interfaces ... 124

vii

Web interfaces ... 124

Data registration .. 127
Deployment at the University of Utah .. 127

iBIOMES installation requirements .. 127

iRODS configuration .. 128
iBIOMES deployment .. 129
Data summary ... 129

Discussion ... 130
Conclusion .. 133

References ... 145

6. IBIOMES LITE: SUMMARIZING BIOMOLECULAR SIMULATION DATA IN

LIMITED SETTINGS .. 149

Abstract ... 149
Background ... 150
Design ... 152

Scope and requirements .. 152
Web interface .. 153

Implementation ... 154
Overview ... 154
Publication process ... 154

Parsers ... 155
Data transformations ... 159

Shared iBIOMES Lite web folder for multiuser use .. 161

Commands .. 162

Tests in limited settings ... 163
Methods... 163

Results ... 164
Discussion ... 165
Conclusion .. 168

References ... 176

7. DISCUSSION ... 178

Summary ... 178
Biomolecular simulation data representation.. 178

Biomolecular simulation data summarization and sharing 179

Limitations and future directions .. 181

The iBIOMES project ... 181
Data representation ... 184

Conclusions ... 186
References ... 186

Appendices

A. SURVEY FOR COMMON DATA ELEMENTS ... 188

viii

B. COMMON REPRESENTATION FOR ANALYSIS DATA: EXAMPLES 197

C. DICTIONARY EXAMPLES ... 199

D. LUCENE-BASED DICTIONARY USAGE AND LOOKUP EXAMPLE 201

E. XML REPRESENTATIONS FOR SIMULATION DATA INDEXING 203

ix

LIST OF TABLES

Table Page

4.1, Relationship mappings between thesaurus, SKOS, and ontology 106

4.2, Mappings between BIOSIO concepts and external OBO ontologies 106

4.3, Sample matches between thesaurus concept terms and UMLS concept names. 107

5.1, Simplified view of the iRODS user-metadata table ... 144

5.2, A subset of the metadata attributes defined in iBIOMES .. 144

6.1, List of computing centers where iBIOMES Lite was successfully deployed. 175

6.2, Parsers’ benchmarking on Blue Waters (NCSA) and Stampede (TACC). 175

A.1, Results of the survey ... 191

A.2, Summary of survey comments for each data element category 193

A.3, Data elements related to authorship .. 194

A.4, Data elements related to the computational platform (hardware/software) 194

A.5, Data elements related to the molecular system definition 195

A.6, Data elements common to any type of computational method 195

A.7, Data elements specific to molecular dynamics ... 196

A.8, Data elements specific to quantum chemistry... 196

C.1, Extract from the force field dictionary. ... 200

C.2, Extract from the dictionary of computational methods. .. 200

LIST OF FIGURES

Figure Page

3.1, Screenshot of the web interface generated via the caGrid tools. The screenshot

presents a listing of the computational tasks that were published into the caGrid test

system. The user request was automatically translated into an SQL query via

Hibernate to return the rows form the tables mapping to the class ExperimentTask

and its child classes MinimizationTask (minimizations), MDTask (MD runs), and

QMTask (QM calculations). For each row, a set of get methods (e.g., getSoftware)

link to the associated objects for more details (e.g., Software name and version). .. 71

3.2, Generating an XML representation of experiments using a Java API. The Java API is

used to parse the input files and create an internal representation of the virtual

experiment as a set of computational tasks. JAXB is then used to generate an XML

representation of this internal model, while XSLT is used to perform a last

transformation into a user-friendly HTML page. .. 72

3.3, XML and HTML-based representations of an experiment. Auto-generated XML

sample (left) and corresponding HTML tree view (right) representing the different

tasks run for an MD study of RNA using the AMBER software package. 73

3.4, Illustration of the data model used to represent virtual experiments. Each experiment

is a set of tasks, grouped into processes (e.g., minimization, equilibration,

production MD) and process groups applied to the same molecular system (e.g., B-

DNA oligomer). .. 74

3.5, Concepts used to describe the context of the experiments. 75

3.6, Description of experiments, processes, and tasks. ... 76

3.7, Organization of computational methods into tasks and parameter sets. 77

3.8, Description of MD tasks and parameter sets. .. 78

3.9, Description of QM tasks and parameters. .. 79

3.10, Decomposition of the molecular system into molecules with structural and

biological features. ... 80

3.11, References to the file system and hosted files containing the raw data. 81

3.12, Building process for the dictionaries. Each dictionary can be either indexed via

Apache Lucene for use via a Java API or loaded into a database to enable remote

SQL queries. .. 81

4.1, Database schema for the thesaurus .. 101

4.2, Hierarchical network of BIOSIO core concepts without external ontology mappings.

Each leaf represents a concept and each branch represents an “is a” relationship. 102

4.3, Thesaurus semantic network .. 103

4.4, Screenshot of the Hive web interface for SKOS concept browsing 103

4.5, SKOS document extract in RDF/Turtle format ... 104

4.6, SPARQL query example: retrieving the concepts that are narrower than the ‘Force

field’ concept (MD00900). .. 105

4.7, SPARQL query example: retrieving the concepts that are broader than the ‘Classical

molecular dynamics’ concept (MTH11100). .. 105

5.1, General architecture of iBIOMES. At the lowest level, iRODS stores the file

metadata while a separate MySQL database enforces standard metadata use and

allows definitions of experiment sets. A REST interface and a web client provide

query and update capability to the metadata catalog through the iRODS API (Jargon)

and an iBIOMES-specific API (iBIOMES-core). ... 135

5.2, Simplified class diagram representing the file parser implementations 135

5.3, Example of XML rule set used to customize the publication process. The first rule

associates file extensions to a particular file format (AMBER topology). The second

and third rules associate a particular set of metadata to analysis output files that

follow a standard nomenclature in our lab. ... 136

5.4, iBIOMES web interface: summary page for an MD simulation of DNA including

analysis data and a representative 3D structure. ... 137

5.5, iBIOMES web interface: file listing for a particular experiment. 138

5.6, Advanced experiment search through the web interface. Users can pick metadata

attributes and values from the standard catalog or create free-text criteria. This

particular example shows how one would search MD simulations of protein/RNA

complexes run with AMBER. ... 139

5.7, Integration of Jmol to render and manipulate 3D structures. 140

xii

5.8, Plotting tools used in the iBIOMES web interface for data visualization. The plotting

service is based on the JFreeChart library and enables comparison of multiple RMSd

(root mean square deviation) plots (a) and rendering of RMSd 2D matrices as

heatmaps (b). ... 141

5.9, Integration of the iDrop Lite applet to enable bulk downloads of files through the

shopping cart service... 142

5.10, iBIOMES commands for in-place registration and standard publication with data

transfer .. 143

5.11, Configuration of the iBIOMES infrastructure at the University of Utah (Cheatham

lab). Storage resources are distributed over 2 servers and currently offer a 10 TB

capacity. .. 143

6.1, Listing of published experiments in iBIOMES Lite website. 169

6.2, Summary of an experiment within the iBIOMES Lite website. 170

6.3, Workflow details of an experiment within the iBIOMES Lite website 171

6.4, Experiment file listing within the iBIOMES Lite website....................................... 172

6.5, Execution summary within the iBIOMES Lite website. In this example, a list of

REMD runs (192 replicas each) is presented to the user with job configuration

details (e.g., number of CPUs and GPUs). Extra computing environment

information, such as executable details and CPU/GPU architecture, can be displayed

by hovering over the associated elements. .. 173

6.6, iBIOMES Lite publication process. ... 174

6.7, Dependence between parsing execution time and total output/log file size 174

A.1, Online survey extract. ... 190

E.1. XML representation of the file tree associated to a computational experiment 204

E.2, XML representation of the computational experiment protocol. 205

xiii

LIST OF ABBREVIATIONS

AIMD – ab initio molecular dynamics

API – application programming interface

AVU – attribute-value-unit

CDE – common data element

CML – Chemistry Markup Language

CPU – central processing unit

CSD – Cambridge Structural Database

JSP – JavaServer Pages

GPU – graphics processing unit

HTML – HyperText Markup Language

MD – molecular dynamics

OWL – Web Ontology Language

PDB – Protein Data Bank

QM – quantum mechanics

QM/MM – quantum mechanics/molecular mechanics

SEBOMD – semi-empirical Born-Oppenheimer molecular dynamics

SEMD – semi-empirical molecular dynamics

SKOS – Simple Knowledge Organization System

XML – eXtensible Markup Language

XSL – eXtensible Stylesheet Language

xv

ACKNOWLEDGMENTS

This work would have not been possible without the help from many people at the

University of Utah and the support from my family back in France.

In June 2010 I joined Thomas Cheatham’s lab in the Medicinal Chemistry

department. He was not only one of my committee members, but also a mentor for over 4

years. I thank him for giving me the opportunity to work on several informatics-based

projects outside his usual line of research, and for funding me during that time. I also

want to thank the whole lab for giving me insights into the field of biomolecular

simulations and for helping me understand researchers’ needs: thanks to Rodrigo

Galindo, Niel Henriksen, Kiumars Shahrokh, Daniel Roe, Christina Bergonzo, and Sean

Cornillie.

I want to thank my committee chair, Julio Facelli, who kept me on track with my

dissertation and made sure I always could see the big picture in my research. He also

provided me with invaluable resources through the Center for High-Performance

Computing at the University of Utah, including computer time allocations and hardware

and software support. Thanks to the CHPC staff for all the help and support, especially

Ron Price, Anita Orendt, Wim Cardoen, and Brian Haymore who were involved in the

implementation of some of the projects presented here.

I would like to thank my other committee members, Lewis Frey, Karen Eilbeck,

and Scott Narus who provided me with valuable feedback to conduct my research. I also

would like to thank Stephane Meystre for giving me the opportunity to work on several

projects involving clinical Natural Language Processing (NLP) and for providing me

with funding during my first year as a Ph.D. student. I would also like to thank the

faculty, students, and staff at the Department of Biomedical Informatics who have

provided a great environment for learning and research.

Finally I would like to thank my parents and my sister, who supported me during

all these years in school. Although they have been physically distant, they have always

found a way to encourage me when it was needed.

xvii

CHAPTER 1

INTRODUCTION

Problem statement

Biomolecular simulations aim to simulate large biomolecular systems in silico to

provide insight into biological structure and function through molecular dynamics. They

can be used for prediction purposes as a screening step for experiments, or to

complement experimental studies by providing transition information between

representative structural conformations. With recent advances in computational

hardware1-3 and algorithmic techniques,4 simulations can now reach time scales that are

biologically significant to study dynamic processes such as protein folding. The data

generated by these simulations are overwhelming because of the storage requirements

and the heterogeneity of the computational methods being used. The data are highly

unorganized: each computational experiment can consist of hundreds of input (e.g.,

system topology, simulation parameters) and output (e.g., atom trajectories, energies,

temperatures) files in different formats, and following user-specific naming conventions.

The data also tend to be scattered among distributed resources, at the researcher’s home

institution and at national computing centers where the data are generated. It becomes

nontrivial even for primary investigators to keep track of their data, especially when the

data were generated by past students or collaborators, who might use different methods,

2

software packages, and file naming conventions. New tools are needed by researchers to

catalog these files and provide a structured view of the data to enable data browsing,

searching and mining at the level of the lab, and to enable data exchange with

collaborators or the larger community.

Main objectives

This dissertation focuses on the development of computable data models for

biomolecular simulations and management tools to summarize, track, and share datasets

stored in heterogeneous and distributed environments. The specific aims pursued in this

research are presented in the next paragraphs.

Aim 1

Hypothesis: A common data model can represent the computational protocols used in

biomolecular simulations.

Research question 1.1: Can a common model represent the variety of methods used in

biomolecular simulations (i.e., ab initio, semi-empirical, and empirical methods)?

Research question 1.2: Can such a model be used to develop new databases and/or

Application Programming Interfaces (API)?

Research question 1.3: Can such a model be used to develop a controlled vocabulary that

can be used in a semantic web context?

For this aim a data model and set of dictionaries were designed to address the

representation of computational models (e.g., molecular dynamics, quantum mechanics),

parameters, authorship, molecular systems (biomolecules and chemical compounds),

computing environments, and files (input and output). The data model was used in

3

different prototypes to show its applicability to databases and APIs for biomolecular

simulation data management. The data model and dictionaries were then used to create a

controlled vocabulary, in the form of a database similar to the UMLS metathesaurus,5

which was extended to a Simple Knowledge Organization System6 (SKOS) and an OWL

ontology.

Aim 2

Hypothesis: A repository can be built to store, index, and present biomolecular simulation

data distributed among multiple resources.

Research question 2.1: Can current technology be used to develop a distributed repository

for biomolecular simulation input and output files?

Research question 2.2: Can the repository support data queries using common data

elements?

A repository (iBIOMES) was designed and implemented to integrate a distribute

file system where files are indexed using common data elements. It includes a dynamic

web interface to summarize, visualize, search, and download published data.

Aim 3

Hypothesis: A simple tool can be developed to track and share biomolecular simulation

data hosted in heterogeneous environments where user privileges and IT support are

limited.

Research question 3.1: Can a single tool summarize heterogeneous biomolecular

simulation datasets using a common data model?

4

Research question 3.2: Can this tool be deployed and used in limited settings where user

privileges and IT support are limited?

A simple tool (iBIOMES Lite) was created to generate XML and HTML

summaries of biomolecular simulation datasets. A set of file parsers is used to

automatically create a representation of the computational protocol based on a common

data model.

Dissertation outline

Chapter 2 provides background information about biomolecular simulations, data

challenges, and current environments available to manage and share these data. The next

four chapters address the three research aims introduced earlier. Chapter 3 and 4 provide

the basis for a common representation of biomolecular simulation data. Chapter 3 focuses

on the design of a logical data model and a set of dictionaries for database and API design

while Chapter 4 focuses on the development of a controlled vocabulary that can be used

in a semantic web context. Chapter 5 introduces iBIOMES, a distributed repository

architecture for simulation data publication. Chapter 6 introduces iBIOMES Lite, a light-

weight tool that can be deployed in limited settings to summarize and share simulation

protocols and results. Finally in Chapter 7 the results of the research are summarized and

discussed.

References

1. Narumi, T.; Ohno, Y.; Okimoto, N.; Suenaga, A.; Yanai, R.; Taiji, M. A High-

Speed Special-Purpose Computer for Molecular Dynamics Simulations: MDGRAPE-3.

In NIC Workshop, 2006; 2006; Vol. 34; pp 29-36.

5

2. Shaw, D. E.; Dror, R. O.; Salmon, J. K.; Grossman, J. P.; Mackenzie, K. M.;

Bank, J. A.; Young, C.; Deneroff, M. M.; Batson, B.; Bowers, K. J.; Chow, E.; Eastwood,

M. P.; Ierardi, D. J.; Klepeis, J. L.; Kuskin, J. S.; Larson, R. H.; Lindorff-Larsen, K.;

Maragakis, P.; Moraes, M. A.; Piana, S.; Shan, Y.; Towles, B., In Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis; ACM:

Portland, Oregon, 2009, pp 1-11.

3. Le Grand, S.; Götz, A. W.; Walker, R. C., SPFP: Speed Without Compromise—A

Mixed Precision Model for GPU Accelerated Molecular Dynamics Simulations. Comput.

Phys. Commun. 2013, 184, 374-380.

4. Schlick, T., Molecular Dynamics-Based Approaches for Enhanced Sampling of

Long-Time, Large-Scale Conformational Changes in Biomolecules. F1000 biology

reports 2009, 1, 51.

5. Bodenreider, O., The Unified Medical Language System (UMLS): Integrating

Biomedical Terminology. Nucleic Acids Res. 2004, 32, D267.

6. Simple Knowledge Organization System (SKOS) reference.

http://www.w3.org/TR/skos-reference/

http://www.w3.org/TR/skos-reference/

CHAPTER 2

BACKGROUND

Biomolecular simulations

Introduction

Biomolecular simulations aim to simulate the motions of complex biomolecular

systems characterized at the atomic level. Simulated systems include proteins,1 nucleic

acids (DNA, RNA),2, 3 lipids,4, 5 and carbohydrates.6, 7 Through dynamics, simulations

can provide new insights into molecular structure and function.8 They can be used to

supplement existing experiments, guide the design of new experiments, or provide

insights that might not be determined experimentally because of current protocol

limitations. Another major application of biomolecular simulations is the study of

interactions between biomolecules and ligands in the context of drug discovery.9

Understanding binding affinities between receptor and ligand is a critical component to

develop better drugs, therapies, catalysts and nanotechnology.8, 10, 11 Simulation

implementations have evolved along with advances in hardware and software technology

and it is now possible to use more complex and accurate models to study the dynamics of

biomolecules.12, 13 As the implementations of biomolecular simulations software evolve,

developers need to keep validating their models and their specific implementations using

experimental data14-17 (e.g., crystal or NMR structures) or alternative computational

7

methods that provide highly accurate results.18-20 Validation of simulation output is a

necessary step for users as well.16, 21 The large amount of data generated by these

simulations must be checked for errors, analyzed, and interpreted to draw conclusions

that have a biological meaning.

Molecular dynamics

Molecular dynamics (MD) is arguably the most popular class of methods for

biomolecular simulations today. MD methods use Newton’s equations of motion to

compute the atomic positions over discrete time steps, called trajectories. The simulated

molecule or set of molecules is represented by a system of interacting particles. For each

particle i in a system constituted by N particles, Newton’s equations of motion define the

force 𝐹⃗𝑖 acting on the particle as

 𝐹⃗𝑖 = 𝑚𝑖𝑎⃗𝑖 = −𝛻⃗⃗𝑖𝑈 (1)

where mi is the mass of the particle i, 𝑎⃗𝑖 its acceleration, and −𝛻⃗⃗𝑖𝑈 the gradient of the

potential energy.

The acceleration can then be expressed as

a⃗⃗𝑖 =

𝑑2𝑟𝑖
𝑑𝑡2

= −
1

𝑚𝑖

𝑑𝑈⃗⃗⃗

𝑑𝑟𝑖
 (2)

where ri is the position of the particle.

Using a Taylor series expansion, the position of the particle along a single

dimension x after an increment in time ∆t can be described as

𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) +

𝑑𝑥(𝑡)

𝑑𝑡
∆𝑡 +

𝑑2𝑥(𝑡)

𝑑𝑡2
∆𝑡2 +⋯ (3)

8

Several integration algorithms use a truncated version of this series to integrate

the equations of motions using small steps in time (∆t). For example, in the simple Verlet

algorithm22 the position x of a particle at the instant (t+∆t) is given by:

𝑥(𝑡 + ∆𝑡) = 2𝑥(𝑡) − 𝑥(𝑡 − ∆𝑡) +

𝑑2𝑥(𝑡)

𝑑𝑡2
∆𝑡2 (4)

Therefore, using information about the previous time steps and Equation (2) one

can determine the position of the particle i at the instant t if the potential energy is known.

 In classical MD, the potential energy is derived from molecular mechanics (MM)

principles. Each particle in the system is represented by a sphere with a certain radius

(van der Waals radius), polarizability, and charge, while bonds are represented by springs.

The potential energy is mathematically described through a force field, a mathematical

function that is parameterized to enable different set of parameters for different types of

particles. Force fields describe both bonded interactions (between atoms linked by

covalent bonds) and nonbonded interactions (long-range interactions). Bonded

interactions can be described through terms that represent bonds and angles between the

different particles for example. The nonbonded interactions typically include van der

Waals forces and electrostatic interactions.

In all-atom MD, each atom is represented by a single particle in the system. The

force field parameter set is then dependent on the atom type, which is typically defined

by the corresponding atomic element (e.g., Carbon, Oxygen), but also by the electronic

configuration of the atom. In coarse-grain (CG) MD23 each particle in the system

represents a group of atoms rather than an individual atom. For example, each residue

(e.g., amino acid in protein) can be approximated as a bead, dramatically reducing the

cost of calculations compared to an all-atom representation. Unfortunately CG

9

representations can also lead to more simulation inaccuracies. For example, the side chain

motions cannot be well described, although they are known to have an influence on

polymers’ properties. Independently from the granularity of the representation, most force

field parameter sets tend to be domain specific. For example, a given force field

parameter set might be adapted to protein modeling24-26 while another one might be

recommended for nucleic acid simulations.19, 27

Quantum chemistry

One of the limitations of classical MD is that chemical reactions where bonds

form and break cannot be represented. To overcome these limitations the potential energy

can be calculated using a quantum mechanics (QM) method to provide an electronic

description of the system. In quantum chemistry the electronic structure of the atoms is

explicitly described through Schrödinger’s equations. The spatial distribution and energy

of an electron can be defined though molecular orbitals, which can be described through

a set of wave functions: the basis sets. Different levels of theory are available to

approximate the selected basis set and find a discrete set of solutions to the Schrödinger

equation. Popular methods include Hartree-Fock (HF) and post-Hartree-Fock methods

(e.g., Configuration Interaction, Moller-Plesset, Coupled-Cluster), multi-reference

methods, and Density Functional Theory (DFT).

In ab initio molecular dynamics28 (AIMD) these methods are used to replace the

MM force field and compute the potential energy of the system using a quantum

approach. Because of the computational cost of quantum methods, AIMD methods are

only used on small biomolecular systems and reduced time scales compared to classical

10

MD. In semi-empirical MD29 (SEMD) the quantum methods that are used make many

approximations using empirical formulae.30 These approaches provide a less accurate

electronic description of the system but they can greatly reduce the cost of the QM

calculations.

The role of quantum chemistry in biomolecular simulations is not limited to

quantum MD applications. Many MM force field parameters set developments for

example are guided by quantum calculations, which can give very accurate results on

small test cases and help fitting parameters.18-20 Quantum chemistry can also be used in

hybrid QM/MM approaches where the system is partitioned into a QM region and an

MM region.31 Assuming that the QM region is fairly small and targets a region of interest

(e.g., binding site of a protein) QM/MM simulations can combine the speed of classical

MD and the level of accuracy of QM methods.

Computing environment

Software packages

A wide variety of MD and QM parallel codes are available to the scientific

community. AMBER,32 CHARMM,33 NAMD,34 GROMACS,35 Desmond,36 and

GROMOS37 are some of the most popular MD simulation codes in use today to simulate

proteins, nucleic acids, or even larger molecules. Gaussian,38 NWChem,39, Q-Chem,40

GAMESS,41 Jaguar,42 or VASP43 on the other hand, are popular QM packages, typically

used to study small molecules such as drug compounds. Some of these software packages

also offer QM/MM capabilities, either by implementing both MD and QM engines, or by

allowing external engines to interface with their code.

11

Many tools are available to analyze the output of the simulations, compare the

results to experimental data, and possibly generate new hypotheses. Visualization tools

such as VMD44 or Chimera45 feature 3D rendering of molecules and visualization of MD

trajectories through animations. A more quantitative analysis of the output can be

performed with programs like CPPTRAJ46 or MD-specific scripting libraries (e.g.,

VMD’s Tcl capability, MDAnalysis47) to pinpoint anomalies, evaluate differences with

other simulations or experimental datasets, and identify events of potential interest.

Because of the wide variety of software packages and computational methods

available to the community, no standard format has been adopted to store or describe

simulation results. Various cheminformatics projects have emerged, aiming to facilitate

computational chemistry data exchange. The Blue Obelisk effort, for example, aims to

provide informatics tools with the concepts of Open Data, Open Standards and Open

Source in mind, to facilitate collaboration between chemists.48 Projects such as the

Chemistry Markup Language (CML49, 50) and the OpenBabel51 data converter are part of

this effort to distribute free tools to the community to encourage the usage of standard

data formats. For now these tools are mostly limited to the representation of experimental

and quantum chemistry, and only few legacy software packages are adopting them.52

High-performance computing hardware

All these packages keep evolving as new hardware allows the implementation of

more complex algorithms and numerical techniques. The simulation engines provided by

these software packages are very demanding computationally and cannot be run on

regular desktop computers. CPU clusters composed of hundreds of computational nodes

12

are today’s common computing platform for biomolecular simulations. Despite their

computational power, simulations usually have to run for weeks or months to reach time

scales that are biologically significant. More modern high-performance computing (HPC)

hardware, such as general-purpose Graphics Processor Units (GPUs), is now used in

conjunction with CPU nodes to accelerate the computations.13, 53 Specialized hardware,

such as MDGRAPE54, 55 or Anton,56 is specifically designed to run molecular dynamics

simulations. These machines are usually much faster than general-purpose HPC

hardware, but their usage is also limited to the simulation model their architecture

supports and they are usually not widely available to researchers.

Data storage

While advances in hardware have allowed simulations of larger systems using

longer time scales, they also created a tsunami of data researchers have to store and

analyze. Today’s simulation output can easily reach terabytes (TB) of data on disk. Most

of these data represent the MD trajectories: the time series of the 3D coordinates of each

atom in the system. Even though the output can be compressed57, 58 or stripped from

unnecessary information (e.g., remove solvent molecules from the system), data storage

and transfer (between national computing centers and home institutions for example)

remains a bottleneck. Simulation archiving becomes a necessity if researchers want to

keep track of model evolutions and simulation output changes. It also becomes necessary

for researchers to adopt new approaches to expose their existing datasets to build

collaborative networks and share data with the community. The number of tools for

biomolecular simulation data management is currently limited because of the amount of

13

data that need to be stored and described, and because of the heterogeneity of the data

due to the wide variety of software packages and computational methods available. In the

next sections we present previous projects that aim to develop standard data formats and

infrastructures for structural and dynamics data exchange in the experimental and the

computational communities.

Data sharing

Experimental data

One of the largest open sources for experimental structures is the Protein Data

Bank (PDB),59 hosted by the Research Collaboratory for Structural Bioinformatics

(RCSB). The PDB is widely used by the biomolecular simulation community to validate

computational results and to create the initial structures for dynamics runs. While PDB is

one of the main resources for experimental structures, no information about dynamics

(e.g., MD trajectories) is available, and search capabilities are limited (molecule name,

author, ligand, and sequence). Other structural databases, such as the Cambridge

Structural Database60 (CSD), provide more search capabilities, but at a certain financial

cost. Several open databases for small chemical molecules exist as well. PubChem

provides access to millions of compounds, substances, and bioassays.61 The database can

be searched using advanced queries based on chemical structure, names, and properties

(e.g., hydrogen bond donor and acceptor count). ChEMBL is a database of drug-like

bioactive compounds.62 Assays from different sources are represented through a common

data model to enable computerized data mining and drug discovery. The ChEMBL

database was recently integrated into the semantic web63 to facilitate inferences with

external web resources such as ChemSpider.64

14

Molecular simulations

The BioSimGrid project65, 66 tackles the simulation data storage problem through

a specialized grid. This infrastructure offers secured data deposition and retrieval

services. BioSimGrid is supported by a Grid-based architecture to connect distributed

relational databases that stores not only biomolecular simulation metadata (e.g., author,

software, method) but also molecule topology and trajectory information. Simulation data

can be deposited, retrieved, and processed though a Python script environment and a web

interface. A prototype of BioSimGrid was deployed in the UK to connect multiple e-

Science centers but the current status of the project is uncertain. The code is now

available at http://sourceforge.net/projects/biosimgrid/. The Dynameomics project67 aims

to create the largest repository of protein folding simulations. The repository currently

indexes about 11,000 simulations of over 2,000 distinct proteins. In order to achieve this,

the simulation and analysis workflow had to be computerized, and data warehousing

issues had to be addressed. Each atom trajectory is stored in a database, along with

metadata about the simulation and the target molecule. Data retrieval was optimized by

creating multiple instances of Microsoft SQL at each physical server, and making use of

SQL views. The database is also supplemented with a 3D index to speed up nearest

neighbor searches68. This architecture seems adapted to the authors’ particular needs but

they note that changes in their database schema could be costly as SQL views would have

to be updated and data moved around. A limitation of this project is that the data are not

currently open for queries. Access through SQL queries can be requested but one should

have prior knowledge about the database schema to obtain the information of interest. A

web service interface (SOAP) is in development and might facilitate data integration into

http://sourceforge.net/projects/biosimgrid/

15

external systems. Both BioSimGrid and Dynameomics are limited by the way they store

atoms’ coordinates. With the advances in high-performance computing, it is now possible

to run millisecond simulations, resulting in GB or TB of data. Organizing these data into

a relational database is expensive: specialized trajectory compression and indexing

techniques are required and new analysis tools need to be developed since most of the

current ones are only applicable to file-based trajectories.

Other projects focus on more complex infrastructures that aim to provide a single

platform for simulation execution, data storage and postprocessing. The eMinerals

project69 aims to study mineralogical processes through molecular simulations. It is

supported by a computational and data minigrid. Data resources are managed by the

Storage Resource Broker (SRB),70 which creates a virtual file repository for the

organization. A central metadata catalog (MCAT) stores information about the distributed

files and can store associated user-defined metadata. The compute resources and job

submissions are managed through Globus and Condor,71 Several scientific projects72

showed the benefits of this minigrid implementation. MoDEL73 (Molecular Dynamics

Extended Library) is a large simulation repository, and part of an integrated platform that

initially focused on protein simulations. Users set up their simulations via the MDWeb

web portal,74 which automatically takes care of many of the steps necessary to prepare

the initial structure (e.g., model downloaded from the PDB) for production MD runs.

The simulation jobs are submitted to a supercomputing center and results are centralized

into a repository accessible via the web interface for data retrieval and postprocessing.

External and local analysis tools such as Ptraj46 were integrated into the environment to

enable trajectory analysis. The public MoDEL database currently indexes 1,700

16

simulations of proteins and is available at http://mmb.pcb.ub.es/MoDEL/. The MDWeb

environment now also provides a computational workflow to study nucleic acids.75 In

these types of integrated environments the simulation runs can be monitored and resulting

data can be indexed with accurate metadata. The underlying architectures tend to be very

complex and expensive since they require computational resources to run batch jobs,

storage resources to manage the resulting datasets, and IT support. At this point one of

the main limitations is that external data cannot be published to these platforms. In these

integrated environments provenance metadata is generated based on the input provided

directly within the environment. Publication of raw data generated outside these

environments would require some parsing mechanism66, 76 to extract the metadata and

provide a description of the associated files that fits their data model. Since most

researchers currently use resources available at their home institutions or via national

computing centers, architectural changes would have to be made to enable the use of

these environments as collaborative repositories.

Dissertation

In this dissertation the problem of biomolecular simulation data management is

tackled using design criteria informed by previous work published by researchers in the

field. First the set of management tools presented here are not tied to the computational

component used to run biomolecular simulations, unlike a full workflow-based

environment such as MDWeb. This means that the tools are not dependent on the way the

simulation data are generated, leaving researchers with the ability to use the

computational resources they are already using (e.g., local machine, high-performance

computing centers). In order for the tools to be aware of the data, the data need to be

http://mmb.pcb.ub.es/MoDEL/

17

“published” to a management system. Publication includes data indexing using

provenance metadata and data copy if the management system is not installed where the

original data reside (e.g., community-level repository). Users should be able to deploy

these tools on heterogeneous platforms – i.e., various types of storage resources that can

be distributed over the network – or have the means to access them remotely (e.g.,

command-line or web interface). A federated approach is used to aggregate distributed

resources and enable seamless searches via a single entry point. Java is used to enable

deployment and usage of these tools on a variety of operating systems. The management

systems presented here are also meant to be context- and method- independent. Using a

model-driven approach, the simulation protocol can be used to computationally describe

and index data generated by a wide spectrum of methods and software packages, enabling

the description of various studies (e.g., quantum calculations on small drug compounds,

protein folding simulations). In this work the data model is used to create detailed

summaries via the iBIOMES Lite tool and index raw data – i.e., the files – in the context

of data exchange and collaboration via the iBIOMES repository.

References

1. Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Eastwood,

M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J. K.; Shan, Y.; Wriggers, W., Atomic-Level

Characterization of the Structural Dynamics of Proteins. Science 2010, 330, 341-6.

2. Lavery, R.; Zakrzewska, K.; Beveridge, D.; Bishop, T. C.; Case, D. A.; Cheatham,

T., III; Dixit, S.; Jayaram, B.; Lankas, F.; Laughton, C.; Maddocks, J. H.; Michon, A.;

Osman, R.; Orozco, M.; Perez, A.; Singh, T.; Spackova, N.; Sponer, J., A Systematic

Molecular Dynamics Study of Nearest-Neighbor Effects on Base Pair and Base Pair Step

Conformations and Fluctuations in B-DNA. Nucleic Acids Res. 2010, 38, 299-313.

18

3. Sponer, J.; Cang, X.; Cheatham, T. E., 3rd, Molecular Dynamics Simulations of

G-DNA and Perspectives on the Simulation of Nucleic Acid Structures. Methods 2012,

57, 25-39.

4. Delemotte, L.; Tarek, M., Molecular Dynamics Simulations of Lipid Membrane

Electroporation. J. Membr. Biol. 2012, 245, 531-43.

5. Lupyan, D.; Mezei, M.; Logothetis, D. E.; Osman, R., A Molecular Dynamics

Investigation of Lipid Bilayer Perturbation by PIP2. Biophysical journal 2010, 98, 240-

247.

6. Perić-Hassler, L.; Hansen, H. S.; Baron, R.; Hünenberger, P. H., Conformational

Properties of Glucose-Based Disaccharides Investigated Using Molecular Dynamics

Simulations with Local Elevation Umbrella Sampling. Carbohydrate research 2010, 345,

1781-1801.

7. Payne, C. M.; Bomble, Y. J.; Taylor, C. B.; McCabe, C.; Himmel, M. E.; Crowley,

M. F.; Beckham, G. T., Multiple Functions of Aromatic-Carbohydrate Interactions in a

Processive Cellulase Examined with Molecular Simulation. J. Biol. Chem. 2011, 286,

41028-41035.

8. Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H.; Shaw, D. E., Biomolecular

Simulation: a Computational Microscope for Molecular Biology. Annu. Rev. Biophys.

2012, 41, 429-452.

9. Durrant, J. D.; McCammon, J. A., Molecular Dynamics Simulations and Drug

Discovery. BMC biology 2011, 9, 71.

10. Alonso, H.; Bliznyuk, A. A.; Gready, J. E., Combining Docking and Molecular

Dynamic Simulations in Drug Design. Med. Res. Rev. 2006, 26, 531-568.

11. Klein, M. L.; Shinoda, W., Large-Scale Molecular Dynamics Simulations of Self-

Assembling Systems. Science 2008, 321, 798-800.

12. Schlick, T.; Collepardo-Guevara, R.; Halvorsen, L. A.; Jung, S.; Xiao, X.,

Biomolecular Modeling and Simulation: A Field Coming of Age. Quarterly reviews of

biophysics 2011, 44, 191-228.

13. Giupponi, G.; Harvey, M. J.; De Fabritiis, G., The Impact of Accelerator

Processors for High-Throughput Molecular Modeling and Simulation. Drug discovery

today 2008, 13, 1052-8.

14. Showalter, S. A.; Brüschweiler, R., Validation of Molecular Dynamics

Simulations of Biomolecules Using NMR Spin Relaxation as Benchmarks: Application to

the AMBER99SB Force Field. J. Chem. Theory Comput. 2007, 3, 961-975.

19

15. Lindorff-Larsen, K.; Maragakis, P.; Piana, S.; Eastwood, M. P.; Dror, R. O.; Shaw,

D. E., Systematic Validation of Protein Force Fields Against Experimental Data. PloS one

2012, 7, e32131.

16. van Gunsteren, W. F.; Mark, A. E., Validation of Molecular Dynamics Simulation.

J. Chem. Phys. 1998, 108, 6109-6116.

17. Laskowski, R. A.; MacArthur, M. W.; Thornton, J. M., Validation of Protein

Models Derived from Experiment. Curr. Opin. Struct. Biol. 1998, 8, 631-639.

18. Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L., Evaluation

and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with

Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B 2001, 105,

6474-6487.

19. Zgarbová, M.; Otyepka, M.; Šponer, J. i.; Mládek, A. t.; Banáš, P.; Cheatham III,

T. E.; Jurecka, P., Refinement of the Cornell et al. Nucleic Acids Force Field Based on

Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem.

Theory Comput. 2011, 7, 2886-2902.

20. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A., Development

and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157-74.

21. Murdock, S. E.; Tai, K.; Ng, M. H.; Johnston, S.; Wu, B.; Fangohr, H.; Laughton,

C. A.; Essex, J. W.; Sansom, M. S., Quality Assurance for Biomolecular Simulations. J.

Chem. Theory Comput. 2006, 2, 1477-1481.

22. Verlet, L., Computer "Experiments" on Classical Fluids. I. Thermodynamical

Properties of Lennard-Jones Molecules. Physical review 1967, 159, 98.

23. Takada, S., Coarse-Grained Molecular Simulations of Large Biomolecules. Curr.

Opin. Struct. Biol. 2012, 22, 130-7.

24. Lindorff‐Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R.

O.; Shaw, D. E., Improved Side‐Chain Torsion Potentials for the Amber ff99SB Protein

Force Field. Proteins: Structure, Function, and Bioinformatics 2010, 78, 1950-1958.

25. de Jong, D. H.; Singh, G.; Bennett, W. D.; Arnarez, C.; Wassenaar, T. A.; Schäfer,

L. V.; Periole, X.; Tieleman, D. P.; Marrink, S. J., Improved Parameters for the Martini

Coarse-Grained Protein Force Field. J. Chem. Theory Comput. 2012, 9, 687-697.

26. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E.; Mittal, J.; Feig, M.; MacKerell Jr, A.

D., Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting

Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. J.

Chem. Theory Comput. 2012, 8, 3257-3273.

20

27. Baker, C. M.; Anisimov, V. M.; MacKerell, A. D., Jr., Development of CHARMM

Polarizable Force Field for Nucleic Acid Bases Based on the Classical Drude Oscillator

Model. J. Phys. Chem. B 2011, 115, 580-96.

28. Marx, D.; Hutter, J., Ab Initio Molecular Dynamics: Theory and Implementation.

Modern methods and algorithms of quantum chemistry 2000, 1, 301-449.

29. Stewart, J. J.; Davis, L. P.; Burggraf, L. W., Semi‐Empirical Calculations of

Molecular Trajectories: Method and Applications to Some Simple Molecular Systems. J.

Comput. Chem. 1987, 8, 1117-1123.

30. Bredow, T.; Jug, K., Theory and Range of Modern Semiempirical Molecular

Orbital Methods. Theoretical Chemistry Accounts 2005, 113, 1-14.

31. Senn, H. M.; Thiel, W., QM/MM Methods for Biomolecular Systems. Angew.

Chem. Int. Ed. Engl. 2009, 48, 1198-229.

32. Case, D. A.; Cheatham, T. E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.,

Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J., The Amber Biomolecular

Simulation Programs. J. Comput. Chem. 2005, 26, 1668-1688.

33. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D., CHARMM: A Program for

Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem.

1983, 4, 187-217.

34. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.;

Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K., Scalable Molecular Dynamics with

NAMD. J. Comput. Chem. 2005, 26, 1781-1802.

35. Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.

R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E., GROMACS 4.5:

A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit.

Bioinformatics 2013, 29, 845-54.

36. Bowers, K. J.; Chow, E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.;

Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; Sacerdoti, F. D. Scalable Algorithms for

Molecular Dynamics Simulations on Commodity Clusters. In SC 2006 Conference,

Proceedings of the ACM/IEEE, 2006; IEEE: 2006; pp 43-43.

37. Christen, M.; Hünenberger, P. H.; Bakowies, D.; Baron, R.; Bürgi, R.; Geerke, D.

P.; Heinz, T. N.; Kastenholz, M. A.; Kräutler, V.; Oostenbrink, C., The GROMOS

Software for Biomolecular Simulation: GROMOS05. J. Comput. Chem. 2005, 26, 1719-

1751.

21

38. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;

Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,

H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.;

Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,

M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.;

Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;

Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.

C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.;

Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;

Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;

Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich,

S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.

Gaussian 09, Revision C. 01; Gaussian, Inc: Wallingford, CT, 2009.

39. Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam,

H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L., NWChem: A Comprehensive

and Scalable Open-Source Solution for Large Scale Molecular Simulations. Comput.

Phys. Commun. 2010, 181, 1477-1489.

40. Kong, J.; White, C. A.; Krylov, A. I.; Sherrill, D.; Adamson, R. D.; Furlani, T. R.;

Lee, M. S.; Lee, A. M.; Gwaltney, S. R.; Adams, T. R., Q‐Chem 2.0: A High‐
Performance Ab Initio Electronic Structure Program Package. J. Comput. Chem. 2000,

21, 1532-1548.

41. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.;

Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S., General Atomic and

Molecular Electronic Structure System. J. Comput. Chem. 2004, 14, 1347-1363.

42. Jaguar, Version 7.5; Schrödinger, L.L.C.: New York, NY, 2008.

43. Vienna Ab Initio Simulation Package (VASP), Version 5.3.3; 2012.

44. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual Molecular Dynamics. J.

Mol. Graphics 1996, 14, 33-38.

45. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.;

Meng, E. C.; Ferrin, T. E., UCSF Chimera—A Visualization System for Exploratory

Research and Analysis. J. Comput. Chem. 2004, 25, 1605-1612.

46. Roe, D. R.; Cheatham III, T. E., PTRAJ and CPPTRAJ: Software for Processing

and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013.

47. Michaud‐Agrawal, N.; Denning, E. J.; Woolf, T. B.; Beckstein, O., MDAnalysis:

A Toolkit for the Analysis of Molecular Dynamics Simulations. J. Comput. Chem. 2011,

32, 2319-2327.

22

48. Guha, R.; Howard, M. T.; Hutchison, G. R.; Murray-Rust, P.; Rzepa, H.;

Steinbeck, C.; Wegner, J.; Willighagen, E. L., The Blue Obelisk-Interoperability in

Chemical Informatics. J. Chem. Inf. Model. 2006, 46, 991-8.

49. Murray-Rust, P.; Rzepa, H. S., Chemical Markup, XML, and the World Wide

Web. 4. CML Schema. J. Chem. Inf. Comput. Sci. 2003, 43, 757-72.

50. Phadungsukanan, W.; Kraft, M.; Townsend, J. A.; Murray-Rust, P., The Semantics

of Chemical Markup Language (CML) for Computational Chemistry : CompChem. J.

Cheminform. 2012, 4, 15.

51. O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.;

Hutchison, G. R., Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33.

52. de Jong, W. A.; Walker, A. M.; Hanwell, M. D., From Data to Analysis: Linking

NWChem and Avogadro with the Syntax and Semantics of Chemical Markup Language.

J. Cheminform. 2013, 5, 25.

53. Stone, J. E.; Hardy, D. J.; Ufimtsev, I. S.; Schulten, K., GPU-Accelerated

Molecular Modeling Coming of Age. J. Mol. Graphics Modell. 2010, 29, 116-125.

54. Susukita, R.; Ebisuzaki, T.; Elmegreen, B. G.; Furusawa, H.; Kato, K.; Kawai, A.;

Kobayashi, Y.; Koishi, T.; McNiven, G. D.; Narumi, T., Hardware Accelerator for

Molecular Dynamics: MDGRAPE-2. Comput. Phys. Commun. 2003, 155, 115-131.

55. Narumi, T.; Ohno, Y.; Okimoto, N.; Suenaga, A.; Yanai, R.; Taiji, M. A High-

Speed Special-Purpose Computer for Molecular Dynamics Simulations: MDGRAPE-3.

In NIC Workshop, 2006; 2006; Vol. 34; pp 29-36.

56. Shaw, D. E.; Dror, R. O.; Salmon, J. K.; Grossman, J. P.; Mackenzie, K. M.;

Bank, J. A.; Young, C.; Deneroff, M. M.; Batson, B.; Bowers, K. J.; Chow, E.; Eastwood,

M. P.; Ierardi, D. J.; Klepeis, J. L.; Kuskin, J. S.; Larson, R. H.; Lindorff-Larsen, K.;

Maragakis, P.; Moraes, M. A.; Piana, S.; Shan, Y.; Towles, B., In Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis; ACM:

Portland, Oregon, 2009, pp 1-11.

57. Meyer, T.; Ferrer-Costa, C.; Pérez, A.; Rueda, M.; Bidon-Chanal, A.; Luque, F. J.;

Laughton, C. A.; Orozco, M., Essential Dynamics: A Tool for Efficient Trajectory

Compression and Management. J. Chem. Theory Comput. 2006, 2, 251-258.

58. Omeltchenko, A.; Campbell, T. J.; Kalia, R. K.; Liu, X.; Nakano, A.; Vashishta, P.,

Scalable I/O of Large-Scale Molecular Dynamics Simulations: A Data-Compression

Algorithm. Comput. Phys. Commun. 2000, 131, 78-85.

23

59. Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F.; Brice, M. D.;

Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M., The Protein Data Bank. Eur. J.

Biochem. 2008, 80, 319-324.

60. Allen, F. H.; Taylor, R., Research Applications of the Cambridge Structural

Database (CSD). Chem. Soc. Rev. 2004, 33, 463-475.

61. Wang, Y.; Xiao, J.; Suzek, T. O.; Zhang, J.; Wang, J.; Bryant, S. H., PubChem: A

Public Information System for Analyzing Bioactivities of Small Molecules. Nucleic Acids

Res. 2009, 37, W623-W633.

62. Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.;

Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B., ChEMBL: a Large-Scale

Bioactivity Database for Drug Discovery. Nucleic Acids Res. 2012, 40, D1100-D1107.

63. Willighagen, E. L.; Waagmeester, A.; Spjuth, O.; Ansell, P.; Williams, A. J.;

Tkachenko, V.; Hastings, J.; Chen, B.; Wild, D. J., The ChEMBL Database as Linked

Open Data. J. Cheminform. 2013, 5, 1-12.

64. Pence, H. E.; Williams, A., ChemSpider: An Online Chemical Information

Resource. Journal of Chemical Education 2010, 87, 1123-1124.

65. Ng, M. H.; Johnston, S.; Wu, B.; Murdock, S. E.; Tai, K.; Fangohr, H.; Cox, S. J.;

Essex, J. W.; Sansom, M. S. P.; Jeffreys, P., BioSimGrid: Grid-Enabled Biomolecular

Simulation Data Storage and Analysis. Future Gener. Comp. Sy. 2006, 22, 657-664.

66. Tai, K.; Murdock, S.; Wu, B.; Ng, M. H.; Johnston, S.; Fangohr, H.; Cox, S. J.;

Jeffreys, P.; Essex, J. W.; Sansom, M. S., BioSimGrid: Towards a Worldwide Repository

for Biomolecular Simulations. Organic & biomolecular chemistry 2004, 2, 3219-21.

67. Simms, A. M.; Toofanny, R. D.; Kehl, C.; Benson, N. C.; Daggett, V.,

Dynameomics: Design of a Computational Lab Workflow and Scientific Data Repository

for Protein Simulations. Protein Eng. Des. Sel. 2008, 21, 369-377.

68. Toofanny, R. D.; Simms, A. M.; Beck, D. A.; Daggett, V., Implementation of 3D

Spatial Indexing and Compression in a Large-Scale Molecular Dynamics Simulation

Database for Rapid Atomic Contact Detection. BMC Bioinformatics 2011, 12, 334.

69. Calleja, M.; Bruin, R.; Tucker, M. G.; Dove, M. T.; Tyer, R.; Blanshard, L.; Van

Dam, K. K.; Allan, R. J.; Chapman, C.; Emmerich, W., Collaborative Grid Infrastructure

for Molecular Simulations: The eMinerals Minigrid as a Prototype Integrated Compute

and Data Grid. Molecular Simulation 2005, 31, 303-313.

70. Baru, C.; Moore, R.; Rajasekar, A.; Wan, M. The SDSC Storage Resource Broker.

In Proceedings of the 1998 Conference of the Centre for Advanced Studies on

Collaborative research, 1998; IBM Press: 1998; p 5.

24

71. Thain, D.; Tannenbaum, T.; Livny, M., Condor and the Grid. Grid computing:

Making the global infrastructure a reality 2003, 299-335.

72. Alfredsson, M. eMinerals: Science Outcomes Enabled by New Grid Tools. In

Proc. UK eScience All Hands Meeting, 2005; 2005; pp 788-795.

73. Meyer, T.; D'Abramo, M.; Hospital, A.; Rueda, M.; Ferrer-Costa, C.; Perez, A.;

Carrillo, O.; Camps, J.; Fenollosa, C.; Repchevsky, D.; Lluis Gelpi, J.; Orozco, M.,

MoDEL (Molecular Dynamics Extended Library): A Database of Atomistic Molecular

Dynamics Trajectories. Structure 2010, 18, 1399-1409.

74. Hospital, A.; Andrio, P.; Fenollosa, C.; Cicin-Sain, D.; Orozco, M.; Lluis Gelpi, J.,

MDWeb and MDMoby: An Integrated Web-Based Platform for Molecular Dynamics

Simulations. Bioinformatics 2012, 28, 1278-1279.

75. Hospital, A.; Faustino, I.; Collepardo-Guevara, R.; Gonzalez, C.; Gelpi, J. L.;

Orozco, M., NAFlex: A Web Server for the Study of Nucleic Acid Flexibility. Nucleic

Acids Res. 2013, 41, W47-55.

76. Vohra, S.; Hall, B. A.; Holdbrook, D. A.; Khalid, S.; Biggin, P. C., Bookshelf: A

Simple Curation System for the Storage of Biomolecular Simulation Data. Database: the

Journal of Biological Databases and Curation 2010.

CHAPTER 3

DATA MODEL, DICTIONARIES, AND DESIDERATA

FOR BIOMOLECULAR SIMULATION DATA

INDEXING AND SHARING1

Abstract

Background

Few environments have been developed or deployed to widely share biomolecular

simulation data or to enable collaborative networks to facilitate data exploration and

reuse. As the amount and complexity of data generated by these simulations are

dramatically increasing and the methods are being more widely applied, the need for new

tools to manage and share these data has become obvious. In this paper we present the

results of a process aimed at assessing the needs of the community for data representation

standards to guide the implementation of future repositories for biomolecular simulations.

Results

We introduce a list of common data elements, inspired by previous work, and

updated according to feedback from the community collected through a survey and

1 Reprinted with permission from Thibault, J. C., Roe, D. R., Facelli, J. C., & Cheatham, T. E. (2014). Data

model, dictionaries, and desiderata for biomolecular simulation data indexing and sharing. Journal of

Cheminformatics, 6(1), 4.

26

personal interviews. These data elements integrate the concepts for multiple types of

computational methods, including quantum chemistry and molecular dynamics. The

identified core data elements were organized into a logical model to guide the design of

new databases and application programming interfaces. Finally a set of dictionaries was

implemented to be used via SQL queries or locally via a Java API built upon the Apache

Lucene text-search engine.

Conclusions

The model and its associated dictionaries provide a simple yet rich representation

of the concepts related to biomolecular simulations, which should guide future

developments of repositories and more complex terminologies and ontologies. The model

still remains extensible through the decomposition of virtual experiments into tasks and

parameter sets, and via the use of extended attributes. The benefits of a common logical

model for biomolecular simulations was illustrated through various use cases, including

data storage, indexing, and presentation. All the models and dictionaries introduced in

this paper are available for download at

http://ibiomes.chpc.utah.edu/mediawiki/index.php/Downloads.

Background

Introduction

Thanks to a dramatic increase in computational power, the field of biomolecular

simulation has been able to generate more and more data. While the use of quantum

mechanics (QM) is still limited to the modelling of small biomolecules1 composed of less

than a couple hundred of atoms, atomistic or coarser-grain molecular representations

http://ibiomes.chpc.utah.edu/mediawiki/index.php/Downloads

27

have allowed researchers to simulate large biomolecular systems (i.e., with hundreds of

thousands of atoms) on time scales that are biologically significant (e.g., millisecond for

protein folding).2 Classical molecular dynamics (MD) and hybrid approaches such as

quantum mechanics/molecular mechanics (QM/MM) are some of the most popular

methods to simulate biomolecular systems. With the explosion of data created by these

simulations — generating terabytes of atomistic trajectories — it is increasingly more

difficult for researchers to manage their data. Moreover results of these simulations are

now becoming of interest to bench scientists to aid in the interpretation of increasingly

complex experiments and to other simulators for assessing force fields and to develop

coarse-grain models. Opening these large data sources to the community, or at least

within collaborative networks, will facilitate the comparison of results to detect and

correct issues with the methods, identify biologically relevant patterns or anomalies, and

provide insight for new experiments. While the Protein Data Bank3 is very useful as a

central repository for structural data, the number of repositories for biomolecular

simulations is still very limited. To the best of our knowledge the only databases that

currently provide access to MD data for the community are Dynameomics4, 5 and MoDEL

(Molecular Dynamics Extended Library6). Dynameomics and MoDEL were populated

with about 11,000 and 17,000 MD trajectories of proteins, respectively. One of the

problems with such repositories is that the published data were generated in a specialized

environment to study a given biological process (e.g., protein folding), resulting in fairly

homogeneous data compared to the range of methods and software available to the

community. These repositories are somewhat tied to these environments and it is

uncertain how one would publish data generated outside these environments or how

28

external systems would index or interface with these repositories. As more repositories

are created the need for a common representation of the data becomes crucial to achieve

semantic interoperability and enable the development of federated querying tools and

scientific gateways. Note that other efforts to build repositories and scientific gateways,

such as the BioSimGrid project7 and work by Terstyanszky et al.,8 have been undertaken

but so far none has been widely adopted outside their original deploying institution or

organization.

In the computational quantum chemistry community, more progress has been

achieved towards the development of repositories using standard data representations to

enable collaborative networks. One of the main on-going efforts is led by the Quixote

project9 which aims to create a federated infrastructure for quantum chemistry

calculations where data is represented with CML CompChem (Chemical Markup

Language – Computational chemistry10) and integrated into the semantic web through

RDF (Resource Description Framework, http://www.w3.org/RDF/). The Chemical

Markup Language11 (CML) and its computational component CML-CompChem aim to

provide a standard representation of computational chemistry data. While the core CML

XML specifies the requirements to represent molecular system topologies and properties,

CML-CompChem supplements CML to allow the representation of computational

chemistry data, including input parameters and output data (calculations). So far these

extensions have mainly focused on representing quantum computational chemistry

experiments as XML files. These files can be created by converting input and/or output

files generated by a particular software package through file parsers such as the ones

supported by the Blue Obelisk group12 (e.g., Chemistry Development Kit, Open Babel).

29

While CML-CompChem has a great potential for QM calculations,13 its usefulness for

MD and biomolecular simulations in general might be limited. For example, typically

trajectories of atomic positions need to be compressed or binary encoded for data

movement, storage purposes, and/or accuracy. Embedding this information into a verbose

XML file such as CML will not be the optimal solution, at least not for the description

and formatting of the raw output. Another obstacle to the conversion of MD experiments

to a single-file representation is the common definition of many separate input files (e.g.,

system topology, method parameters, force field) necessary to prepare an MD simulation

and define the different iteration cycles (e.g., minimization, equilibration, production

MD). In quantum chemistry, the targeted molecules and calculation parameters are

typically defined in a single input file (e.g., “.com” file for Gaussian14 and “.nw” file for

NWChem15) which makes this conversion much simpler. The output files generated by

quantum chemistry software packages usually already contain the final results the user is

interested in while in MD the raw output, i.e., multiple files containing the trajectories of

atomic positions, energies and other output information, has to be further processed

through various analysis tasks to create meaningful information. These postprocessing

steps involve the creation of new input and output files, making the conversion of an

experiment to a single XML file even more difficult.

Perhaps one of the main barriers to build repositories for biomolecular

simulations is the lack of standard models to represent these simulations. To the authors’

knowledge no published study has assessed the needs of the community regarding

biomolecular simulation repository data models. Therefore it is unclear which pieces of

30

information are considered essential by researchers and how they should be organized in

a computable manner, so that users can:

 Index their data and build structured queries to find simulations or calculations of

interest, not only via the annotations, but also with access to the raw data (files).

 Summarize, present, and visualize simulation data either through a web portal or

more static documents (e.g., PDF document, XML file).

These models should be designed to include not only the description of the

various independent computational tasks performed but also a high-level description of

the overall simulated experiment. Each experiment can be related to multiple concepts

that help understanding what was simulated, how, and in which context. These concepts

can be grouped into the following categories:

 Authorship: information about the author, grants and publications related to the

experiment

 Methods: computational method description (e.g., model building, equilibration

procedure, production runs, enhanced sampling methodology) and associated

inputs / parameters

 Molecular system: description of the simulated molecules from a structural,

chemical, and biological point of view

 Computational platform: description of the software used to run the

computational tasks, the host machine (computational environment), and

execution configuration

 Analysis: derived data that can be used for quality assessment of the simulations

31

 Files: information about the raw simulation input and output files, such as format,

size, location, and hosting file system

In this study we describe our efforts to formalize the needs of the community

regarding the elements necessary to index simulation data. This work was initiated in part

to support the iBIOMES (Integrated BIOMolEcular Simulations) project16, an effort to

create a searchable repository for biomolecular simulations, where the raw data (input

and output files) is made available so that researchers can rerun the simulations or

calculations, or reuse the output to perform their own analysis. In the initial prototype a

set of software-specific file parsers were developed to automatically extract common data

elements (metadata) and publish the raw data (i.e., the input and output files) to a

distributed file system using iRODS17 (integrated Rule-Oriented Data System). The

published files and collection of files (experiments) are indexed based on the extracted

data elements and are stored as attribute-value-unit triplets in a relational database. In this

paper we introduce a list of common data elements and a data model that will help

iBIOMES and future biomolecular simulation data repository developments move

towards semantic interoperability.

Motivation for a common data representation: examples

The development of a common framework for data representation provides users

with a large amount of flexibility to develop new tools for managing the data while

maintaining interoperability with external resources. In this section we present three

different examples that demonstrate the need for a standard representation of

biomolecular simulation data, whether it is for indexing or presentation to the user. All

32

three examples have been implemented to some extent in prototype form here. The first

example is based on our experience with iBIOMES,16 where simulation-specific metadata

are associated at the file or directory level, through a specialized file system (iRODS17).

The second example shows how one would use a model-based approach to build a

repository where simulation parameters and provenance metadata are stored in a

relational database. Finally the last example illustrates how a model-based API

(Application Programming Interface) can be used to automatically generate XML and

HTML summaries for the simulations being published.

Example 1: building a repository based on file annotations

One of the simplest ways to index simulations is to tag the associated files and

directories with user annotations summarizing their content. These tags can be simply

stored in a database or indexed via dedicated systems such as MapReduce18, 19 or Apache

Lucene.20 This approach is well suited for fast searches based on keywords or attribute-

value pairs. In the iBIOMES system16 these tags are managed by the iRODS

framework,17
 which enables the assignment of attribute-value-unit triplets to each file and

directory in a distributed file system. This approach is very flexible since it allows the use

of tags that represent common concepts such as computational methods and biological

features, and user- or lab-specific attributes as well. In iBIOMES, a catalogue of common

attributes was defined for users to annotate their data. The definition of such attributes is

important as they can be tied to actionable processes, such as analyses, visualizations, and

ultimately more complex workflows. It is then possible to build a user interface that

presents the data and performs certain actions based on the existence of certain attributes

33

or their associated values. For example if the format of a file is PDB (File format =

“PDB”), then the user interface could enable 3D rendering of the associated molecules

through Jmol.21 A data dictionary that would offer possible values for a particular

attribute is important as well. Each term should be well defined to leave no ambiguity to

the user. A dictionary of force fields, for example, could list all the common force fields

with a textual description, a type (e.g., classical, polarizable, coarse-grained), and the

associated citations for each entry. A catalogue of common data elements, associated to a

data dictionary, is also useful for users to pick from to facilitate annotations and build

queries. The catalogue used in iBIOMES was defined internally by our lab and probably

is not yet sufficiently exhaustive for the community at large. However, creating a

catalogue of common data elements (CDE) supported by the community is a first step

towards the standardization of biomolecular simulation data description. Defining a

subset as recommended (i.e., the core data elements) would go a step further and set a

criterion to assess the quality of the data publication process. Finally, linking these CDEs

to existing terminologies or ontologies would bring semantic meaning to the annotations,

enabling data discovery and query via external systems.

Example 2: building a repository based on a relational database

While a CDE catalogue is important, it lacks the representation of relationships

between elements unless it is linked to a well-structured taxonomy. For example, if a user

is interested in simulations of nucleic acids, a hierarchical representation of biomolecules

could be used to infer that the user is actually looking for any simulation of DNA or

RNA. The aim of a logical data model is to give a representation of the domain that

34

captures the business needs and constraints while being independent from any

implementation concern.22 Such a model can provide the foundations for the design of a

database and can be used to automatically generate API skeletons using modern

modelling tools (e.g., Enterprise Architect, ArgoUML, Visual Paradigm). Since it is a

domain-specific representation of the data, it can also serve as a starting point to develop

a terminology or ontology specific to this domain. In this second example we

demonstrate how a data model could be used to prototype a repository for biomolecular

simulations where simulation parameters and provenance metadata are organized and

stored in a relational database. We created a UML (Unified Modeling Language,

http://www.uml.org/) model including logical and physical entities to build a relational

database that could eventually be wrapped as a Grid service. The Grid23 represents a great

infrastructure for collaboration because of the underlying authentication scheme and data

discovery services available, but also because of the semantic and syntactic integration.

For this example we decided to mock up a data grid service using the caGrid24

framework. caGrid was supported by the National Cancer Institute (NCI) and aimed to

create a collaborative network for researchers to share cancer data, including

experimental and computational data. The caCORE (cancer Common Ontologic

Representation Environment) tools that were developed in this context facilitate the

creation of the grid interfaces by automatically generating the necessary Java code from a

UML model. These tools are now maintained by the National Cancer Informatics

Program (NCIP) and available at: https://github.com/NCIP/. For this example we mapped

the logical model to a data model using the caAdapter graphical tool. The final UML

model and database creation scripts for MySQL (http://www.mysql.com/) are available

35

for download at: http://ibiomes.chpc.utah.edu/mediawiki/index.php/Downloads. More

details about the UML model are provided in the section introducing the logical data

model. The caCORE SDK (Software Development Kit) was then used to generate the

Hibernate (http://www.hibernate.org/) interfaces to the database along with a web

interface that can be used to create simple queries or browse the published data. A

screenshot of the generated interface is given in Figure 3.1 (listing of various published

computational tasks). To actually build and deploy the data service onto a Grid, one

would have to use the Introduce module. Semantic integration is also possible via the

Semantic Integration Workbench (SIW), which enables tagging of the domain model with

concepts from standard terminologies (e.g., ChEBI, Gene Ontology).

Example 3: representing experiments using XML

While a database provides a single endpoint to query data, other types of data

descriptors become necessary when moving data between file systems, or simply to

provide a light-weight description of the data. XML has been widely adopted by the

scientific community to represent structured data because of its flexibility and support by

web technologies. In the field of computational chemistry CML-CompChem10 aims to

provide a detailed representation of computations but currently lacks support in the

molecular dynamics community. BioSimML25 (Biomolecular Simulation Markup

Language) was developed specifically for biomolecular modelling and supports QM/MM

simulation representations but its current status is uncertain. The Unified Molecular

Modeling (UMM) XML schema26 is currently being developed by ScalaLife (Scalable

Software for Life Sciences, http://www.scalalife.eu/) and will attempt to provide a

36

detailed description of MD runs, so that these files can be used as a standard input to run

within various MD engines. So far these XML-based formats have focused on giving a

low-level representation of the simulation runs so that data can be converted between

legacy formats. In this example we generate an XML-based representation of the

experiment as a whole (multiple tasks), with a limited granularity for the description of

each task. For this purpose we developed a Java API based on our logical model to

generate XML representations of experiments (Figure 3.2). Format-specific file parsers

developed for the iBIOMES project16 read in input and output files associated to an

experiment to create an internal representation of the experiment and associated

computational tasks. In the Java code, classes are annotated with Java Architecture for

XML Binding (JAXB, https://jaxb.java.net/) annotations to map the logical model to an

XML schema. The JAXB API can then be used to automatically output XML documents

based on the internal Java representation of the experiment or read in an XML file to

build the Java objects. The same process could be implemented in various languages,

using CodeSynthesis XSD (http://www.codesynthesis.com/products/xsd/) in C++ or

PyXB (http://pyxb.sourceforge.net/) in Python for example.

The XML output does not aim to be sufficient to recreate input or output files in

legacy formats but it will provide enough information for users to rapidly understand the

computational methods and structures represented by the associated raw data. This type

of XML document can be used as a way to give a detailed summary of experiments when

exchanging data, compressed with the raw data for example. These documents can be

transformed through XSLT (eXtensible Stylesheet Language Transformations) to be

rendered as HTML pages and build repository web interfaces. A sample XML output

37

along with an HTML-based tree view generated through XSLT are presented in Figure

3.3. For this example a set of AMBER-specific27 file parsers was used to parse a directory

containing all the input and output files associated to an MD study of RNA. Common

data elements related to the molecular system topology were extracted from the AMBER

parameter/topology file while task (minimization and MD runs), parameter set (e.g.,

implicit solvent, number of iterations), and computational platform information were

extracted from the AMBER MD output files.

Summary

These three prototypes serve as examples demonstrating the need for a catalogue

of CDEs and the representation of relationships between concepts through a data model.

The catalogue of CDEs, associated to a data dictionary, provides the basis for a controlled

vocabulary that can be used to annotate experiment data (e.g., files and directories) and

build queries. The data model provides extra information as it links concepts together and

allows more complex and structured queries, through a relational database, for example.

The second example showed how modern software engineering tools can use data models

to generate database schemas and APIs for repository developments. Finally the last

example showed that XML representations can be easily generated if the API follows a

model-based approach.

In this paper we introduce a list of CDEs built upon community feedback, and a

logical model that ties dictionaries and common data elements together. Common data

elements for simulation data indexing and presentation were identified through a survey,

while recommendations are made for trajectory and analysis data description. The

38

common data elements were organized through a logical data model, which was refined

to include dictionaries and minimize data redundancy. Finally the design and

implementation for a subset of these dictionaries are introduced.

Experimental

Identification of core data elements

Survey

A survey was distributed to the community to assess the list of data elements that

was defined in iBIOMES16. This initial list of common data elements was based on the

BioSimGrid7 data model and supplemented with new elements to reflect the needs of our

lab and various collaborators at the University of Utah, and to add descriptions of

quantum chemistry calculations. The main goal of the survey was to identify which

elements were missing and which ones were not so important according to the

community. A list of 47 data elements describing simulation runs and the associated files

was presented to experts. These data elements were grouped into 6 categories for

organizational purpose: authorship (user information and referenced citations related to a

particular run), platform (hardware/software), molecular system (molecules being

studied, independently from the model chosen), molecules (info about the molecules

composing the system), methods (can apply to any method, including QM and MD),

molecular dynamics, and quantum mechanics. The experts were asked to score the data

elements based on how important they are to them to describe their own data and/or to

index community data and build search queries. Scoring was based on a Likert scale (1 =

“Not important at all”, 2 = “Not very important”, 3 = “Not sure”, 4 = “Important”, 5 =

39

“Very important”, and “N/A” for nonapplicable). In each group, the experts were also

allowed to propose missing data elements and/or comment on the listed elements.

The survey was made available online (see extract in Appendix A) in March 2012

for about a month and promoted through the Computational Chemistry List (CCL) and

the AMBER developers’ mailing list. The CCL list is a fairly well known group for

general discussions related to computational chemistry, perhaps with an emphasis on

QM-related methods. The AMBER developers group represents a variety of theoretical

disciplines (MD, QM, QM/MM), with developments targeting various types of systems

(e.g., proteins, nucleic acids, lipids, carbohydrates, small compounds) and discussions on

how to best use the software, methods and force fields. Individual emails were also sent

to different research groups at the University of Utah that are specialized in

computational chemistry.

Trajectory and analysis data

The survey did not include any analysis- or file-related data elements. The Dublin

Core metadata (http://dublincore.org/documents/dces/) can be used as a good reference to

describe files at a high level (e.g., author, format). Analysis data on the other hand is very

complex to describe because of its direct relation to the raw data it derives from (e.g., use

of multiple input files representing experimental and computed data) and the existence of

numerous analysis methods that can be problem-specific (e.g., Protein vs. RNA, QM vs.

MD). In most cases it will not make sense to use analysis data to index an experiment

either. For example looking for MD trajectories with a particular RMSD (root mean

square deviation) value would be irrelevant without providing more context about the

40

system and the method used to calculate the value. Although analysis data is a key factor

to assess the quality of a simulation, its use for data indexing and retrieval is not trivial

and therefore was not included in the survey. A generic framework for the description of

trajectory and derived data is nevertheless provided in the Results section.

Logical model

Overview

The logical model presented here was derived from a conceptual model that

organized all the identified common data elements into a defined domain. The conceptual

model was reduced into a logical model with the assumption that the raw input and

output files are made available (in a repository similar to iBIOMES or MoDEL) and that

the model would be used to index the data rather than providing a complete view of the

results (e.g., calculation output, structures defined in each MD trajectory frame).

Although analysis data and quality criteria are crucial to provide an objective perspective

on experiment results, no associated concept was included in the current model. The

granularity of the model was limited to a sufficient level of details that makes it

computable. For example, the description of the theory behind modelling methods is not

part of the model. The end-goal being to share the results of the simulations or

calculations with the community, we limited our model to include only popular methods

that are used for the study of biomolecules or smaller ligands.

41

Use of dictionaries

One of the main features of this logical model is the integration of dictionaries to

avoid data redundancy. For example a dictionary containing definitions of force fields

(e.g., name, type, citations) can be referenced by molecular dynamics tasks, instead of

creating individual force field definition entries every time the force field is used. The

integration of dictionaries into the model should not enforce mappings to standard

definitions but rather enable links between specific values and standard definitions only if

they exist. If no mapping exists the user should still be able to publish the data. This is

achieved through the storage of “specific names” outside the dictionaries with an optional

reference to the term definition, where the standard version of the name (not necessarily

different) is defined. For example if the basis set “LANL2DZ” is used in a QM

calculation, but no corresponding entry exists in the basis set dictionary, the name of the

basis set will still be stored in the database when publishing the data to allow queries on

the calculation.

Units

Certain attributes need to be associated to a unit to be understood by a human or a

computer. Different software packages might use different units to represent the same

attribute. For example, distances in AMBER27 are measured in Ångströms while

GROMACS28 uses nanometres. When publishing data to a repository one should either

convert the values using units previously agreed upon or make sure that the units are

published along with the values. In both cases, mechanisms should be in place to provide

a description of the units when pulling data from the repository. For the description of

42

this model we assume that the units are already set in the repository. Therefore they are

not included in the description of the model.

Dictionaries

While most of the data described in a logical model for biomolecular simulations

can be directly parsed from the input and output files, dictionaries containing standard

definitions and values for certain data elements need to be prepopulated. In this paper we

present the design and implementation of several dictionaries that can be used to facilitate

data publication and queries. For example, if a user is interested in QM calculations based

on Configuration Interaction (CI) theory, a dictionary of all CI methods will be needed to

return all the calculations of interest (e.g., CISD, CISD(T)). Another interesting use of

these dictionaries is within the code of the file parsers. Instead of defining standard

values within the code, one can use these dictionaries to look up information on the fly,

and possibly use it to publish the data into the target repository.

An initial set of dictionaries was populated using the BiosimGrid7 database

dictionaries (source code available at: http://sourceforge.net/projects/biosimgrid/). They

were then refined internally and supplemented with new dictionaries, especially to

include QM-related definitions (e.g., basis sets, QM methods).

Results

Identification of core data elements

Survey

At the closing of the survey we were able to collect 39 responses (20 through

CCL, 10 through the AMBER developers list, and 9 through emails). The results of the

43

survey are presented in Appendix A. The respondents listed a few data elements they felt

were missing from the proposed list or that needed to be refined (see comments in

Appendix A). For instance, in the authorship category, a data element representing

research grants was missing. For the representation of the molecular system, data

elements representing important functional groups of the solute molecules should be

added, along with, optionally, the apparent pH of the solvent. Adjustments should also be

made to distinguish the different species in the system and flag them as part of the solvent

or the solute. For the computing environment information, a respondent showed interest

in knowing whether the software package is compiled in single, double, or mixed

precision, what the memory requirements are for a run, and even what parallelization

scheme is used. All these elements are very technical and might interest only a very

limited number of users, even in the developer’s community. The notion of hardware

architecture was not clearly defined in the survey since it should have already included

the use of GPU (see comment in Appendix A). A better representation of the hardware

architecture can be done through three different data elements: the CPU architecture (e.g.,

x86, PowerPC), the GPU or accelerator architecture (e.g., Nvidia GeForce GTX 780,

AMD Radeon HD 7970, Intel PHI), and possibly a machine or supercomputer

architecture identification (e.g., Cray XK7, IBM Blue Gene/Q, commodity Infiniband

cluster, etc.) and name (stampede.tacc.utexas.edu, h2ologin.ncsa.illinois.edu,

keeneland.gatech.xsede.org, etc.). For the computational methods, data elements were

missing for the representation of both MD and QM-specific parameters. In QM, the

following elements were missing: exchange-correlation functionals (for DFT),

pseudopotentials and plane wave cut-offs, and whether frozen core calculations are

44

performed or not. Some comments pointed out the fact that the notion of convergence can

be very subjective, especially when dealing with MD trajectories where multiple minima

(conformations) can be found over time (see comments in Appendix A). The convergence

flag and criteria were assigned as QM-specific data elements to reflect this. For MD, the

context of the run (i.e., whether it is a minimization, an equilibration, or a production run)

was missing. Representations of restraints and advanced sampling methods (e.g., replica-

exchange, umbrella sampling) were also missing. More detailed properties were listed by

the respondents. These included the order of expansion for LINCS-based constraints and

the order of interpolation for Particle-Mesh Ewald. At this point it is not clear if such

parameters need to be tracked since users would hardly use these to create queries and we

assume that they can be directly read from the raw input files if necessary.

Based on the results of the survey and the various comments of the community we

propose a set of common data elements for biomolecular simulation data indexing, listed

in Appendix A. The identified elements were reorganized by making a distinction

between data elements (concepts) and attributes (properties). For example the barostat

data element has at least one property: an implementation name (e.g., Andersen,

Berendsen). Depending on the type of barostat other properties could include a time

constant and a chain length (e.g., Nose-Hoover barostat). We also included “derived”

properties that would be inferred from other properties if the right terminology or

dictionary is available. For example, the name of a QM method (e.g., MP2, B3LYP)

should be enough to infer the level of theory (e.g., Møller-Plesset, DFT), and the name of

the force field (e.g., AMBER FF99SB) should be sufficient to infer its type (e.g.,

classical). This distinction is important as it can help the developers choose which

45

properties should be actually stored (e.g., in a database or an XML file) and which ones

could be inferred. The set also contains recommended and optional data

elements/attributes. An attribute is marked as recommended if its average score (i.e., the

sum of Likert scale scores divided by the number of responses for that element) is greater

than 4.0 (“Important”). Otherwise it is marked as optional. Attributes proposed by the

respondents were categorized through an internal review performed by our lab, composed

of researchers running molecular dynamics simulations and quantum chemistry

calculations on a daily basis. A data element is considered recommended if it has at least

one recommended attribute. The current list contains 32 data elements and 72 attributes

(including 30 recommended attributes).

We recognize that the process by which the data elements were defined and

characterized is not perfect. Although the number of respondents was fair (between 37

and 39 depending on the data element), certain data elements had to be added or

redefined based on an internal review by some of our lab members, which might have

created some bias towards the needs of our lab rather than a general consensus in the

community. Despite these limitations the list of data elements proposed here may be

considered the first attempt to summarize the needs of the computational chemistry

community to enable biomolecular simulation data indexing and queries. This list should

be a good starting point to create a list of standard metadata to tag files using simple

attribute-value pairs or attribute-value-unit triplets, as is the case for iBIOMES via the

iRODS metadata catalogue.17 Although this list is fairly exhaustive, it is not complete and

we hope that by publishing it the community will be able to provide more feedback and

build on it, with the intent of this data model being extensible. The list is available on the

46

iBIOMES Wiki at: http://ibiomes.chpc.utah.edu/mediawiki/index.php/Data_elements.

Field experts who want to contribute to the list can request an account on the wiki.

Trajectory files

In most MD software packages the computed trajectories of atomic coordinates

are stored in large files (~MB-TB) with each containing one or multiple time frames (e.g.,

PDB, AMBER NetCDF, DCD). This is the raw data that repositories would actually store

and index for retrieval. Until now we have been focusing on the description of the

computational tasks that were used to generate these data, i.e., the provenance metadata.

These metadata can be used to find a given experiment and all associated trajectory files.

On the other hand new attributes need to be assigned at the trajectory file level to

describe their content and ultimately enable automatic data extraction and processing by

external tools (e.g., VMD,29 CPPTRAJ,30 MDAnalysis31). Such attributes include the

number of time frames, time between frames, number of atoms in the system and/or

reference to the associated topology file, presence or absence of box coordinates, velocity

information, and so on. It is important to note that the use of self-descriptive formats such

as NetCDF (http://www.unidata.ucar.edu/software/netcdf/) would allow trajectory files to

carry not only the description of the dataset, but also the provenance metadata, for

example using the CDEs previously defined. Perhaps one of the most important attributes

to give context within a full experiment is the index of a trajectory file within the set of

all trajectory files representing a given task or series of tasks. Although self-descriptive

formats could easily keep track of this information, it is nontrivial to generate such an

index as tasks can be run independently outside of a managed workflow such as

47

MDWeb,32 which would be able to assign these indexes at file creation time. The order of

trajectory files is therefore commonly inferred from their names (e.g., “1.traj, 2.traj,

3.traj”). This approach usually works well although some errors might occur when trying

to automate this ordering process. For example “10.traj” would be ranked before “2.traj”

if a straight string comparison is performed (vs. “02.traj”). Strict naming conventions for

trajectory data (raw, averaged, and filtered on space or time) should help circumvent

these problems.

Analysis data

Although some analysis tasks are common to most biomolecular systems for a

particular method (e.g., RMSD calculations of each frame in the trajectory to a reference

structure) the number of analysis calculations one can perform is virtually infinite. There

is currently no standard to describe the output of the analysis. Some formats might enable

the description of the values (e.g., simple CSV or tab-delimited file with labelled columns

and/or rows) but more structured files are required to describe the actual analysis process

that generated the set of values contained in the file. Formats such as NetCDF are adapted

to store this kind of description but are not commonly used to store biomolecular

simulation analysis data. Instead comma- or tab-delimited files formats are usually

preferred for their simplicity, readability, and support by popular plotting tools (e.g., MS

Excel, OpenOffice, XmGrace). Assuming that the dataset is physically stored in such a

file or in a relational database, a minimal set of attributes should be defined to facilitate

reproduction of the analysis, as well as enable reading and loading into visualization tools

with minimal user input. We believe that the strategy used in the NetCDF framework to

48

break down data into variables with associated dimensions is a simple and logical one,

and so we follow a similar strategy here:

 Data dimensions: Defines dimension sizes for defined data sets (i.e., variables).

Any number of dimensions (including zero if data are scalar) can be defined.

 Data variables: The actual data. Report type (e.g., integer, float), labels, and units

for all the values contained in a given set. One or more dimensions can be

associated with a given variable based on its overall dimensionality. Zero

dimensions correspond to a single value (e.g., average RMSD value), one

dimension is an array (e.g., RMSD time series), two dimensions are a matrix (e.g.,

coordinate covariance), etc.

Another set of attributes need to be defined to represent the provenance metadata,

i.e., how the analysis data were derived from the raw trajectories. Although different

analysis tasks will require different input data types and parameters, a list of common

attributes can be defined to provide a high-level description of the analysis task:

 Name (e.g., “RMSD”) and description (“Root mean square deviation calculation”)

of analysis method (see entries defined in our MD analysis method dictionary)

 Path to the input file describing the task (if applicable)

 Name and version of the program used, along with the actual command executed

 Execution timestamp

 Reference system, if any (self, experimental, or other simulated structure)

While these attributes might not be sufficient to automatically replicate the results

they should provide enough information for users other than the publisher to understand

how the analysis data were generated and how the analysis task can be replicated.

49

A further set of attributes can be defined to provide additional details on the scope

of the analysis and describe in detail the data from which the current data have been

derived:

 File dependencies

 Filter on time

 Filter on space (e.g., heavy atoms only, specific residue)

These would facilitate maximum reproducibility as well as enable detailed

searches on very specific types of analysis. The ‘File dependencies’ attribute may include

information like the trajectory used in a given calculation, which could also be used to

check if the current analysis is up-to-date (e.g., if the trajectory file is newer than the

analysis data, the analysis can be flagged as needing to be updated). The ‘Filter on time’

attribute might describe a specific time window or subset of frames used in the analysis.

Since these attributes are perhaps not as straightforward for analysis programs to report

as the other attributes, they could be considered optional and/or set by the user after the

data are published. The ‘Filter on space’ attribute could be particularly useful, since it

would allow one for example to search for all analyses of a particular system done using

only protein backbone atoms or only heavy atoms, etc. However, this would require

translation of each individual analysis program’s atom selection syntax to some common

representation, which is no small task and would increase the size of the metadata

dramatically for certain atom selections. In many cases it is likely that the atoms used in

the analysis could be inferred from the command used, so this attribute could also be

considered optional. Two examples of how these attributes might be applied to common

analysis data are given in Appendix B.

50

Logical model

Overview

In this model the central concept is the virtual experiment, a set of dependent

computational tasks represented by several input and output files. The goal of this model

is to help create a common description of these virtual experiments (stored in a database

or distributed file system for example) for indexing and retrieval. The overall

organization of virtual experiments is illustrated in Figure 3.4. For the rest of this paper

virtual experiments will be simply denoted as experiments. The organization of an

experiment as a list of processes and tasks was inspired by the CML-CompChem10

schema. In CML-CompChem the job concept represents a computer simulation task and

can be included into a series of consecutive subtasks designated as a job list. The

concepts of experiment, process group, process, and task are introduced here to handle

the representation of tasks that might be run in parallel or sequentially, and that might

target the same or different systems. An experiment process group is defined as a set of

computational processes targeting the same molecular system, where a process is defined

as a set of similar tasks (e.g., minimization tasks, MD tasks, QM tasks). In MD, the

minimization-heating-production steps can be considered as a single process group with 3

different process instances. If multiple copies of the system are simulated, each copy will

be considered a separate process group. In QM, a process would represent a set of

sequential calculations on a compound. If various parts of the overall system are studied

separately (e.g., ligand vs. receptor), each subsystem should be assigned to a different

process group.

51

Within the scope of an experiment, multiple tasks and group of tasks will be

created sequentially or in parallel, and based on intermediate results. To keep track of this

workflow, dependence relationships (dependencies) can be created between tasks,

between processes, and between process groups.

Notations

In the following sections we present the overall organization of the model through

an object-oriented approach where the concepts (e.g., experiments, tasks, parameter sets,

and molecular systems) are represented by classes with attributes. The description is

supported by several class diagrams using the UML notation. For example inheritance is

characterized through a solid arrow with an unfilled head going from the child to the

parent class. Along with standard UML notations, we defined the following colour

scheme to guide the reader:

 Blue: classes giving a high-level description of the experiments and tasks

 Yellow/orange: method/parameter description

 Green: classes describing the molecular system independently from the

computational methods

 Pink: classes related to authorship and publication (e.g., citations, grants)

 Grey: description of the hardware or software used to run the tasks

Finally, classes representing candidates for dictionary entries are marked with

wider borders.

52

Experiments, processes, and tasks

Figure 3.5 presents the concepts that can be used to describe the context of an

experiment. Each experiment can be given a role, i.e., the general rationale behind the

experiment. Examples of experiment roles include simulation (dynamics), geometry

optimization, and docking. These roles should not be associated to any computational

method in particular. Each experiment can be linked to a particular author (including

institution, and contact information) to allow collaborations between researchers with

common interests. Publications related to a particular experiment (citations) or that use

the results of the experiments can be referenced. Grant information is important as well

since it allows researchers to keep track of what their funding actually supports.

Experiment sets (Figure 3.2) are collections of independent experiments that are

logically associated together, because of similar context (e.g., study of the same system

using different methods) or simply for presentation purpose or to ease retrieval by users

(e.g., all the experiments created by a certain working group). An experiment can be

assigned to multiple experiment sets.

An experiment task corresponds to a unique computational task defined in an

input file. Figure 3.6 presents the main concepts associated to experiment tasks. These

include the definition of the actual calculation (e.g., frequency calculation and/or

geometry optimization in QM, whether the dynamics of the system are simulated), the

description of the simulated conditions (reference pressure and temperature), and the

definition of the method (e.g., QM, MD, minimization) and input parameters (e.g., basis

set, force field). More details about the different types of tasks and simulation parameters

are given in the computational method section. Each task is executed within a computing

53

environment, i.e., the set of hardware and software components used to run the

simulation software package. These components include the operating system, the

processor architecture, and the machine/domain name. Information about the task

execution within the computing environment, including execution time, start and end

timestamps, and termination status can be tracked as well. The software information

includes name (e.g., “AMBER”) and version (“12”). In certain cases a more specific

name for the executable is available. This can provide extra information about the

compilation step and/or the features available. In Gaussian,14 for example, this

information can be found in the output files: “Gaussian 09” would give a generic version

of the software package while “EM64L-G09RevC.01” would give the actual revision

number (“C.01”) and the target architecture of the executable (e.g., Intel EM64). For

AMBER, the executable name would be either “SANDER” (Simulated Annealing with

NMR-Derived Energy Restraints) or “PMEMD” (Particle-Mesh Ewald Molecular

Dynamics), which are two alternatives to run MD tasks within the software package.

Computational methods

The most common methods for biomolecules include QM, MD, and hybrid

QM/MM. In this model we focus on these methods but we allow the addition of other

methods by associating each task to one or multiple parameter sets that can be combined

to create new hybrid approaches. This decomposition was applied to MD, minimizations

(e.g., steepest descent, conjugate gradient), QM, and QM/MM methods as illustrated in

Figure 3.7.

54

Common attributes of any computational method are represented at the

ExperimentTask level. These include names (e.g., “Molecular dynamics”), description

(e.g., “new unknown method”), types of boundary conditions (periodic or not), and the

type of solvent (in vacuo, implicit, or explicit). Method-specific tasks (MinimizationTask,

MDTask, QMTask, QMMMTask) are created to capture the parameters that would not be

shared between all methods. Simulation parameters include any parameter related to the

method or task that would be set before a simulation is run. These parameters are

aggregated into sets that can be reused between methods. For example, the MD-specific

task (MDTask) references MDParameterSet, which includes the definitions of the

barostat, thermostat and force fields. The QM/MM-specific task (QMMMTask)

references the same parameter set since these definitions are necessary to describe the

computational method to treat the MM region. It also references a QM-specific parameter

set to describe the QM method and a QM/MM-specific parameter set to describe the

treatment of the QM/MM boundary. A new task type could be created for multilevel

quantum calculations. In this case the task would reference multiple QM parameter sets

and a new type of parameter sets that would define at least the algorithm or

implementation used to integrate the different levels (e.g., ONIOM33).

In molecular dynamics, the behaviour of the simulated system is governed by a

force field: a parameterized mathematical function describing the potential energy of the

system, and the parameters of the function, with dynamics propagated using Newton’s

equations of motion and the atomic forces determined from the forces or first derivatives

of the potential energy function. Different parameters will be used for different types of

atoms (or group of atoms in the type of coarse grain dynamics). A given force field

55

parameter set is usually adapted to particular types of residues in molecules (e.g.,

nucleobases in nucleic acids vs. amino acids in proteins). For a single molecular

dynamics task multiple force fields and parameter sets can be used simultaneously. When

simulating an explicit water-based solvent for example, the specific force field parameter

set used to represent these water molecules (e.g., TIP3P, TIP4P, SPC/E34) will typically

be different from the set used to parameterize the atoms of the solute or the ions. The

ForceField class presented in Figure 3.8 represents instances of force fields referenced by

a particular run while ForceFieldDefinition represents an entry from the dictionary listing

known force fields. Force field types include classical, polarizable, and reactive force

fields.

Molecular dynamics methods can be classified into more specific classes of

methods. For example in stochastic dynamics (Brownian or Langevin Dynamics), extra

parameters can be added to represent friction and noise.35 In coarse-grain dynamics the

force field is applied to groups of atoms rather than individual atoms. The differentiation

between atomistic and coarse-grain dynamics is then achieved solely based on the type of

force field used. In this model Langevin dynamics and coarse-grain dynamics are not

represented by different types of tasks as they share the same parameter set as classic

molecular dynamics. The collision frequency attribute used specifically by stochastic

dynamics was added to the MD parameter set while a flag specifying whether the force

field is atomistic or coarse grain is set in the force field dictionary.

Each parameter set can be associated to a barostat and a thermostat to define how

pressure and temperature are constrained in the simulated system (Figure 3.8). The

ensemble type (microcanonical, canonical, isothermal–isobaric, or generalized) can be

56

defined directly in the parameter set. The model also includes the concepts of constraints

and restraints. Both have a target (i.e., the list of atoms they apply to), which can be

described by an atom mask or a textual description (e.g., ‘:WAT’, ‘water’). The type of

constraint is defined by the algorithm used (e.g., SHAKE, LINCS) while the type of

restraint is characterized by the property being restrained (e.g., bond, angle).

Enhanced sampling methods are gaining interest in the MD community as larger

systems and longer time scales can be simulated faster than with classic approaches.36

These methods usually involve the creation of multiple ensembles or replica that can be

run in parallel (e.g., temperature replica-exchange, umbrella sampling). A dictionary of

such methods was created to list popular enhanced sampling methods. At the core the

runs based on these methods can still be represented with multiple molecular dynamics

tasks. Depending on the method, the implementation, and the definition of the input files,

the set of MD tasks corresponding to a given enhanced sampling run can be grouped into

processes where each process represents either a separate ensemble/replica or a group of

tasks run in parallel. For a replica exchange MD (REMD) run using 4 replicas, one could

either group the 4 MD tasks into a single process representing the whole REMD run or 4

separate processes with a single task each.

In quantum chemistry the two main elements that define the theory and

approximations made for a particular run are the level of theory (or QM method) and the

basis set (Figure 3.9). Basis sets provide sets of wave functions to create molecular

orbitals and can be categorized into plane wave basis sets or atomic basis sets. They are

defined in a dictionary (BasisSetDefinition). Different levels of theory are available to

approximate the selected basis set and find a discrete set of solutions to the Schrödinger

57

equation. Popular methods include Hartree-Fock and post-Hartree-Fock methods (e.g.,

Configuration Interaction, Møller-Plesset, Coupled-Cluster), multireference methods,

Density Functional Theory (DFT), and Quantum Monte Carlo.37 The classification of QM

methods is not trivial because of the range of features dependent on the level of theory.

For example, DFT method names typically correspond to the name of the exchange-

correlation functional while semiempirical method names provide a reference to the

empirical approximations of the method. For this model we defined the concepts of QM

method, class and family. At the highest level the family defines the method as ab initio,

semiempirical, or empirical. The class defines the level of theory for ab initio methods

(e.g., Hartree-Fock, Møller-Plesset, Configuration Interaction, DFT, Multireference), or

the type of semiempirical method (pi-electron restricted or all valence electron restricted).

Note that one method can be part of multiple classes (e.g., Multireference configuration

interaction, hybrid methods). At the lowest level the method name (e.g., MP2, B3LYP,

AM1) corresponds to a specific method, as it would be called by a particular software

package. Approximations of pure ab initio quantum methods can be used to reduce the

computational cost of the simulations. Typical approximations include the use of frozen

cores to exclude inner shells from the correlation calculations and pseudopotentials

(effective core potentials) to remove the need to use basis functions for the core electrons.

The use of such approximations is noted at the QM parameter set level.

Molecular dynamics methods can be “improved” by injecting quantum

characteristics to the models (semiclassical methods). In ab initio molecular dynamics,

the forces for the system are calculated using full electronic structure calculations,

avoiding the need to develop parameters a priori. In hybrid QM/MM, the simulation

58

domain is divided into an MM space where the MD force field applies, and a QM space

where molecular orbitals will be described. Different methods exist to treat the

boundaries between the two spaces. The decomposition of runs into tasks and parameter

sets make the integration of such methods possible and fairly straight forward. For

example, one could create a new type of tasks for ab initio molecular dynamics that

would have at least two parameter sets: the QM parameter set defined earlier and a new

parameter specific to ab initio molecular dynamics that would define the time steps

(number, length) and the type of method (e.g., Car-Parinello MD, Born-Oppenheimer

MD).

Molecular system

In this model a distinction is made between biomolecules (e.g., RNA, protein) and

“small molecules” (Figure 3.10). Here we define a small molecule as a chemical or small

organic compound that could potentially be used as a ligand. They are defined at the level

of a single molecule while biomolecules are described by chains of residues. Typically,

QM calculations will target small molecules while MD simulations will target larger

biomolecules and ligand-receptor complexes. Properties such as molecular weight and

formula are worth being tracked for small compounds but their importance is not that

obvious when dealing with larger molecules.

Three dictionaries are necessary to provide definitions for standard residues,

atomic elements (as defined in the periodic table), and element families (e.g., Alkaline,

Metals). Note that here we minimize the amount of structural data by keeping track of

occurrences of residues (ResidueOccurrence) and atom types (AtomOccurrence) in a

59

particular molecule, rather than storing individual instances. For example, in the case of

water, there will be a single entry for the hydrogen atom with a count set to 2, and

another entry for the oxygen atom with a count set to 1. The same approach is used to

keep track of the various molecules in the system. For example explicit solvent using

water would be represented by the definition of the water molecule and the count of these

molecules in the system. To enable searches of specific ligands a simple text

representation of the compound is necessary. Molecule identifiers such as SMILES

(Simplified Molecular-Input Line-Entry System38) or InChI (International Chemical

Identifier39) strings can be associated to small molecules to enable direct molecule

matching and similarity and substructure searches. The residue sequence is also available

to search biomolecules based on an ordered list of residues. The residue sequence can be

represented by two different strings: the original chain, or specific chain, as referenced in

the input file defining the molecular topology, and a normalized chain. The specific chain

can potentially give more information about the individual residues within the context of

the software that was used, and reference nonstandard residues defined by the user. The

normalized chain on the other hand uses a normalized nomenclature for the residue: one-

letter codes representing either amino-acids or nucleobases. The normalized chain can be

used to query the related molecule without prior knowledge about the software used, and

enables advanced matching queries (e.g., BLAST 40).

Both residue and atom occurrences can be given a specific symbol, which

represents a software-specific name, usually referencing a computational model for the

entity. In MD the specific symbol would be the force field atom type while in QM this

would be used to specify which basis set should be applied.

60

The description of the biomolecules should include at least a generic type such as

DNA, RNA or protein to classify the simulated molecules at a high level. Other

biological information such as species (e.g., Mus musculus, Homo sapiens) and molecule

role can be added as well. As defined by the Chemical Entities of Biological Interest

(ChEBI41), each molecule can have one or multiple roles (application, chemical role,

and/or biological role). This data element is very important as it would allow researchers

to query molecules based on their function rather than their structure. On the other hand

this type of information is not included in the raw simulation files, which means that it

would have to be entered manually by the owner of the data. To avoid this one can

imagine populating this information automatically by referencing external databanks that

already store these attributes (e.g., Protein Data Bank3). This is reflected in this model by

the reference structure concept, which keeps track of the database and the structure entry

ID. If the topology of a simulated system is actually derived from a reference structure an

extra field can be used to describe the protocol used to prepare the reference structure so

that it serves as an input of the simulations. Possible steps include choice of the specific

model number if several are available in a single PDB entry or which PDB entry if

multiple entries are possible, possible addition of missing residues from disordered

regions, or specification of homology or other putative models.

Files and file system

So far the description of the model focused on the data elements related to the

experiment itself to explain why the different tasks were run and what they represent.

Another important aspect of this model is the inclusion of a reference to the files (input

61

and output) that contain the actual data being described. This is illustrated in Figure 3.11.

Each experiment can be associated to one or several file collections stored on local or

remote file systems (e.g., NFS, Amazon S3, iRODS server). For each of these collections

no assumption should be made on the location or the implementation of the file system.

Therefore it is necessary to keep track of the type of file server and host information to

find a route to the host and access the files using the right protocol and/or API. The

individual files should be associated to the tasks they represent and a distinction between

input (parameters and methods) and output (e.g., logs, trajectories) files should be made.

The topology files should be associated to the molecular system instead. Note that in

certain cases, especially for QM calculations, the topology and input parameters might be

contained in the same file. Each file reference should at least contain a unique identifier

(UID) within its host file system and a format specification.

Extended attributes

It is obvious that no single data model will be able to capture the needs of any lab

running biomolecular simulations. The intent of this logical model is to provide a simple

yet fairly exhaustive description of the concepts involved. To allow the addition of new

properties, to provide more details about the experiment or to keep track of user- or lab-

defined attributes, the notion of extended attribute can be introduced to the model. Each

extended attribute would be an attribute-value-unit triplet referenced by a given class to

extend its own attributes, as defined in the logical model. For example one user might

want to keep track of the order of interpolation and the direct space tolerance for PME-

based simulations. These parameters are currently not represented in the model, which

62

only keeps track of the name of the electrostatics model (“PME”). To add these two

parameters, one could add two extended attributes to the MD parameter set class (Figure

3.8) called “PME interpolation order” and “PME tolerance.”

From an object-oriented perspective, all the classes introduced in the logical

model could inherit from a single superclass that would reference extended attributes,

where each extended attribute would be an attribute-value-unit triplet with a possible link

to a concept identifier defining the attribute in an existing terminology. From a database

perspective, an extra table would be needed to store all the extended attributes. Such table

would need the necessary columns to represent the attribute-value-unit triplet, a possible

concept identifier, and the name of the table each attribute would extend. Although this is

an easy way to gather all the extended attributes in a single table this approach is not

rigorous from a relational approach. To allow SQL queries that do not involve injection

of table names each table would have to be associated to an extra table storing its

extended attributes.

Summary

The logical model presented here defines a domain that should be sufficient to

index biomolecular simulation data at the experiment level. In total over 60 classes were

defined to represent the common data elements identified through the survey, along with

new elements and dictionaries that should avoid data redundancy and facilitate queries

using standard values. From a developer’s perspective this model provides some

guidelines for the creation of a physical data model that would be more dependent on a

particular technology, whether it is for the implementation of a database or an API. At a

63

more abstract level the concepts introduced in this logical model provide a good starting

point for the creation of a new terminology or ontology specific to biomolecular

simulations.

Dictionaries

Overview

The current list of dictionaries include: force field parameter set names and types

(e.g., classical, polarizable), enhanced sampling methods, MD analysis functions,

barostats, thermostats, ensemble types, constraint algorithms, electrostatics models, basis

sets and their types, calculation types (e.g., optimization, frequency, NMR), residues,

atomic elements (periodic table) and their families, functional groups, software packages,

and chemical file formats. The list also includes a dictionary of computational methods

(e.g., Langevin dynamics, MP2, B3LYP) with their class (e.g., MD, Perturbation Theory,

DFT) and family (e.g., ab initio, semiempirical, empirical). All these dictionaries are

available for browsing and lookups at: http://ibiomes.chpc.utah.edu/dictionary/.

Examples of dictionary entries are also provided in Appendix C.

Implementation

All our dictionaries follow the same implementation method. The raw data are

defined in CSV files and can be loaded into a database for remote queries and/or indexed

using Apache Lucene20 for local access via Java APIs (Figure 3.12). Apache Lucene is a

text search engine written in Java that uses high-performance indexing to enable exact

and partial string matching. Each CSV file contains a list of entries for a given dictionary

64

with at least three columns representing: the identifiers, the terms (e.g., “QM/MM”), and

the term descriptions (e.g., “Hybrid computational method mixing quantum chemistry

and molecular mechanics”). More columns can be defined depending on the type of

dictionary, either to represent extra attributes or to link to other dictionaries (foreign

keys). For example the CSV file listing the QM method classes would have an extra

column with the IDs of the associated QM method families. A set of SQL scripts was

written to automatically create the database schema necessary to store the dictionaries

and to load the CSV data into the tables. These scripts become very useful if one wants to

integrate these dictionaries into a repository. Another script was written to automatically

build the Lucene indexes. The script calls a Java API which parses the CSV files and uses

the Lucene API to build the indexes. These indexes can then be used locally by external

codes via the Lucene API, avoiding the need for static definitions of these dictionaries

within the code or the creation of dependencies with remote resources such as a database.

They should also help future developments of chemical file parsers and text processing

tools for chemical information extraction from the literature (i.e., natural language

processing). The Lucene-based dictionaries can be directly queried through a simple

command-line interface. Examples in Appendix D demonstrate how one would look up a

term using this program. This design is fairly simple and enables updates of the

dictionary entries directly through the CSV files. One limitation is the lack of synonyms

for the terms defined. To create richer lists it will be necessary to add an extra CSV file

for each dictionary that would contain the list of all the synonyms and the ID of the

associated terms. Successful implementations of terminologies in other domains, such as

the UMLS42 (Unified Medical Language System), should be used to guide the

65

organization of the raw data and facilitate the integration of existing terminologies

representing particular aspects of the biomolecular simulations (e.g., chemical data,

biomolecules, citations).

Maintenance and community support

Until this point the development of the dictionaries has been restricted to an

internal effort by our lab. To support the work of the community at large these

dictionaries have to be extended and adjusted based on user feedback. For this purpose

the dictionaries are now available on our project Wiki at

http://ibiomes.chpc.utah.edu/mediawiki/index.php/Dictionary, which enables discussions

and edits by identified users. This will serve as a single endpoint to draft new versions of

the dictionaries. The source code for the dictionaries, including the CSV files, SQL

scripts, and Java API, is available from GitHub at: https://github.com/jcvthibault/biosim-

repository. Updates on the CSV files hosted there should occur according to the status of

the dictionaries in the Wiki. With time we might find that a dedicated database with a

custom user interface becomes necessary for a defined group of editors to update existing

terms, add new entries, add new dictionaries, and keep track of changes (logs). In any

case, the number of editors should be limited to a small group of experts, actively

participating and working together.43, 44

Discussion

In this paper we introduced a set of common data elements and a logical data

model for biomolecular simulations. The model was built upon community needs,

identified through a survey and refined internally. Elements described by the model cover

66

the concepts of authorship, molecular system, computational method and platforms.

Although the model presented here might not be complete, it integrates the methods that

are the most significant for simulations of biomolecular systems: molecular dynamics,

quantum chemistry and QM/MM. We introduced a new representation of the method

landscape through method-specific parameter sets, which should allow the integration of

more computational methods in the future. The addition of extended attributes to the

model should enable customization by labs to fit their specific needs or represent

properties that are currently not described by the model. The use cases presented here

showed how the model can be used in real applications, to partially automate the creation

of database schemas and generate XML descriptions. Multiple dictionaries, populated

through reviews of online resources and literature, were implemented to supplement the

model and provide developers with new tools to facilitate text extraction from chemical

files and population of repositories. Although the current version of the dictionaries is

fairly exhaustive they will become a powerful tool only if they are updated by the

community. A missing piece in this model is a catalogue of available force field

parameter sets and atom types that could be used to generate force field description files

and serve as an input for popular MD software packages. The EMSL Basis Set

Exchange45 already offers something similar for basis sets, and provides a SOAP-based

web service to access the data computationally.

While it is important to allow the whole community to provide input on the CDEs

and dictionaries, eventually a consensus needs to be made by a group of experts

representing the main stakeholders: simulation engine developers, data repository

architects, and users. The creation of a consortium including users, developers and

67

informaticians from the QM and the MD community could help formalize this process if

such entity leads:

 Active polling, for example via annual surveys assessing the need for changes or

additions in the CDEs, dictionaries, or the data model. Information about the

respondents such as software usage, preferred computational methods (e.g., all-

atom or coarse-grain MD, DFT) and target systems (e.g., chemical compounds,

biomolecules) will provide more details for the development of more adequate

recommendations for specialized communities.

 Monitoring of community discussions, which might take place on a dedicated

online forum or a wiki such as the one introduced here

 Recurring creation and distribution of releases for the CDEs, dictionaries, and

data model. The CDEs in particular should include at least 2 levels of importance

(recommended or optional) to provide some criteria about the completeness of the

data descriptors. A third level characterizing certain CDEs as mandatory might

provide a standard for developers and data publishers to populate repositories.

Our current focus is on indexing data at the experiment level so that the associated

collection of input and output files can be retrieved. While the CDEs can be used to tag

individual files it is not clear yet how much metadata are necessary to enable automatic

data extraction (e.g., extract properties for a single frame from a time series) and

processing, and if such metadata can be extracted directly from the files without user

input. The popularization of self-explanatory formats (e.g., NetCDF, CML) to store

calculation results or MD trajectories would certainly help. The ongoing work within the

ScalaLife programme should help the community move in this direction, while the data

68

model presented here will provide a good framework to organize, describe, and index

computational experiments comprising multiple tasks. By publishing this model and the

list of CDEs we hope to encourage developments of new repositories for biomolecular

simulations, whether they are part of an integrated computational environment (e.g.,

MDWeb) or not (e.g., iBIOMES). Both approaches should be addressed. On one hand,

computational environments can easily keep track of the tasks performed during an

experiment since the input parameters and topologies are directly specified within the

environment. On the other hand, we still need to think about the developer community

that works on new simulation engines, new force fields and new computational methods.

They will still need to customize their simulation runs within more flexible environments

where they can manually edit input files or compile new codes, and use local or allocated

high-performance computing resources. Independent data repositories where data can be

deposited through a publication process are probably more viable to overcome these

requirements. Finally it is not clear who will be given access to these large computational

environments or who will have the computational, storage, and human resources to

deploy, sustain, and make such complex systems available to the community.

The goal of the proposed data model is to lay the foundations for a standard to

represent biomolecular simulations, from the experiment level to the task level. For this

purpose we wanted to integrate MD, QM, and QM/MM methods, all of which play a

particular role in the field. Although classical MD is arguably the most popular approach

for biomolecular simulations we believe that QM/MM approaches and ab initio MD for

example will gain more and more interest as computational power increases and they

should not be left out of a future standard. On the other hand we recognize that our model

69

might not be as granular as others. The UMM XML26 schema for example will be one of

the first attempts to describe MD simulation input with enough granularity so that

software-specific input files can be generated without information loss. Such effort is

highly valuable for the MD community, and our data model will certainly evolve to

integrate such models. Our short-term goal is to engage current repository and data model

developers such as the ScalaLife (http://www.scalalife.eu/) and Mosaic

(https://bitbucket.org/molsim/mosaic/wiki/Home) groups for MD and the Blue Obelisk

(http://sourceforge.net/apps/mediawiki/blueobelisk/) group for QM and cheminformatics

so that we can learn more about each other’s experience and try to align our effort

towards an integrated data model that would fit the needs of the whole biomolecular

simulation community.

Conclusion

The framework presented here introduces a data model and a list of dictionaries

built upon community feedback and selected experts’ experience. The list of core data

elements, the models, and the dictionaries are available on our wiki at:

http://ibiomes.chpc.utah.edu/mediawiki/.

As more implementation efforts are taken, the community will be able to assess

the present data model more accurately and provide valuable feedback to make it evolve,

and eventually support collaborative research. The list of desiderata for data model

developments, for both conceptual and physical representations, should provide some

guidance for the long task at play.

http://ibiomes.chpc.utah.edu/mediawiki/

70

Methods

This paper uses semistructured interview methods to establish the community

needs and preferences regarding biomolecular simulation data indexing and presentation.

The common data elements were identified using an approach similar to 46, while the data

model was built using standard modelling techniques to derive logical and physical

models. Interested readers can find details of these techniques in 22.

71

F
ig

u
re

 3
.1

,
S

cr
ee

n
sh

o
t

o
f

th
e

w
eb

 i
n
te

rf
ac

e
g
en

er
at

ed
 v

ia
 t

h
e

ca
G

ri
d
 t

o
o
ls

.
T

h
e

sc
re

en
sh

o
t

p
re

se
n
ts

 a

li
st

in
g
 o

f
th

e
co

m
p
u
ta

ti
o

n
al

 t
as

k
s

th
at

 w
er

e
p
u
b
li

sh
ed

 i
n
to

 t
h
e

ca
G

ri
d
 t

es
t

sy
st

em
.

T
h
e

u
se

r
re

q
u

es
t

w
as

 a
u
to

m
at

ic
al

ly
 t

ra
n
sl

at
ed

 i
n
to

 a
n
 S

Q
L

 q
u
er

y
 v

ia
 H

ib
er

n
at

e
to

 r
et

u
rn

 t
h
e

ro
w

s
fo

rm
 t

h
e

ta
b
le

s

m
ap

p
in

g

to

th
e

cl
as

s
E

x
p
er

im
en

tT
as

k

an
d

it
s

ch
il

d

cl
as

se
s

M
in

im
iz

at
io

n
T

as
k

(m
in

im
iz

at
io

n
s)

,

M
D

T
as

k

(M

D

ru

n
s)

,
an

d

Q

M
T

as
k

(Q

M

ca

lc
u
la

ti
o
n
s)

.
F

o
r

ea
ch

ro

w
,

a
se

t
o
f

g
et

m

et
h
o
d
s

(e
.g

.,

g
et

S
o
ft

w
ar

e)
 l

in
k
 t

o
 t

h
e

as
so

ci
at

ed
 o

b
je

ct
s

fo
r

m
o

re
 d

et
ai

ls
 (

e.
g
.,
 S

o
ft

w
ar

e
n

am
e

an
d
 v

er
si

o
n
).

72

Figure 3.2, Generating an XML representation of experiments

using a Java API. The Java API is used to parse the input files and

create an internal representation of the virtual experiment as a set

of computational tasks. JAXB is then used to generate an XML

representation of this internal model, while XSLT is used to

perform a last transformation into a user-friendly HTML page.

73

F
ig

u
re

 3
.3

,
X

M
L

 a
n
d
 H

T
M

L
-b

as
ed

 r
ep

re
se

n
ta

ti
o
n
s

o
f

an
 e

x
p
er

im
en

t.
 A

u
to

-g
en

er
at

ed
 X

M
L

 s
am

p
le

 (
le

ft
)

an
d
 c

o
rr

es
p
o
n
d
in

g
 H

T
M

L
 t

re
e

v
ie

w
 (

ri
g
h
t)

 r
ep

re
se

n
ti

n
g
 t

h
e

d
if

fe
re

n
t

ta
sk

s
ru

n
 f

o
r

an
 M

D
 s

tu
d

y
 o

f
R

N
A

u
si

n
g
 t

h
e

A
M

B
E

R
 s

o
ft

w
ar

e
p

ac
k
ag

e.

74

Figure 3.4, Illustration of the data model used to represent virtual

experiments. Each experiment is a set of tasks, grouped into

processes (e.g., minimization, equilibration, production MD) and

process groups applied to the same molecular system (e.g., B-DNA

oligomer).

75

F
ig

u
re

 3
.5

,
C

o
n
ce

p
ts

 u
se

d
 t

o
 d

es
cr

ib
e

th
e

co
n
te

x
t

o
f

th
e

ex
p
er

im
en

ts
.

76

F
ig

u
re

 3
.6

,
D

es
cr

ip
ti

o
n
 o

f
ex

p
er

im
en

ts
,
p

ro
ce

ss
es

,
an

d
 t

as
k
s.

77

F
ig

u
re

 3
.7

,
O

rg
an

iz
at

io
n
 o

f
co

m
p
u
ta

ti
o
n
al

 m
et

h
o
d
s

in
to

 t
as

k
s

an
d
 p

ar
am

et
er

 s
et

s.

78

Figure 3.8, Description of MD tasks and parameter sets.

79

F
ig

u
re

 3
.9

,
D

es
cr

ip
ti

o
n
 o

f
Q

M
 t

as
k
s

an
d
 p

ar
am

et
er

s.

80

F
ig

u
re

 3
.1

0
,

D
ec

o
m

p
o
si

ti
o
n
 o

f
th

e
m

o
le

cu
la

r
sy

st
em

 i
n
to

 m
o
le

cu
le

s
w

it
h
 s

tr
u
ct

u
ra

l

an
d
 b

io
lo

g
ic

al
 f

ea
tu

re
s.

81

Figure 3.11, References to the file system and hosted files

containing the raw data.

Figure 3.12, Building process for the dictionaries. Each dictionary

can be either indexed via Apache Lucene for use via a Java API or

loaded into a database to enable remote SQL queries.

82

References

1. Šponer, J.; Šponer, J. E.; Mládek, A.; Banáš, P.; Jurečka, P.; Otyepka, M., How to

Understand Quantum Chemical Computations on DNA and RNA Systems? A Practical

Guide for Non-Specialists. Methods 2013, 64, 3-11.

2. Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H.; Shaw, D. E., Biomolecular

Simulation: a Computational Microscope for Molecular Biology. Annu. Rev. Biophys.

2012, 41, 429-452.

3. Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F.; Brice, M. D.;

Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M., The Protein Data Bank. Eur. J.

Biochem. 2008, 80, 319-324.

4. Simms, A. M.; Toofanny, R. D.; Kehl, C.; Benson, N. C.; Daggett, V.,

Dynameomics: Design of a Computational Lab Workflow and Scientific Data Repository

for Protein Simulations. Protein Eng. Des. Sel. 2008, 21, 369-377.

5. Toofanny, R. D.; Simms, A. M.; Beck, D. A.; Daggett, V., Implementation of 3D

Spatial Indexing and Compression in a Large-Scale Molecular Dynamics Simulation

Database for Rapid Atomic Contact Detection. BMC Bioinformatics 2011, 12, 334.

6. Meyer, T.; D'Abramo, M.; Hospital, A.; Rueda, M.; Ferrer-Costa, C.; Perez, A.;

Carrillo, O.; Camps, J.; Fenollosa, C.; Repchevsky, D.; Lluis Gelpi, J.; Orozco, M.,

MoDEL (Molecular Dynamics Extended Library): A Database of Atomistic Molecular

Dynamics Trajectories. Structure 2010, 18, 1399-1409.

7. Ng, M. H.; Johnston, S.; Wu, B.; Murdock, S. E.; Tai, K.; Fangohr, H.; Cox, S. J.;

Essex, J. W.; Sansom, M. S. P.; Jeffreys, P., BioSimGrid: Grid-Enabled Biomolecular

Simulation Data Storage and Analysis. Future Gener. Comp. Sy. 2006, 22, 657-664.

8. Terstyanszky, G.; Kiss, T.; Kukla, T.; Lichtenberger, Z.; Winter, S.; Greenwell, P.;

McEldowney, S.; Heindl, H., Application Repository and Science Gateway for Running

Molecular Docking and Dynamics Simulations. Stud. Health Technol. Inform. 2012, 175,

152-61.

9. Adams, S.; de Castro, P.; Echenique, P.; Estrada, J.; Hanwell, M. D.; Murray-Rust,

P.; Sherwood, P.; Thomas, J.; Townsend, J., The Quixote Project: Collaborative and Open

Quantum Chemistry Data Management in the Internet Age. J. Cheminform. 2011, 3, 38.

10. Phadungsukanan, W.; Kraft, M.; Townsend, J. A.; Murray-Rust, P., The Semantics

of Chemical Markup Language (CML) for Computational Chemistry : CompChem. J.

Cheminform. 2012, 4, 15.

11. Murray-Rust, P.; Rzepa, H. S., Chemical Markup, XML, and the World Wide

Web. 4. CML Schema. J. Chem. Inf. Comput. Sci. 2003, 43, 757-72.

83

12. Guha, R.; Howard, M. T.; Hutchison, G. R.; Murray-Rust, P.; Rzepa, H.;

Steinbeck, C.; Wegner, J.; Willighagen, E. L., The Blue Obelisk-Interoperability in

Chemical Informatics. J. Chem. Inf. Model. 2006, 46, 991-8.

13. de Jong, W. A.; Walker, A. M.; Hanwell, M. D., From Data to Analysis: Linking

NWChem and Avogadro with the Syntax and Semantics of Chemical Markup Language.

J. Cheminform. 2013, 5, 25.

14. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;

Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,

H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.;

Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,

M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.;

Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;

Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.

C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.;

Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;

Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;

Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich,

S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.

Gaussian 09, Revision C. 01; Gaussian, Inc: Wallingford, CT, 2009.

15. Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam,

H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L., NWChem: A Comprehensive

and Scalable Open-Source Solution for Large Scale Molecular Simulations. Comput.

Phys. Commun. 2010, 181, 1477-1489.

16. Thibault, J. C.; Facelli, J. C.; Cheatham, T. E., 3rd, iBIOMES: Managing and

Sharing Biomolecular Simulation Data in a Distributed Environment. J. Chem. Inf.

Model. 2013, 53, 726-736.

17. Rajasekar, A.; Moore, R.; Hou, C.; Lee, C. A.; Marciano, R.; de Torcy, A.; Wan,

M.; Schroeder, W.; Chen, S. Y.; Gilbert, L., iRODS Primer: Integrated Rule-Oriented

Data System. Synthesis Lectures on Information Concepts, Retrieval, and Services 2010,

2, 1-143.

18. Abouzied, A.; Bajda-Pawlikowski, K.; Huang, J.; Abadi, D. J.; Silberschatz, A.

HadoopDB in Action: Building Real World Applications. In Proceedings of the 2010

ACM SIGMOD International Conference on Management of data, Indianapolis, IN,

USA, 2010; ACM: Indianapolis, IN, USA, 2010; pp 1111-1114.

19. Thusoo, A.; Sarma, J. S.; Jain, N.; Shao, Z.; Chakka, P.; Zhang, N.; Antony, S.;

Liu, H.; Murthy, R. Hive-A Petabyte Scale Data Warehouse Using Hadoop. In Data

Engineering (ICDE), 2010 IEEE 26th International Conference on, Long Beach, CA,

USA, 2010; IEEE: Long Beach, CA, USA, 2010; pp 996-1005.

84

20. Apache Lucene. https://lucene.apache.org/

21. Herráez, A., Biomolecules in the Computer: Jmol to the Rescue. Biochem. Mol.

Biol. Educ. 2006, 34, 255-261.

22. Tillmann, G., A Practical Guide to Logical Data Modeling. McGraw-Hill: New

York, 1993; p xiii, 248 p.

23. The Grid 2: Blueprint for a New Computing Infrastructure. second ed.; Morgan

Kaufmann: San Francisco, CA, 2003.

24. Saltz, J.; Oster, S.; Hastings, S.; Langella, S.; Kurc, T.; Sanchez, W.; Kher, M.;

Manisundaram, A.; Shanbhag, K.; Covitz, P., caGrid: Design and Implementation of the

Core Architecture of the Cancer Biomedical Informatics Grid. Bioinformatics 2006, 22,

1910-6.

25. Sun, Y.; McKeever, S., Converting Biomolecular Modelling Data Based on an

XML Representation. J. Integr. Bioinform. 2008, 5.

26. Goni, R.; Apostolov, R.; Lundborg, M.; Bernau, C.; Jamitzky, F.; Laure, E.;

Lindhal, E.; Andrio, P.; Becerra, Y.; Orozco, M.; Lluis Gelpi, J., Standards for Data

Handling. ScalaLife White Paper 2013.

27. Case, D. A.; Cheatham, T. E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.,

Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J., The Amber Biomolecular

Simulation Programs. J. Comput. Chem. 2005, 26, 1668-1688.

28. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E., GROMACS 4: Algorithms

for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem.

Theory. Comput. 2008, 4, 435-447.

29. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual Molecular Dynamics. J.

Mol. Graphics 1996, 14, 33-38.

30. Roe, D. R.; Cheatham III, T. E., PTRAJ and CPPTRAJ: Software for Processing

and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013.

31. Michaud‐Agrawal, N.; Denning, E. J.; Woolf, T. B.; Beckstein, O., MDAnalysis:

A Toolkit for the Analysis of Molecular Dynamics Simulations. J. Comput. Chem. 2011,

32, 2319-2327.

32. Hospital, A.; Andrio, P.; Fenollosa, C.; Cicin-Sain, D.; Orozco, M.; Lluis Gelpi, J.,

MDWeb and MDMoby: An Integrated Web-Based Platform for Molecular Dynamics

Simulations. Bioinformatics 2012, 28, 1278-1279.

85

33. Svensson, M.; Humbel, S.; Froese, R. D.; Matsubara, T.; Sieber, S.; Morokuma,

K., ONIOM: A Multilayered Integrated MO+ MM Method for Geometry Optimizations

and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt (P (t-Bu) 3)

2+ H2 Oxidative Addition. J. Phys. Chem. 1996, 100, 19357-19363.

34. Jorgensen, W. L.; Tirado-Rives, J., Potential Energy Functions for Atomic-Level

Simulations of Water and Organic and Biomolecular Systems. Proc. Natl. Acad. Sci. U. S.

A. 2005, 102, 6665-6670.

35. Nadler, W.; Brunger, A. T.; Schulten, K.; Karplus, M., Molecular and Stochastic

Dynamics of Proteins. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 7933-7.

36. Schlick, T., Molecular Dynamics-Based Approaches for Enhanced Sampling of

Long-Time, Large-Scale Conformational Changes in Biomolecules. F1000 biology

reports 2009, 1, 51.

37. Cramer, C. J., Essentials of Computational Chemistry : Theories and Models. 2nd

ed.; Wiley: Chichester, West Sussex, England ; Hoboken, NJ, 2004; p xx, 596 p.

38. Weininger, D., SMILES, a Chemical Language and Information System. 1.

Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28,

31-36.

39. McNaught, A., The IUPAC International Chemical Identifier. Chemistry

International 2006, pp 12-14.

40. Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J., Basic Local

Alignment Search Tool. J. Mol. Biol. 1990, 215, 403-10.

41. Degtyarenko, K.; De Matos, P.; Ennis, M.; Hastings, J.; Zbinden, M.; McNaught,

A.; Alcántara, R.; Darsow, M.; Guedj, M.; Ashburner, M., ChEBI: A Database and

Ontology for Chemical Entities of Biological Interest. Nucleic Acids Res. 2008, 36,

D344.

42. Bodenreider, O., The Unified Medical Language System (UMLS): Integrating

Biomedical Terminology. Nucleic Acids Res. 2004, 32, D267.

43. Hardiker, N.; Kim, T. Y.; Bartz, C. C.; Coenen, A.; Jansen, K. Collaborative

Development and Maintenance of Health Terminologies. In AMIA Annual Symposium,

Washington DC, 2013; American Medical Informatics Association: Washington DC,

2013; pp 572-577.

44. Noy, N. F.; Tudorache, T. Collaborative Ontology Development on the (Semantic)

Web. In AAAI Spring Symposium: Symbiotic Relationships between Semantic Web and

Knowledge Engineering, 2008; AAAI Press: 2008; pp 63-68.

86

45. Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase,

J.; Li, J.; Windus, T. L., Basis Set Exchange: A Community Database for Computational

Sciences. J. Chem. Inf. Model. 2007, 47, 1045-52.

46. Kawamoto, K.; Del Fiol, G.; Strasberg, H. R.; Hulse, N.; Curtis, C.; Cimino, J. J.;

Rocha, B. H.; Maviglia, S.; Fry, E.; Scherpbier, H. J.; Huser, V.; Redington, P. K.;

Vawdrey, D. K.; Dufour, J. C.; Price, M.; Weber, J. H.; White, T.; Hughes, K. S.; McClay,

J. C.; Wood, C.; Eckert, K.; Bolte, S.; Shields, D.; Tattam, P. R.; Scott, P.; Liu, Z.;

McIntyre, A. K., Multi-National, Multi-Institutional Analysis of Clinical Decision

Support Data Needs to Inform Development of the HL7 Virtual Medical Record

Standard. AMIA Annu. Symp. Proc. 2010, 2010, 377-81.

CHAPTER 4

THESAURUS AND ONTOLOGY DEVELOPMENTS

FOR BIOMOLECULAR SIMULATION

 DATA EXCHANGE

Abstract

The field of biomolecular simulation is at the crossroads of chemistry, biology

and computer science. As such, semantic description of the data and provenance metadata

is critical to enable effective data sharing among these scientific communities. Until now

the number of repositories for biomolecular simulation has been limited and no standard

is followed to enable data interoperability and integration within the semantic web,

greatly reducing the ability to exchange data with noncomputational scientists. In this

paper we present a new thesaurus used to describe concepts related to the computational

methods, parameters, and output commonly used in biomolecular simulations. We also

demonstrate how to extend the thesaurus to a Simple Knowledge Organization System

and an application ontology following the Open Biological and Biomedical Ontology

Foundry principles.

88

Introduction

Biomolecular simulations aim to study the dynamics of biomolecules and

biomolecular processes through computer simulations. While the computational methods

mainly rely on approximations to physics and chemistry principles, the results aim to

advance biology and medicine by providing new insights into molecular structure and

function1, 2 and are becoming critical for enabling drug discovery.3, 4 In the last decade

researchers in the field of molecular simulations have been able to reach timescales and

system sizes that are biologically relevant.1, 5 As computational power increases, these

simulations become more common, and new tools are necessary to share these data with

other scientific communities. At present simulation data are usually confined at the level

of a lab or to a relatively small group of researchers participating in a multilab project.

Very seldom the data are shared with the community at large or with the method

developers. Few informatics architectures have been proposed to allow researchers to

store and expose their data.6-8 Even fewer repositories are openly available to the

community to retrieve existing biomolecular simulation datasets9, 10 Some of the main

constraints for the development of such repositories are the amount of data created by

each simulation (~GB-TB), the distributed nature of the storage resources, partly because

of use of external computational resources, such as national clusters. But fundamentally

the lack of the semantic context for simulation data precludes their use by researchers

outside of the immediate circle of collaborators of the producing lab. The need for a

common data model to store and exchange biomolecular simulation data has been

demonstrated in various studies11-13 but the current approaches are limited to usage within

the biomolecular simulation community. Semantic description of biomolecular

89

simulation data and provenance metadata is critical to enable data sharing with other

communities, especially between the fields of experimental and computational chemistry.

In this paper we report our advances in improving the semantic description of concepts

related to the computational methods, parameters, and output of biomolecular

simulations. Semantic description would not only allow federations of repositories based

on different architectures, but it would also allow researchers from other scientific

domains, such as experimental chemistry or biology, to gain more productive access to

simulations data via the semantic web.

In previous work11 we introduced a data model and a set of dictionaries to

represent various concepts associated to the input parameters and output of biomolecular

simulations. One of the limitations of these dictionaries is the lack of flexibility to

represent hierarchies, especially when defining computational methods at different levels

of granularity (e.g., “MP2” vs “Perturbation theory” vs. “Quantum chemistry”). This can

be avoided by including “is a” relationships between concepts to create a detailed

taxonomy. Such taxonomy can be enriched with associative relationships (e.g.,

“simulates,” “is executed on”) to give more meaning to the concepts through a thesaurus.

Examples of such taxonomies include the various sources of the UMLS Metathesaurus14

(e.g., NCI thesaurus, SNOMED-CT). Finally the thesaurus can be supplemented with

implicit associations and definitions within an ontology to allow reasoning and infer

relationships between concepts.

In this study we introduce a new controlled vocabulary for biomolecular

simulations, BIOSIO (BIOmolecular SImulation Ontology), which can be used to

describe published data using semantic web components. Our experience with iBIOMES6

90

showed that complex queries cannot be built if the tags (i.e., metadata) associated to the

published experiments do not have any semantic meaning. For example if a user is

looking for all simulations that use molecular dynamics, one should expect the query

engine to search for both classical and ab initio MD simulations. This type of inference

assumes the existence of a controlled vocabulary representing hierarchical relationships

between available tags.

The controlled vocabulary is defined as a thesaurus stored as a relational database

based on the UMLS Metathesaurus model14 to facilitate a future integration with other

standard biomedical terminologies. The thesaurus was converted to a Knowledge

Organization System (KOS) encoded as a Simple Knowledge Organization System15

(SKOS), a W3C recommendation for the publication of controlled vocabularies within

the semantic web. Finally, the thesaurus was extended to a simple ontology, to integrate

concepts, relationships, and axioms of well-known biomedical ontologies.

Methods

Scope

The BIOSIO thesaurus and ontology aim to represent the following concepts:

 Theoretical chemistry methods, including quantum chemistry and molecular

dynamics

 Analysis methods (e.g., Root mean square deviation calculations, principal

component analysis)

 Computational tasks, including input and output description

 Software packages and file formats

91

Theoretical and computational methods are not actually described by the

ontology. Instead BIOSIO provides a reference to the associated literature or web content

when applicable. Such references are also used when describing software packages and

file formats. BIOSIO was implemented in 3 different formats: as a relational database, as

a Simple Knowledge Organization System15 (SKOS), and as an OWL 2 document.16

Implementation

Thesaurus database

A database was first designed to store the concepts represented by the data model

and dictionaries presented in previous work and validated by the user community as

explained elsewhere.11 The database schema (Figure 4.1) was inspired by the UMLS

metathesaurus.14 Each concept (i.e., meaning) is defined in the CONCEPT table and can

be associated to several terms (i.e., synonyms), citations, and textual descriptions. Some

of the classes and attributes from the initial data model were used to manually create new

concepts in the database. A set of scripts was created to automatically create a new

concept with its textual description and citations (if applicable) for each dictionary entry.

For example, a “computational method” concept was created to be the parent of “Ab

initio methods,” “Empirical method,” and “Semiempirical method,” which were defined

as part of the dictionary of computational methods. These concepts were supplemented

with various concepts that did not appear in the original data model but that were

necessary to bring more granularity to the hierarchical organization of the controlled

vocabulary. For example, the force field parameter sets were grouped by publisher (e.g.,

AMBER, CHARMM) and targets (e.g., ions, water). Relationships between concepts are

92

defined in the RELATIONSHIP table, while types of relationships (e.g., “is a,” “has

part”) are defined in the CONCEPT table and differentiated from regular concepts via the

IS_REL flag. Concepts can also be mapped to concepts from external terminologies or

ontologies via the CONCEPT_MAPPING and EXTERNAL_ONTOLOGY tables, which

store the mappings and ontology definitions respectively. The SEMANTIC_TYPE table

stores the various categories used to provide a high-level classification of all concepts in

the thesaurus: the semantic types. Each concept can be associated to one or multiple

semantic types via the CONCEPT_SEMANTIC_TYPE table. Just like in the UMLS,

semantic types are defined to reduce the complexity of the thesaurus.17 They can be used

to group similar concepts together and facilitate searches and result filtering. For the

design of this thesaurus we created a simple semantic network that would enable targeted

searches based on the different parameters and methods (i.e., molecular dynamics vs.

quantum chemistry) one could choose to setup the simulation. Each concept in the

thesaurus can be assigned to at least one semantic type.

SKOS and ontology

A Java API was developed to enable the creation of SKOS and OWL documents

from the thesaurus defined in the relational database. The API queries the database and

iterate through all the concepts to write the associated triples into a SKOS or OWL Turtle

file.18 The API can also be used to populate the database from a SKOS or OWL

document, using the OWL API19 and the SKOS API.20 The following assumptions were

made when developing the API: (1) High-level relationships such as “is a,” and “has

parts” are mapped using external ontologies (Table 4.1) that are assumed to be referenced

93

in the thesaurus or the OWL ontology; (2) In SKOS, hierarchical relationships are

represented through the “narrower” and “broader” associations. For example “DNA” is a

“broader” concept than “Nucleic acid,” and “all-atom molecular dynamics” is narrower

than “molecular dynamics.” In OWL, “is a” relationships are expressed using the

subClass predicate. For example the “Nucleic acid” class is a sublcass of “DNA.”

The BIOSIO ontology development follows the principles of the Open Biological

and Biomedical Ontology (OBO) Foundry, a group of developers aiming at creating

interoperable ontologies for the biomedical domain. BIOSIO builds upon the Basic

Formal Ontology21 (BFO) as its upper-level ontology. BFO defines abstract concepts

such as “continuant,” i.e., an entity that exists and persists through time (e.g., a material

entity, a spatial region), and “occurent”, i.e., an entity that has temporal parts (e.g., a

process, an event, a temporal region). These concepts serve as a foundation for most

OBO ontologies to facilitate interoperability and future developments. BIOSIO also

builds upon more concrete ontologies derived from BFO: the Information Artifact

Ontology (IAO), which describes information entities such as data sets, documents,

software and algorithms, and the Ontology for Biomedical Investigations (OBI), which

aims to describe the wide spectrum of biological and clinical investigations, from their

design to the analysis methods and resulting data sets.22 BIOSIO, like many other OBO

ontologies, uses the ChEBI23 (Chemical Entity of Biological Interest) ontology to define

chemical and molecular entities, such as atoms, ions, molecules, nanostructures, nucleic

acids, and proteins. Biological concepts can be derived from ChEBI by linking to other

OBO ontologies, such as the Gene Ontology24 (GO) or the Protein Ontology25 (PRO).

94

The final OWL document only stores references to these ontologies. One can

explicitly import these ontologies via tools such as Protégé26 if the associated concepts

are necessary for the use case. The SKOS-encoded controlled vocabulary on the other

hand does not include references to external sources, such as ChEBI, which is necessary

to represent concepts related to molecular and chemical entities. Conversion tools such as

skosify (https://code.google.com/p/skosify/) and the OBO-to-SKOS converter from the

University of Manchester (http://www.cs.man.ac.uk/~sjupp/skos/index.html) could be

used to generate a SKOS version of ChEBI and represent these missing pieces.

Comparison with the UMLS

One of the long-term goals for this thesaurus is to become part of a larger source

of biomedical concepts such as the UMLS to supplement existing concepts with new

concepts relating to biomolecular simulations. In order to evaluate the novelty of the

concepts introduced in this thesaurus we compared the overlap between the UMLS

concepts and the BIOSIO thesaurus concepts. A quantitative evaluation of this overlap

was performed by looking at the matches between concept terms. If all concepts

introduced in this thesaurus are novel no overlap should be found with the UMLS. On the

other hand, matches help identify where mapping is necessary. To facilitate this process

we developed a simple dictionary lookup program to automatically compare strings of

concept names from both sources. About 10 million concept terms from the 2012AB

UMLS were indexed using Apache Lucene,27 a high-performance text search engine. A

Java program based on the Apache Lucene API was developed to check exact matches

between normalized concept terms from our thesaurus and the UMLS. The normalized

https://code.google.com/p/skosify/
http://www.cs.man.ac.uk/~sjupp/skos/index.html

95

version of a term is obtained by removing common stop words (e.g., “a”, “and”, “with”

“to”) and by using the canonical form of each word using the Lexical Variant Generator28

(LVG) tool. For example, plural nouns become singular, and conjugated verbs are

transformed to their infinitive root. This normalization step is performed on each UMLS

term when building the index and on each thesaurus concept term that is looked up in the

index. This process tends to reduce the number of false negatives when comparing

strings. To facilitate the analysis of the matches proposed by our program, each concept

term in the index is associated to its CUI (Concept Unique Identifier), its original term, a

normalized version of the term, and the source terminology for the concept (e.g., ICD-10,

MESH, NCI).

SKOS use case

iBIOMES builds upon the iRODS29 framework, which provides a distributed file

system where files are indexed using Attribute-Value-Unit (AVU) triplets. One of the

current directions undertaken by the iRODS developers is the integration of KOS within

their indexing system. More specifically, they are in the process of integrating HIVE

(Helping Interdisciplinary Vocabulary Engineering30) to manage and index SKOS-

encoded controlled vocabularies. HIVE provides a core server to load SKOS documents

and to enable keyword and SPARQL31 searches. HIVE also supports automatic document

tagging using keyphrase extraction, based on the KEA (Keyphrase Extraction

Algorithm32) tool. Assuming that a model is trained within KEA, this could enable

automatic biomolecular simulation literature tagging and indexing. To assess such

96

framework within iBIOMES, we installed a local instance of HIVE and loaded the

BIOSIO SKOS to enable concept browsing and searches.

Results

Concept network

Summary

In total 697 concepts (i.e., OWL classes) and 870 associated terms (i.e., OWL

labels) are represented in BIOSIO. Twelve high-level concepts were mapped to external

OBO ontologies, as listed in Table 4.2. For example the “software package” concept does

not have any explicit parent in BIOSIO but it is mapped as a child of the concept

“software” in the IAO ontology. All these parent-child mappings provide a higher level of

abstraction for BIOSIO if integration with other biomedical ontologies is necessary.

The core concepts (i.e., without external ontology mappings) are organized

through 677 “is a” relationships and 13 “has part” relationships. The resulting

hierarchical network of core concepts is presented in Figure 4.2. Each node represents a

concept explicitly defined in the thesaurus and each edge represent an “is a” relationship.

BIOSIO also includes 139 citations (127 unique references), most of which were

already published in our dictionaries.11 The thesaurus also includes 12 semantic types to

provide a high-level classification of the concepts similar to the UMLS semantic type

network. These semantic types were organized into a simple network, as illustrated in

Figure 4.3. Each concept in BIOSIO is considered a simulation feature that relates to the

computational methods (e.g., molecular dynamics and associated parameters), the

molecular system (e.g., topology, structure) or the computing environment (i.e., software

or hardware used to run the simulation).

97

Comparison with the UMLS

Out of the 697 BIOSIO thesaurus concepts, 94 had at least one term name that

matched a UMLS metathesaurus concept name. Some of these term matches, including

true and false positives, are presented in Table 4.3. Out of the 94 BIOSIO concepts being

mapped by the program, 33 concepts were mapped correctly to either an equivalent or a

parent UMLS concept. Most of the false positives were caused by acronyms that did not

have the same meaning in both sources. For example the acronym SAS (surface-

accessible surface) in BIOSIO matched different gene names (“NANS,” “TSPAN31”)

that use this string as alternate identifiers in the UMLS. Most of the true positives are

related to software or hardware components (e.g., CPU, GPU, file). This is expected since

our thesaurus includes concepts related to the computing environment, but leaves out the

description of biomolecular systems, which would have great overlap with the UMLS.

Another source of false positives is the difference in granularity between matching

concepts. For example the concept “Analysis task” in our thesaurus really represents

computational analysis tasks, and not a generic “analysis” (C0936012) or “analysis of

substances” (C0002778). Although we considered these mappings as false positives they

can actually help identify child-parent mappings.

Indexing SKOS concepts with HIVE

The SKOS document was successfully validated using the online quality checker

available at http://qskos.poolparty.biz/ and loaded into HIVE. A screenshot of the web

interface of our local HIVE instance is presented in Figure 4.4. Although the original

version of the SKOS successfully passed the quality tests, it did not fulfill all the

http://qskos.poolparty.biz/

98

requirements of the HIVE system to be successfully loaded. The database-to-SKOS

converter had to be updated to 1) explicitly define each “is a” relationship with both

“narrower” and “broader” associations (although in SKOS “A narrower B” implicitly

means “B broader A”), 2) define a SKOS scheme (skos:ConceptScheme) for all the

concepts (skos:inScheme) and explicitly define the top-level concepts

(skos:hasTopConcept), and 3) define document-level metadata (e.g., creation date,

author). An extract of the final document is given in Figure 4.5.

A few SPARQL31 queries were run against HIVE using the HIVE-core Java API

(version 2.2). Two example input SPARQL queries are provided in Figure 4.6 and Figure

4.7 to show how one would retrieve broader and narrower concepts.

Discussion

In this paper we presented a new controlled vocabulary for biomolecular

simulations, BIOSIO, that focuses on the representation of the computational methods,

parameters and environments (i.e., software and hardware) relating to biomolecular

simulations. A preliminary analysis was performed to check for overlaps between this

thesaurus and the UMLS, one of the largest sources of biomedical concepts. Our results

show that a future integration of the BIOSIO thesaurus into the UMLS metathesaurus

will require some manual work but semiautomatic mappings between concepts will

facilitate the process. The precision of our current mapping algorithm, based on a simple

index lookup, could be largely improved. For example one could remove acronyms from

the automatic mapping step and rely only on expanded labels to compare strings. In our

analysis we used the whole UMLS, although we are only interested in computational

methods and computing environment components. To avoid false positives such as gene

99

and protein names, we could filter out certain UMLS semantic types representing

biomolecular and chemical entities, since these are not directly represented in our

thesaurus and are not expected to match any concept. The recall of the algorithm will be

highly dependent on the richness of the vocabularies being mapped. Even though the

normalization step used for indexing and lookups should provide a good recall, some

concept mappings might have been missed because of poor representation of synonyms

for the associated concepts in either source.

A SKOS-encoded controlled vocabulary and a simple ontology were derived from

the thesaurus. The SKOS was validated and loaded into HIVE to enable concept

browsing and searches. Sample SPARQL queries were run to show the value of SKOS to

expose biomolecular simulation data in a semantic web context. The derived ontology

links to popular OBO ontologies to integrate detailed descriptions of biomolecule and

chemical entities, but also for the integration of more abstract concepts that should

facilitate its reuse in future OBO developments. Future directions include the integration

of the ontology into the Chemical Information Ontology33 (CHEMINF), which describes

a domain that is similar to biomolecular simulations in many aspects. It aims to provide a

description of cheminformatics tools and calculations within a semantic web context.

This includes the description of the algorithms, their execution process, the input and

output, and the actual chemical descriptors being calculated. Although CHEMINF

focuses on cheminformatics applications, its higher-level concepts are adapted to most

subfields of computational chemistry, including quantum chemistry and molecular

dynamics, two of the main classes of methods for biomolecular simulations. Finally the

current ontology presented here is very simple since it does not include any axiom other

100

than the ones inherited from the parent ontologies (e.g., BFO, OBI). The inclusion of

more associative relationships and axioms specific to the domain of biomolecular

simulation should help infer certain characteristics of computational experiments. For

example, when publishing incomplete metadata into a repository, a reasoner such as

HermiT (http://hermit-reasoner.com/) or Pellet (http://clarkparsia.com/pellet/) could be

used to generate missing or more specific metadata.

At this point the concepts and relationships defined in the thesaurus and the

ontology have not been formally evaluated, although they build upon a previously

published data model.11 This work was mostly done within the context of a single

computational lab and did not involve outside experts. A survey could be used to receive

general feedback but a detailed evaluation using a divide-and-conquer approach might be

more beneficial. For example a group of experts would be responsible to evaluate and

refine the ab initio methods while another group would be responsible for the classical

MD methods. More complete methodologies for the evaluation of controlled vocabularies

and ontologies could be used.34, 35 Coverage of the domain should be evaluated as well.

There are numerous computational methods and parameters one can use to run

biomolecular simulations. The computational protocols are rarely described in detail in

the literature, which usually prevents reproducibility. Automatic term extraction using

existing algorithms36 could be useful to generate a list of common terms that represent

biomolecular simulation methods. Since the associated literature is usually focusing on a

higher level of theory and on the actual results of the simulations, the use of various QM

and MD software user manuals might be more adapted to the scope of our work.

http://hermit-reasoner.com/
http://clarkparsia.com/pellet/

101

F
ig

u
re

 4
.1

,
D

at
ab

as
e

sc
h

em
a

fo
r

th
e

th
es

au
ru

s

102

Figure 4.2, Hierarchical network of BIOSIO core concepts without

external ontology mappings. Each leaf represents a concept and

each branch represents an “is a” relationship.

103

Figure 4.3, Thesaurus semantic network

Figure 4.4, Screenshot of the Hive web interface for SKOS concept

browsing

104

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix ib: <http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#> .

@base <http://edu.utah.bmi.ibiomes/skos/ibiomes.owl> .

ib:IBIOMES rdf:type skos:ConceptScheme ;

 rdfs:label "IBIOMES"@en ;

 rdfs:comment "Vocabulary for biomolecular simulations"@en ;

 dc:title "Vocabulary for biomolecular simulations";

 dc:date "2014-03-23";

 dc:creator "Julien Thibault" .

ib:MTH10000 rdf:type skos:Concept ;

 skos:inScheme ib:IBIOMES ;

 skos:prefLabel "Computational method"@en ;

 skos:altLabel "Method"@en ;

 skos:definition "Computational method"@en ;

 skos:narrower ib:MTH11000 ;

 skos:narrower ib:MTH12000 ;

 skos:narrower ib:MTH13000 ;

 skos:narrower ib:MTH14000 .

ib:IBIOMES skos:hasTopConcept ib:MTH10000 .

ib:MTH11000 rdf:type skos:Concept ;

 skos:inScheme ib:IBIOMES ;

 skos:prefLabel "Empirical method"@en ;

 skos:definition "Computational method that uses empirical parameters"@en ;

 skos:broader ib:MTH10000 ;

 skos:narrower ib:MTH11100 ;

 skos:narrower ib:MTH11200 .

ib:MTH11100 rdf:type skos:Concept ;

 skos:inScheme ib:IBIOMES ;

 skos:prefLabel "Classical molecular dynamics"@en ;

 skos:altLabel "Classical MD"@en ;

 skos:definition "Molecular mechanics-based molecular dynamics"@en ;

 skos:broader ib:MTH11000 ;

 skos:narrower ib:MTH11110 ;

 skos:narrower ib:MTH11120 ;

 skos:narrower ib:MTH11300 .

Figure 4.5, SKOS document extract in RDF/Turtle format

105

SPARQL query

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX ib: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#>

SELECT ?uri ?label

WHERE {

ib:MD00900 skos:narrower ?uri .

?uri skos:prefLabel ?label

}

Output

[1] label: "Classical force field"@en

 uri: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#C17501

[2] label: "Polarizable force field"@en

 uri: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#C17502

[3] label: "Reactive force field"@en

 uri: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#C17503

[4] label: "Coarse-grain force field"@en

 uri: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#C17504

Figure 4.6, SPARQL query example: retrieving the concepts that

are narrower than the ‘Force field’ concept (MD00900).

SPARQL query

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX ib: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#>

SELECT ?uri ?label

WHERE {

ib:MTH11100 skos:broader ?uri .

?uri skos:prefLabel ?label

}

Output

[1] label: "Empirical method"@en

 uri: http://edu.utah.bmi.ibiomes/skos/ibiomes.owl#MTH11000

Figure 4.7, SPARQL query example: retrieving the concepts that

are broader than the ‘Classical molecular dynamics’ concept

(MTH11100).

106

Table 4.1, Relationship mappings between thesaurus, SKOS, and ontology

Relationship SKOS equivalents OWL equivalents

[A] is a [B]
[A] skos:narrower [B]

[B] skos:broader [A]
[A] rdfs:subClassOf [B]

[A] has part [B] [A] skos:relatedHasPart [B] [A] <http://purl.obolibrary.org/obo/BFO_0000051> [B]

[B] part of [A] [B] skos:relatedPartOf [A] [B] <http://purl.obolibrary.org/obo/BFO_0000050> [A]

Table 4.2, Mappings between BIOSIO concepts and external OBO ontologies

OBO parent BIOSIO children

Ontology Concept Label Concept Label

BFO BFO_0000019 Quality MTH00100 Descriptor

BFO BFO_0000028
Three-dimensional spatial

region
SYS11000 Box

BFO BFO_0000030 Object
CPE00002

HW01000

Computing platform

Hardware component

BFO BFO_0000031
Generically dependent

continuant

PRM00001

PRM00101

Parameter

Parameter set

IAO IAO_0000010 Software
SW01100

SW01200

Operating system

Software package

IAO IAO_0000030 Information content entity FS01000 File system

IAO IAO_0000098 Data format specification FS01110 File format

IAO IAO_0000104 Plan specification MTH10000 Computational method

IAO IAO_0000115 Definition #citation Citation

IAO IAO_0000310 Document FS01100 File

OBI OBI_0200000 Data transformation
TSK10000

TSK00001

Computational process

Computational task

CHEBI CHEBI_24431 Chemical entity
SYS10000

SYS01000

Molecular system

Molecular system component

107

Table 4.3, Sample matches between thesaurus concept terms and UMLS concept

names.

Concept Matching term
UMLS

CUI

UMLS concept

name
UMLS sources Match

Hartree-Fock HF
C3273279 CFH wt Allele NCI No

C1538440 CFH gene OMIM No

Solvent-

accessible

surface

SAS

C1426104 NANS gene OMIM, HGNC No

C1823519 TSPAN31 gene OMIM No

Protein Data

Bank

Protein Data

Bank
C1705318 Protein Data Bank MTH, NCI Yes

Graphics

Processing

Unit

GPU C1881002
Graphics Processing

Unit
NCI Yes

Central

Processing

Unit

CPU
C1707144

Central Processing

Unit
NCI Yes

C1413666 CPB2 gene OMIM, HGNC No

Volume Volume

C0449468 Volume

LNC, FMA, NCI,

MTH,

SNOMEDCT…

Yes

C1705102
Volume

(publication)
NCI No

Analysis task Analysis
C0002778

Analysis of

substances
SNOMEDCT No

C0936012 Analysis MTH, PSY Parent

108

References

1. Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H.; Shaw, D. E., Biomolecular

Simulation: a Computational Microscope for Molecular Biology. Annu. Rev. Biophys.

2012, 41, 429-452.

2. Karplus, M.; McCammon, J. A., Molecular dynamics simulations of

biomolecules. Nature Structural & Molecular Biology 2002, 9, 646-652.

3. Alonso, H.; Bliznyuk, A. A.; Gready, J. E., Combining Docking and Molecular

Dynamic Simulations in Drug Design. Med. Res. Rev. 2006, 26, 531-568.

4. Durrant, J. D.; McCammon, J. A., Molecular Dynamics Simulations and Drug

Discovery. BMC biology 2011, 9, 71.

5. Lane, T. J.; Shukla, D.; Beauchamp, K. A.; Pande, V. S., To milliseconds and

beyond: challenges in the simulation of protein folding. Curr. Opin. Struct. Biol. 2013,

23, 58-65.

6. Thibault, J. C.; Facelli, J. C.; Cheatham, T. E., 3rd, iBIOMES: Managing and

Sharing Biomolecular Simulation Data in a Distributed Environment. J. Chem. Inf.

Model. 2013, 53, 726-736.

7. Ng, M. H.; Johnston, S.; Wu, B.; Murdock, S. E.; Tai, K.; Fangohr, H.; Cox, S. J.;

Essex, J. W.; Sansom, M. S. P.; Jeffreys, P., BioSimGrid: Grid-Enabled Biomolecular

Simulation Data Storage and Analysis. Future Gener. Comp. Sy. 2006, 22, 657-664.

8. Hospital, A.; Andrio, P.; Fenollosa, C.; Cicin-Sain, D.; Orozco, M.; Lluis Gelpi, J.,

MDWeb and MDMoby: An Integrated Web-Based Platform for Molecular Dynamics

Simulations. Bioinformatics 2012, 28, 1278-1279.

9. Simms, A. M.; Toofanny, R. D.; Kehl, C.; Benson, N. C.; Daggett, V.,

Dynameomics: Design of a Computational Lab Workflow and Scientific Data Repository

for Protein Simulations. Protein Eng. Des. Sel. 2008, 21, 369-377.

10. Meyer, T.; D'Abramo, M.; Hospital, A.; Rueda, M.; Ferrer-Costa, C.; Perez, A.;

Carrillo, O.; Camps, J.; Fenollosa, C.; Repchevsky, D.; Lluis Gelpi, J.; Orozco, M.,

MoDEL (Molecular Dynamics Extended Library): A Database of Atomistic Molecular

Dynamics Trajectories. Structure 2010, 18, 1399-1409.

11. Thibault, J. C.; Roe, D. R.; Facelli, J. C.; Cheatham III, T. E., Data model,

dictionaries, and desiderata for biomolecular simulation data indexing and sharing. J.

Cheminform. 2014, 6, 4.

109

12. Goni, R.; Apostolov, R.; Lundborg, M.; Bernau, C.; Jamitzky, F.; Laure, E.;

Lindhal, E.; Andrio, P.; Becerra, Y.; Orozco, M.; Lluis Gelpi, J., Standards for Data

Handling. ScalaLife White Paper 2013.

13. Hinsen, K., MOSAIC: A Data Model and File Formats for Molecular Simulations.

J. Chem. Inf. Model. 2013.

14. Bodenreider, O., The Unified Medical Language System (UMLS): Integrating

Biomedical Terminology. Nucleic Acids Res. 2004, 32, D267.

15. Simple Knowledge Organization System (SKOS) reference.

http://www.w3.org/TR/skos-reference/

16. OWL 2 Web Ontology Language Document Overview (Second Edition).

http://www.w3.org/TR/owl2-overview/

17. McCray, A. T.; Burgun, A.; Bodenreider, O., Aggregating UMLS semantic types

for reducing conceptual complexity. Stud. Health Technol. Inform. 2001, 216-220.

18. RDF 1.1 Turtle (Terse RDF Triple Language). http://www.w3.org/TR/turtle/

19. OWL API. http://owlapi.sourceforge.net/

20. SKOS API. http://skosapi.sourceforge.net/

21. Grenon, P.; Smith, B.; Goldberg, L., Biodynamic ontology: applying BFO in the

biomedical domain. Stud. Health Technol. Inform. 2004, 102, 20-38.

22. Brinkman, R. R.; Courtot, M.; Derom, D.; Fostel, J. M.; He, Y.; Lord, P.; Malone,

J.; Parkinson, H.; Peters, B.; Rocca-Serra, P.; Ruttenberg, A.; Sansone, S. A.; Soldatova,

L. N.; Stoeckert, C. J., Jr.; Turner, J. A.; Zheng, J.; consortium, O. B. I., Modeling

biomedical experimental processes with OBI. J. Biomed. Semantics. 2010, 1 Suppl 1, S7.

23. Hastings, J.; de Matos, P.; Dekker, A.; Ennis, M.; Harsha, B.; Kale, N.;

Muthukrishnan, V.; Owen, G.; Turner, S.; Williams, M.; Steinbeck, C., The ChEBI

reference database and ontology for biologically relevant chemistry: enhancements for

2013. Nucleic Acids Res. 2013, 41, D456-63.

24. Ashburner, M.; Ball, C. A.; Blake, J. A.; Botstein, D.; Butler, H.; Cherry, J. M.;

Davis, A. P.; Dolinski, K.; Dwight, S. S.; Eppig, J. T.; Harris, M. A.; Hill, D. P.; Issel-

Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J. C.; Richardson, J. E.; Ringwald, M.;

Rubin, G. M.; Sherlock, G., Gene ontology: tool for the unification of biology. The Gene

Ontology Consortium. Nature genetics 2000, 25, 25-9.

http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/turtle/
http://owlapi.sourceforge.net/
http://skosapi.sourceforge.net/

110

25. Natale, D. A.; Arighi, C. N.; Barker, W. C.; Blake, J. A.; Bult, C. J.; Caudy, M.;

Drabkin, H. J.; D’Eustachio, P.; Evsikov, A. V.; Huang, H., The Protein Ontology: a

structured representation of protein forms and complexes. Nucleic Acids Res. 2011, 39,

D539.

26. Gennari, J. H.; Musen, M. A.; Fergerson, R. W.; Grosso, W. E.; Crubézy, M.;

Eriksson, H.; Noy, N. F.; Tu, S. W., The evolution of Protégé: an environment for

knowledge-based systems development. Int. J. Hum-Comput. St. 2003, 58, 89-123.

27. Apache Lucene. https://lucene.apache.org/

28. Lexical Variant Generator (LVG) Java API, 2014 release; 2014.

29. Rajasekar, A.; Moore, R.; Hou, C.; Lee, C. A.; Marciano, R.; de Torcy, A.; Wan,

M.; Schroeder, W.; Chen, S. Y.; Gilbert, L., iRODS Primer: Integrated Rule-Oriented

Data System. Synthesis Lectures on Information Concepts, Retrieval, and Services 2010,

2, 1-143.

30. Helping Interdisciplinary Vocabulary Engineering (HIVE).

https://code.google.com/p/hive-mrc/

31. W3C SPARQL 1.1 Overview. http://www.w3.org/TR/sparql11-overview/

32. Medelyan, O.; Witten, I. H. Thesaurus based automatic keyphrase indexing. In

Proceedings of the 6th ACM/IEEE-CS joint conference on Digital libraries, 2006; ACM:

2006; pp 296-297.

33. Hastings, J.; Chepelev, L.; Willighagen, E.; Adams, N.; Steinbeck, C.; Dumontier,

M., The chemical information ontology: provenance and disambiguation for chemical

data on the biological semantic web. PloS one 2011, 6, e25513.

34. Cimino, J. J., Desiderata for controlled medical vocabularies in the twenty-first

century. Methods Inf. Med. 1998, 37, 394-403.

35. Bright, T. J.; Yoko Furuya, E.; Kuperman, G. J.; Cimino, J. J.; Bakken, S.,

Development and Evaluation of an Ontology for Guiding Appropriate Antibiotic

Prescribing. J. Biomed. Inform. 2012, 45, 120-8.

36. Ananiadou, S.; Mima, H., Automatic recognition of multi-word terms: the C-

value/NC-value method. Int. J. Digit. Libr. 2000, 3, 115.

http://www.w3.org/TR/sparql11-overview/

CHAPTER 5

IBIOMES: MANAGING AND SHARING BIOMOLECULAR

SIMULATION DATA IN A DISTRIBUTED

ENVIRONMENT1

Abstract

Biomolecular simulations, which were once batch queue or compute limited, have

now become data analysis and management limited. In this paper we introduce a new

management system for large biomolecular simulation and computational chemistry

datasets. The system can be easily deployed on distributed servers to create a minigrid at

the researcher’s site. The system not only offers a simple data deposition mechanism but

also a way to register data into the system without moving the data from their original

location. Any registered dataset can be searched and downloaded using a set of defined

metadata for Molecular Dynamics and Quantum Mechanics, and visualized through a

dynamic web interface.

1 Reproduced in part with permission from Thibault, J.C., Facelli, J.C., and Cheatham III, T.E. (2013).

iBIOMES: Managing and Sharing Biomolecular Simulation Data in a Distributed Environment. Journal of

Chemical Information and Modeling, 53(3), 726-736. Copyright 2014 American Chemical Society.

112

Introduction

Biomolecular simulations aim to study the structure, dynamics, interactions, and

energetics of complex biomolecular systems. Understanding biological phenomena with

these methods may facilitate the design of better drugs, therapies, catalysts and

nanotechnology.1-3 With the recent advances in hardware, it is now not only possible to

use more complex and accurate models, but also to reach time scales that are biologically

significant. When simulating biomolecular dynamics on the microsecond time scale for

example, one can easily generate molecular dynamics trajectories of the time series of

atomic positions that represent terabytes (TB) of data on disk. More recently, special-

purpose hardware such as the Anton machine has allowed researchers to reach

millisecond time scales,4 increasing the size of the resulting data even further. While the

computing power has dramatically increased in the last decade, our ability to manage,

store, analyze, and move large datasets is still limited. Central repositories for the

community or even at the lab level are desirable to facilitate data management, analysis,

and sharing. This will require both new methods to catalog existing datasets by keeping

them in place and improved mechanisms for facilitating and cataloguing data storage and

movement.

Biomolecular simulations and computational chemistry are dominated by two

classes of methods: Molecular dynamics (MD) and quantum mechanics (QM). Many

variations (based on parameter choice or approximations) of the methods exist, along

with hybrid approaches that combine different methods. A wide variety of MD and QM

codes are available to the scientific community. AMBER,5 NAMD,6 CHARMM,7

GROMACS,8 and LAMMPS,9 are some of the most popular MD simulation codes in use

113

today to simulate proteins, nucleic acids, or even larger molecules. Gaussian,10

NWChem,11 GAMESS,12 Q-Chem,13 Jaguar,14 and VASP15 on the other hand, are popular

QM packages, typically used to study small molecules such as drug compounds. The

heterogeneity of the data resulting from the simulations (e.g., QM calculation vs. MD

atom trajectories), and the format of input and output files makes data management non-

trivial. Moreover, each simulation software package has its own way to represent

simulation parameters (e.g., simulated time, method), molecule topologies, and resulting

data (e.g., trajectories of the times series of atomic positions). Additionally, each lab has

multiple researchers (including students, post-docs, staff) using local and national

resources, different software packages and methods, different file naming conventions,

and different analysis workflows. As a result it can become quite complicated for

investigators to manage this distributed multiuser environment and retrieve summaries of

simulations that were run in the past.

The heterogeneity of biomolecular simulation data and the distributed nature of

the resources used by researchers become even more obvious as we move towards

collaboration between labs, and across institutions. Nevertheless, sharing data outside the

owner’s institution has a scientific purpose. As theoretical models (e.g., basis sets, force-

fields) and implementations evolve developers need to validate their code by comparing

results to existing implementations. Creating collaborative networks for developers of a

particular software package would increase the number of testing and validation datasets

available to them. For biomedical researchers, the more datasets become available to the

community, the easier it is to expose correlations between experiments and provide

insight into biological structure and function. A successful example is the ABC (Ascona

114

B-DNA Consortium) initiative, led by multiple laboratories distributed all over the world.

A large series of MD simulations of B-DNA were run by the many groups in a divide-

and-conquer manner to expose sequence-specific nucleic acid structure and dynamics.16-

19 A significant challenge has been to aggregate the data. Such initiatives could be

facilitated if labs had tools to manage and share their data within a collaborative network

or with the community at large.

Sharing raw simulation data with the community would also facilitate replication

of results and increase the trustworthiness of related publications. For a single software

package, there might be hundreds of different parameters a user can set, and related

publications typically will not include all of them. Replication of a simulation run will

then require guesses if the original input files are not made publicly available. Finally,

there may be unanticipated uses of MD data that will prove community-level databases to

be desirable (e.g., the development of coarse-grained force fields parameterization or

novel analyses of the existing data).

Because of the amount of data researchers have to deal with, it is not always

practical to centralize the data for collaboration. Distributed systems offer a good solution

for scientific research in general. Distributed data sources can be aggregated as a single

resource despite being physically distant, and local control over the data at each node can

be conserved. This is very important as researchers tend to be reluctant to expose all their

data or give up ownership. Distributed systems, such as the Grid,20 allow researchers to

keep control over their own data (storage, backup, security) while offering the tools to

expose them to the community with authentication and authorization mechanisms.

115

Although data management systems at the community level are important, new

mechanisms are needed to facilitate or even automate the integration of local data owned

by individual researchers into collaborative or public repositories. While local data are

usually unorganized (file system versus database) and dynamic by nature, public

repositories tend to be more static and more structured to enable domain-specific queries

by researchers. Mapping these two approaches seamlessly is not a trivial task. Three

levels of granularity for data management should be considered. First, at the lowest level,

tools should provide a means for individual researchers to effectively catalogue, browse,

and search their data, and expose features across datasets. In the case of MD simulation

data, such features might include, beyond the raw simulation data and input files,

summaries of the analysis such as root-mean-squared deviation (RMSD) plots versus

time, molecular graphics of average structures, and/or sequence/topology information.

The tools used to catalogue and collect these data should not be onerous or complicated.

They also need to run in closed environments where the data owner might not have root

privileges (e.g., national computer resources). Finally, data presentation should be

customizable so that the user can specify which analysis results should be considered for

display to summarize a particular experiment. At the next level, data management tools

should allow users to share information (and customizations) within their group or lab.

Ultimately, these tools should allow users to share their data with the community either

by granting access to their existing data in a secured fashion or by copying the data and

its description (i.e., the metadata) to a public repository.

An important aspect of biomolecular simulation data management is the ability to

catalogue the data not only at the level of an individual simulation – typically physically

116

represented by a single set of files or a single directory of data on a file system – but also

across larger experiments or projects distributed among multiple file systems and

directories of data. In the context of this work we consider an experiment or project as a

set of dependent QM or MD runs. For example MD experiments usually require a

minimization and an equilibration preprocessing phase. Here the minimization-

equilibration-production runs would be considered as a single experiment. Experiments

can be grouped together to form experiment sets, for example, independent runs of a

similar system with different force fields or simulation protocols (i.e., related but

independent simulations, results and files). By providing organization not only at the

level of individual simulations but across related experiment sets, the user is provided

with a greater ability to manage and search physical data (files and directories) and

logical sets.

In this paper, we introduce iBIOMES (integrated BIOMolEcular Simulations), a

distributed system for biomolecular simulation data management. Input and output files

can be easily registered into the system and indexed using a set of metadata,

automatically generated by format-specific parsers. Servers containing existing datasets

can be easily integrated into the system to avoid large data movements and still benefit

from the indexing capabilities of iBIOMES. A prototype is deployed at the University of

Utah and is being developed to expose a subset of the MD and QM datasets generated by

our lab over the years. Data are managed via a Java API and exposed via a web portal

(http://ibiomes.chpc.utah.edu).

Several projects have tried to tackle the problem of molecular simulation data

storing and/or sharing. We can distinguish two types of infrastructure: one that is purely

http://ibiomes.chpc.utah.edu/

117

based on relational databases, and one that keeps references to the raw input and output

files and only stores simulation metadata in a relational database. The BioSimGrid

project21 and the Dynameomics project22 belong to this first category, where trajectory

information is stored directly into database tables, using one entry for each atom and for

each time frame. Scalability of pure relational databases using this approach becomes

problematic as we reach larger molecular systems and biologically-relevant time scales.

For example, in our lab we have over 200 TB of raw MD simulation data including

multiple microsecond scale simulations containing millions of frames of trajectory data;

replicating the raw data into a database is impractical, wasteful of disk resources, and

would be extremely slow to process. Another issue for these databases is the lack of

analysis tools as most current analysis tools perform their calculations on the raw files,

and not on database tables. The eMinerals project23,24 and the MoDEL (Molecular

Dynamics Extended Library)25,26 databases adopted a different approach where the raw

output files (or a compressed version) are made available and searchable through a

database that stores information about the runs (e.g., PDB ID, molecule name). The

advantage of keeping the raw files is that it becomes easier to replicate the results if

necessary and existing tools can be used to perform the analysis of trajectory files.

For the iBIOMES project, we designed and implemented a distributed solution to

data storage and sharing across research labs using this second approach. Simplicity was

one of the key concerns for the development of this system. Users should be able to

deposit, search, and retrieve data into and from the system easily through simple

commands, similar to those offered by the Bookshelf system.27 The iBIOMES system

provides such a command-line interface along with a web interface which offers extra

118

visualization components. Another key concern was the ability to deploy the system

locally without interfering with the lab workflow. Data can be “deposited” into the

system – i.e., copied from a remote resource to a resource that is part of the system – or

simply “registered” in place if the host server is integrated into the system. This becomes

a crucial necessity as labs tend to have multiple servers storing terabytes of data and

moving these data to be tracked by the system is not practical. The underlying data

handling system, based on the iRODS (Integrated Rule Oriented Data System)

framework,28 creates a virtual data warehouse at the researcher’s site, where data can be

distributed among multiple servers and searched through metadata query. Metadata

include system information (e.g., file location, file name, permissions, registration date)

and iBIOMES-defined metadata (e.g., simulation description, title, force field used) that

are used to index MD simulations or QM calculations. iRODS provides a command-line

interface to manage all the servers and the files that are registered into the system.

iBIOMES offers several other commands that are used to publish simulation files into the

system and automatically generate metadata. A web portal and a REST (REpresentational

State Transfer29) interface are also available to facilitate queries of MD and QM data for

the end-user and external systems. In the next sections, we will give more details about

the iRODS data-handling system, the metadata being used, and the different user

interfaces that were specifically developed for iBIOMES.

The iRODS data-handling system

The Integrated Rule Oriented Data System (iRODS)28 is a file management

system that provides the tools to register, move, and lookup files that are distributed over

the network and stored in different types of disk (e.g., HPC servers, files servers, archive

119

tapes). iBIOMES uses iRODS as its underlying data handling system to manage

distributed resources. Files that are registered into an iRODS zone are accessed using a

virtual path that hides the physical location of the files (and servers), which makes it

simple for users to logically organize their own data in a distributed environment.

Information about the resources and the files registered into an iRODS zone are stored

into the iCAT (iRODS CATalog) database. This database keeps track of the system

information (e.g., file location, file name, owner) and user-defined metadata that allow

any triplet “attribute, value, unit” (AVU). A simplified example of a user metadata table is

given in Table 5.1. User-defined metadata can be used to search and retrieve distributed

data that are registered in iRODS.

A command line interface is available to manage this virtual warehouse. The “i-

commands” provide the necessary functionalities one would need in a Unix-like

environment to move data between servers, manage file permissions, users and groups,

etc. Commands are also available to check data integrity, i.e., whether a registered file

physically exists and if its content has not been altered outside iRODS. The ifsck

command can be used to compare the size or checksum of the physical file with its

corresponding entry in the system, while the iscan command can parse the file system to

check if a physical file or directory is already registered into iRODS. iRODS also

provides a powerful rule engine to manage policies and respond to specified conditions

(e.g., registration of a new file) by applying a defined rule (e.g., synchronize the file with

another server). Command-line and web interfaces are provided to lookup files based on

user-defined metadata or system metadata. iRODS is supported by the Data Intensive

Cyber Environment (DICE), which is also responsible in part for the development of the

120

Storage Resource Broker (SRB).30 Although SRB is still supported, iRODS became the

DICE-recommended framework to manage distributed data. Several national and

international scientific projects have already successfully adopted iRODS for their

cyberinfrastructure needs. The Wellcome Trust Sanger Institute and the Broad Institute

currently use iRODS to manage sequencing data.31 The iPlant Collaborative project32

uses iRODS to manage data gathered from all plant sciences, including genotypic and

phenotypic data. iRODS has also been used to manage astronomy data, typically images

in the gigabyte range (National Optical Astronomy Observatory (NOAO), International

Virtual Observatory Alliance (IVOA)). National computational Grids have also started to

use iRODS for data management in their widely distributed environments. XSEDE

(Extreme Science and Engineering Discovery Environment, https://www.xsede.org), a

large cyberinfrastructure project in the US, now offers data replication services based on

iRODS at a number of its sites (e.g., National Center for Supercomputing Applications,

Pittsburgh Supercomputing Center, Texas Advanced Computing Center). The Open

Science Grid (OSG) is following the trend and is currently integrating iRODS into their

cyberinfrastructure (www.opensciencegrid.org). This adoption by major computational

centers is very important. First it creates a strong community of users and developers.

Then it facilitates the federation of remote sites together, and therefore the deployment of

systems such as iBIOMES to fulfill the needs of scientists in a particular area. While

iRODS provides generic data and metadata storage and query capabilities, iBIOMES

offers a domain-specific metadata catalog and customized user interfaces for

biomolecular simulation data.

https://www.xsede.org/
http://www.opensciencegrid.org/

121

iBIOMES architecture

The general architecture of iBIOMES is presented in Figure 5.1. At the lowest

level, iRODS stores the file/collection metadata in a PostgreSQL database

(http://www.postgresql.org), and provides interfaces to manage the distributed resources

integrated into the system. A MySQL database (http://www.mysql.com) was added to

store MD and QM related metadata definitions and dictionaries such as lists of force-

fields, basis sets, software, and definitions of experiment sets. Each experiment set can be

assigned a name, description, and a set of metadata. While each experiment is assumed to

be a physical directory somewhere in the system, sets are logical groups of experiments

where each experiment can be part of multiple sets. A Java API (iBIOMES-core) was

created to programmatically access iRODS resources and to manage metadata that are

specific to biomolecular simulations. The API also helps to generate metadata by parsing

the files that are being registered into the system in order to avoid manual annotation by

the data owner. Access to iRODS functionalities is facilitated through the Jargon Java

API provided by iRODS. Finally, a RESTful interface and a web portal provide access to

the registered data in a more user-friendly fashion.

Metadata

When working with biomolecular simulation data, several pieces of information

are needed to summarize and index the experiments. Our current list of metadata covers

the following categories: authorship (e.g., owner, related publications), methods (e.g.,

MD or QM, basis set, force field, parameters), molecular system (e.g., topology, type of

molecule), platform (hardware and software information), and files (e.g., format). Our

goal is to develop a list of core metadata that would be software-independent, and

http://www.mysql.com/

122

sufficient to retrieve raw data files that contain the necessary details to replicate an

experiment. The metadata schema database contains the current list of metadata attributes

and their definitions. A subset of the metadata attributes defined in iBIOMES is given in

Table 5.2. This database also contains several dictionaries such as lists of force fields,

basis sets, or software packages that users can use to facilitate queries or annotations of

experiments. This list is extensible and allows custom user-defined metadata.

The distinction between experiment and experiment set is important when

registering data into iBIOMES. Metadata are automatically generated for the files

through the API’s parsers then pushed up to the experiment level. For example, in a

directory containing AMBER simulation data, the topology-related metadata are parsed

from AMBER topology files, or PDB files if not available. The new topology metadata

set is then added to the root directory, which is considered to be the representation of the

experiment. Currently, no metadata are generated for experiment sets, but the owner can

easily pick one of the experiments or a file to push metadata to the experiment set level.

For example if the topology information is the same for all experiments within the set,

this information can be easily pulled and applied to the set level via the web interface.

Currently, automatic metadata generation is supported for PDB files, MOL/SDF

files, Mol2 files, AMBER topology, input, and output files, GROMACS Include

Topology (.itp), System Topology (.top), and parameter input (.mdp) files, Protein

Structure Files (.psf), NWChem, Gaussian, and GAMESS input files. Each parser

implementation is based on the conceptual model summarized in Figure 5.2.

File parser classes inherit from AbstractTopologyFile, AbstractParameterFile, or

AbstractParameterAndTopologyFile, whether the target file format defines topology

123

information, calculation parameter, or both. For example the Gaussian input file parser

inherits from AbstractParameterAndTopology since it needs to parse the QM calculation

parameters (e.g., basis set, level of theory) and the compound topology, while the PDB

parser only looks at topology information and inherits from AbstractTopologyFile.

In order to implement a new parser one needs to create a new Java class that

inherits from one of the abstract classes and write a parsing function that will build the

Method and/or MolecularSystem (i.e., a set of molecules) objects. Mapping between this

data model and the iBIOMES metadata is done through the getMetadata() method

available for each of the classes inheriting from Method and Molecule. This method is

automatically called when registering the files into iBIOMES.

While in most cases rules for parsing files can be applied solely based on the file

name extension (e.g., .pdb), there are cases where the format of a file cannot be

determined based on its extension. To overcome this issue and enable automatic metadata

assignment and extensibility, a set of rules can be defined in an XML descriptor file.

Rules can define metadata for files or directories with names matching a specified

pattern. Examples of such rules are given in Figure 5.3. In this example the first rule

defines possible file extensions for AMBER topology files (.prmtop, .topo, .top,

or .parm). The second rule targets files that are the result of an MD trajectory clustering

algorithm. The clustering tool generates averaged structures in PDB format but omits

the .pdb file extension. By applying this rule these files are recognized as PDB files when

registered into the system and viewable as 3D structures. The last rule targets a CSV

(comma-separated value) file that represents a time series, generated by an analysis

script. As the same script and name conventions are used in our lab, this rule helps define

124

the labels (e.g., Time, Density), titles (e.g., Evolution of density over time), and units

(e.g., ps, g/cm3) for the data contained in the file. Once registered, this file can be

automatically displayed through the web interface as a 2D plot with the correct legends

and axis titles.

This rule set can be customized to fit the needs of a particular lab or user.

Experience showed that file name convention for a particular software package run (e.g.,

AMBER) and the following analysis vary only slightly for the same user. Therefore the

XML file will be reusable. Once a simulation and its associated files are registered into

iBIOMES, the owner or the authorized users can still edit the metadata through the web

interface (or any iRODS interface).

Interfaces

Web interfaces

A REST interface was developed to offer web services for access to the metadata

catalog and dictionaries. The metadata catalog is open access as it only contains general

definitions of biomolecular simulation related metadata. The related services are mainly

used to auto-complete user entries in the web interface (e.g., software name, force field).

The current web portal builds upon this REST interface and allows authenticated and

authorized users to manage and search data registered in iBIOMES (Figure 5.4 and 5.5).

Users can create queries based on the standard metadata catalog to retrieve simulations of

interest. The queries can either target files, experiments (collections of files), or

experiment sets. A simple web interface is available to query data files and experiments

based on common attributes such as methods, molecule type (e.g., DNA, RNA, protein)

or residue chain (nucleotide or amino acid sequence). Residue chains are normalized and

125

used as file or experiment metadata, along with the software-specific residue chains. The

normalized residue chains are sequences of 1-letter nucleotide or amino acid codes. For

example one could search for a particular protein / RNA system using the following

AVUs:

RESIDUE_CHAIN_NORM = “%GGCUCGUGUAGCUCAUUAGCUCCGAGCC%”

RESIDUE_CHAIN_NORM = “%SGPRPRGTRGKGRRIRR%”

Or using AMBER-specific residue chains:

RESIDUE_CHAIN = “%RG5 RG RC RU RC RG RU RG RU RA RG RC RU RC RA RU RU

RA RG RC RU RC RC RG RA RG RC RC3%”

RESIDUE_CHAIN = “%SER GLY PRO ARG PRO ARG GLY THR ARG GLY LYS GLY ARG

ARG ILE ARG ARG%”

Although the first approach enable searches through experiments generated by

different software packages, the second approach is still useful as certain residue codes

are meaningful only in the context of a particular software package or within a

community.

Experiments can also be retrieved by simply entering keywords, in which case the

metadata attribute is bypassed and the query only uses the value component of the AVU

triplets to find matches. Advanced queries can be built as well. The user can pick and

choose metadata attributes from the iBIOMES metadata catalog or manually enter user-

specific attributes, then assign values to each attribute. Figure 5.6 shows how one could

build a query through the web interface using the catalog of standard iBIOMES metadata.

Matching experiments and files can be downloaded and data content can be

summarized directly through different applets if the user has the right permissions. For

example Jmol33 is used for 3D rendering of molecules described in PDB, Mol2,

MOL/SDF or Gaussian log files (Figure 5.7). Users can pick Jmol-supported files and

126

load them into the applet to compare structures or create multiframe animations. Two-

dimensional data such as time series in comma-separated or tab-delimited value format

can be dynamically plotted through a service based on the JFreeChart

(http://www.jfree.org/jfreechart/) library (Figure 5.8a-b). Supported graphs include

multiline plots (e.g., comparison of RMSd of multiple runs), scatter plots, and heatmaps

(2D-RMSd matrix). A “shopping cart” based on DICE’s iDrop applet

(https://code.renci.org/gf/project/irodsidrop) also allows users to pick and choose files or

collections of files they want to download in a bulk fashion (Figure 5.9).

Experiment sets can be created through the web interface as well. Set owners can

define the list of referenced experiments and metadata for a particular set directly from

the corresponding experiment set summary page. Experiment sets can be made public or

private.

More options are available to experiment data owners or users with write

permissions. For example they can manage permissions at the collection or file level and

update the associated metadata. iBIOMES-defined metadata can be easily edited using

the available dictionaries. User-defined metadata that are not defined in the iBIOMES

catalog can be added as well, and used to build queries. While metadata are automatically

generated during data publication into the system, the set of metadata might be

incomplete or not totally accurate. The web interface allows the user to update topology-

specific metadata or method-specific metadata by specifying which files should be used

as templates. In the case of the topology for AMBER data, this could be a topology file or

a PDB file; for the methods, this could be an MD input or output file. Finally, the main

page for a particular experiment can be customized by specifying which 3D structures

http://www.jfree.org/jfreechart/
https://code.renci.org/gf/project/irodsidrop

127

should be displayed, and which files should be presented to summarize the results.

Related publications and published structures (e.g., from the Protein Data Bank,34

PubChem,35 or the Cambridge Structural Database36) can be added as well for reference.

The web portal was built with Java Server Pages (JSP) and Spring MVC

(http://www.springsource.org/). This code, along with the main Java API (iBIOMES-

core) was integrated into Maven (http://maven.apache.org/) to manage external

dependencies and automate builds.

Data registration

One of the goals of iBIOMES is to make the data publication process as easy as

possible. Two scenarios are supported: registration of data into the system without

moving the files, and registration after data transfer from a local or remote resource (e.g.,

desktop, remote computational resource) to an iBIOMES node. Both registration options

are available through Unix-like commands that can be run from the machine where the

data reside. For in-place registration, the host needs to be integrated to the target

iBIOMES zone. Usage of these commands is given in Figure 5.10.

Deployment at the University of Utah

iBIOMES installation requirements

iBIOMES requires a Java Runtime Environment (1.7) to be installed on the host

machine. iBIOMES-core is packaged into a single JAR (Java ARchive) file including all

the dependencies (e.g., iRODS Java API). As iBIOMES is dependent on iRODS, iRODS

should be installed first on the servers that need to be integrated to the system, then the

iBIOMES-core library and scripts can be copied on these machines. To host the web

http://www.springsource.org/
http://maven.apache.org/

128

application, a web server such as Apache Tomcat (http://tomcat.apache.org) is required to

deploy the iBIOMES-web and iBIOMES-ws codes, which are packaged as two WAR

(Web application ARchive) files.

iRODS configuration

The current iBIOMES setup for our lab is presented in Figure 5.11. Although all

the components of iBIOMES could be installed on a single physical server, we decided to

deploy the system in a distributed environment to assess a more likely scenario where

data need to be scattered among multiple disks. The primary iRODS server along with

the iCAT database were installed on a Linux server (CentOS 5.8). Two file servers (Red

Hat Enterprise Linux Server 6.3) were integrated into the same iRODS zone

(“ibiomesZone”) to provide over 10 TB of disk space overall. Each file server runs an

iRODS server instance, and each disk on the servers is exposed as an iRODS resource.

Resources can be grouped together to apply data storage policies managed by iRODS.

For example one could define a policy to enforce data replication on all resources of the

same group, or to order resources in the group to define which resource should be used

for storage first. For our case, the 5 resources (5 disks in 2 separate servers) were grouped

together and managed through a load balancing policy defined in iRODS. A rule

periodically triggers the activation of a resource monitoring system and calculates the

load factor on each machine. The iRODS administrator can customize the way the load

factor is calculated by assigning a weight to the disk space resource, the CPU load, the

memory load, etc. The administration of iRODS servers (start/stop, resource definition,

http://tomcat.apache.org/

129

rule control) is made simple through the i-commands and other scripts that can be run

only by an iRODS administrator.

iBIOMES deployment

An Apache Tomcat 7 server was installed on the first server to host the web portal

and the REST services. The iBIOMES metadata schema database (MySQL) was installed

on a second Linux server (CentOS 5.8). This was done through a set of SQL scripts that

create the database schema and populate the biomolecular simulation metadata catalog

and the dictionaries. The iBIOMES client tools (scripts and JAR file) can be copied to

remote resources (e.g., HPC facility) by users to enable data transfer and registration into

the system directly from resources outside the defined iRODS zone.

Data summary

Our lab currently owns over 200 TB of both MD simulation and QM calculation

datasets. For this prototype we decided to expose a subset of these data that would still be

representative of the type of simulation that is done in our lab. Our current projects

involve mainly nucleic acid force field developments and P450 QM studies. This is

reflected in the datasets currently published in our iBIOMES instance, which for now

contain MD simulations of RNA for force-field assessment (AMBER FF 10), and QM

calculations that were performed in Gaussian 03 to generate AMBER-compatible heme

parameters for various states of the P450 cycle.37 Because of licensing restrictions, our

Gaussian datasets could not be released for public access yet. On the other hand a series

of MD simulations of RNA was released, along with a subset of the data derived from the

130

ABC consortium’s study on B-DNA.17 The ABC set currently includes a series of

experiments with final stripped trajectories (~20-60 GB each) and basic analysis data

(e.g., RMSd, radial plots).

A guest account was created to enable read access for anybody interested in these

public datasets. Guests can search experiments, read summaries, and graphically

visualize data from this subset. Currently the shopping cart service for bulk downloads is

not available for guest logins. Guests can still download files individually. The iBIOMES

prototype can be accessed via the guest login option at: http://ibiomes.chpc.utah.edu.

Discussion

In this paper we presented a new distributed system developed to manage large

biomolecular simulation datasets. The underlying data handling system based on the

iRODS framework creates a virtual data warehouse at the researcher’s site, where data

can be distributed among multiple servers. Both iRODS and iBIOMES are easy to deploy

through a set of scripts. Existing archive servers can be integrated into iBIOMES without

a need for a physical reorganization of the files, saving the cost of moving terabytes of

data. The current implementation of iBIOMES uses the native iRODS password

mechanism to authenticate users. iRODS also supports the Grid Security Infrastructure

(GSI) which will facilitate the integration of iBIOMES into scientific Grids. Support for

LDAP has been recently added as well. The burden of creating and maintaining iRODS-

specific accounts can then be avoided by system administrators, who in turn can deploy

iRODS in closed environments with existing security mechanisms and user accounts.

The publication process is facilitated by parsers that automatically generate

metadata during file registration, and can be customized for the need of a particular user

http://ibiomes.chpc.utah.edu/

131

or lab through XML descriptors. Although our efforts have mainly focused on supporting

AMBER and Gaussian datasets, we are currently working on improving our parsers for

other popular MD and QM software packages, including GROMACS, CHARMM,

Gaussian, GAMESS, and NWChem. Experiments registered into iBIOMES can be easily

retrieved through simple keyword searches or queries built upon data elements defined in

a metadata catalog for MD simulations and QM calculations. We are currently gathering

feedback from the community to define a list of core metadata that would be sufficient to

search and retrieve simulation datasets. A data model will be designed to define

relationships between the concepts represented by these metadata, and facilitate future

semantic integration with external systems, such as scientific grids. In order to enable

researchers outside the field of computational chemistry to query data in a meaningful

way, it will be necessary to facilitate the annotation of experiments using biological

metadata (e.g., molecule name, organism). Currently this type of metadata would have to

be entered manually via the web interface after data publication. This process could be

facilitated in the future through a web service that would query common databases such

as the Protein Data Bank to automatically generate these data elements based on the PDB

ID.

Metadata are represented by AVU triplets that can be either tied to the iBIOMES

metadata catalog, or customized to represent concepts that are specific to a user or a lab.

This provides a very flexible data annotation model compared to a standard relational

database schema, where model modifications require an intervention from the database

administrators. One limitation of the AVU model is the lack of relations between AVUs.

For example, one cannot assign properties to two different molecules (e.g., name, type,

132

residue chain) represented in the same experiment, as attribute names will be the same for

both molecules, and cannot be distinguished, as shown in the following example:

MOLECULE_TYPE = “RNA”

RESIDUE_CHAIN = “GGCUCGUGUAGCUCA…”

MOLECULE_TYPE = “Protein”

RESIDUE_CHAIN = “SER GLY PRO ARG PRO ARG…”

In the current implementation of iBIOMES relations between AVUS cannot be

determined. While this is not required for indexing purposes, this becomes necessary to

provide a clear conceptual view of the data to the users. To create a more structured

metadata schema the iCAT database can be extended with custom tables and enable

queries on these tables via the standard iRODS interfaces. Such capability could help us

keep track of metadata in a more structured way, especially for multimolecule systems

and experiments based on multiple runs using different methods.

The current prototype deployed for our lab demonstrated the ability of iRODS and

iBIOMES to manage large biomolecular simulation datasets in a distributed environment.

The iBIOMES web portal provides a rich and dynamic user interface to search,

download, and visualize data registered into the system. Advanced features are available

for data owners to manage permissions, annotate experiments, and customize data display

in the web interface. Direct data analysis via iBIOMES is currently not supported. The

analysis output has to be explicitly registered into the system and described via metadata

to enable visualization through Jmol or the plotting service. This can be achieved

automatically by customizing the XML rule set descriptor before data publication or

directly via the web interface after data deposit. Thanks to these features users can easily

extend the web interface to include new pictures, spreadsheets, or links to any type of

133

data file. The current focus of iBIOMES is not to enable deep analysis of the derived data

but instead to provide the means to display, catalogue and share information about

biomolecular simulations. As we move forward the system will be enhanced to add

simple analysis support (e.g., RMSd calculations, data extraction from time series

datasets). Our long-term goal is to provide a complete framework where data can be

tracked locally, analyzed via automated processes, and registered seamlessly into a global

system such as iBIOMES. For now we hope to learn more from the current iBIOMES

system, and define more clearly the needs of the users, such as:

 Which data elements are required or missing for indexing and search purpose?

 How would users interact with iBIOMES to execute complex analysis

workflows?

 What can be improved to facilitate education, networking or collaboration

between users?

Conclusion

iBIOMES is a new distributed system for biomolecular simulation data

management. The data registration process is simple and supported by metadata

generators, customizable by the user if needed. Registration does not require physical

transfer of the data, which makes it a great solution for researchers who want to expose

existing datasets. Finally data summarization and management are facilitated through a

rich web interface that offers different visualization components for 3D structures and

analysis data (e.g., time series). Guest access to our web portal is currently available at

http://ibiomes.chpc.utah.edu.

http://ibiomes.chpc.utah.edu/

134

With the adoption of iRODS across the world, and across scientific domains, we

believe that iBIOMES has a strong potential to create collaborative networks within the

field of biomolecular simulation, for users, developers, and newcomers to the field.

135

Figure 5.1, General architecture of iBIOMES. At the lowest level,

iRODS stores the file metadata while a separate MySQL database

enforces standard metadata use and allows definitions of

experiment sets. A REST interface and a web client provide query

and update capability to the metadata catalog through the iRODS

API (Jargon) and an iBIOMES-specific API (iBIOMES-core).

Figure 5.2, Simplified class diagram representing the file parser

implementations

136

Figure 5.3, Example of XML rule set used to customize the

publication process. The first rule associates file extensions to a

particular file format (AMBER topology). The second and third

rules associate a particular set of metadata to analysis output files

that follow a standard nomenclature in our lab.

137

Figure 5.4, iBIOMES web interface: summary page for an MD

simulation of DNA including analysis data and a representative 3D

structure.

138

Figure 5.5, iBIOMES web interface: file listing for a particular

experiment.

139

Figure 5.6, Advanced experiment search through the web interface.

Users can pick metadata attributes and values from the standard

catalog or create free-text criteria. This particular example shows

how one would search MD simulations of protein/RNA complexes

run with AMBER.

140

Figure 5.7, Integration of Jmol to render and manipulate 3D

structures.

141

 (
 a

)

(
b

)

F
ig

u
re

 5
.8

,
P

lo
tt

in
g
 t

o
o
ls

 u
se

d
 i

n
 t

h
e

iB
IO

M
E

S
 w

eb
 i

n
te

rf
ac

e
fo

r
d
at

a
v
is

u
al

iz
at

io
n

.
T

h
e

p
lo

tt
in

g

se
rv

ic
e

is
 b

as
ed

 o
n
 t

h
e

JF
re

eC
h
ar

t
li

b
ra

ry
 a

n
d
 e

n
ab

le
s

co
m

p
ar

is
o
n
 o

f
m

u
lt

ip
le

 R
M

S
d

 (
ro

o
t

m
ea

n

sq
u
ar

e
d
ev

ia
ti

o
n
)

p
lo

ts
 (

a)
 a

n
d
 r

en
d

er
in

g
 o

f
R

M
S

d
 2

D
 m

at
ri

ce
s

as
 h

ea
tm

ap
s

(b
).

142

Figure 5.9, Integration of the iDrop Lite applet to enable bulk

downloads of files through the shopping cart service.

143

For in-place registration:

ibiomes register -i local-dir [-o irods-vpath] [-s software] \

[-x xml-descriptor]

For data deposit with transfer:

ibiomes push -i local-dir [-o irods-vpath] [-s software] \

 [-x xml-descriptor] [-r default-resc]

Arguments:

[local-dir] Path to the local directory to parse/register

[irods-vpath] Virtual path to the iRODS collection to be created

[software] Name of the software package used to run the simulation

(e.g., amber, nwchem)

[xml-descriptor] Path to the XML descriptor that specifies metadata

generation rules

[default-resc] Name of the default iRODS resource to use for storage

Figure 5.10, iBIOMES commands for in-place registration and

standard publication with data transfer

Figure 5.11, Configuration of the iBIOMES infrastructure at the

University of Utah (Cheatham lab). Storage resources are

distributed over 2 servers and currently offer a 10 TB capacity.

144

Table 5.1, Simplified view of the iRODS user-metadata table

File ID Attribute Value Unit

1 molecule type Protein

1 simulated time 0.5 ms

1 software AMBER

2 molecule type RNA

2 temperature 300 K

Table 5.2, A subset of the metadata attributes defined in iBIOMES

Category Attribute Example values

Molecular

System

Water count Integer

Atom count Integer

Ion count Integer

Molecule type Protein, RNA, DNA, chemical compound

Residue sequence ATTCGAAT, ALA PRO HIS LEU, APHL

Reference structure PDB:1BIV, PubChem:2733526

Method

(general)

General method
Molecular dynamics, Quantum Mechanics, Coarse-grain Dynamics,

QM/MM

Boundary conditions Periodic, non-periodic

Solvent Implicit, explicit, in vacuum

Molecular

Dynamics

Force field AMBER FF 99, GROMOS 43A1 , ReaxFF

Barostat Andersen, Berendsen, Parrinello-Rahman

Thermostat Berendsen, Nose, Nose-Poincare

Molecular mechanics

integrator
Verlet, Leapfrog

Electrostatics modeling Cutoff, Classic ewald, PME, reaction field

Quantum

Mechanics

General QM method Hartree-Fock, Moeller-Plesset, DFT, Configuration interaction

Level of theory SCF, MP2, MP4, CCSD(T)

Basis set STO-3G, 6-31++G*, cc-pCDVZ

Spin multiplicity 0, 2

Total charge -1, 0, 1, 2

145

References

1. Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H.; Shaw, D. E., Biomolecular

Simulation: a Computational Microscope for Molecular Biology. Annu. Rev. Biophys.

2012, 41, 429-452.

2. Alonso, H.; Bliznyuk, A. A.; Gready, J. E., Combining Docking and Molecular

Dynamic Simulations in Drug Design. Med. Res. Rev. 2006, 26, 531-568.

3. Klein, M. L.; Shinoda, W., Large-Scale Molecular Dynamics Simulations of Self-

Assembling Systems. Science 2008, 321, 798-800.

4. Shaw, D. E.; Deneroff, M. M.; Dror, R. O.; Kuskin, J. S.; Larson, R. H.; Salmon,

J. K.; Young, C.; Batson, B.; Bowers, K. J.; Chao, J. C. Anton, A Special-Purpose

Machine for Molecular Dynamics Simulation. In ACM SIGARCH Computer

Architecture News, 2007; ACM: 2007; Vol. 35; pp 1-12.

5. Case, D. A.; Cheatham, T. E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.,

Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J., The Amber Biomolecular

Simulation Programs. J. Comput. Chem. 2005, 26, 1668-1688.

6. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.;

Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K., Scalable Molecular Dynamics with

NAMD. J. Comput. Chem. 2005, 26, 1781-1802.

7. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D., CHARMM: A Program for

Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem.

1983, 4, 187-217.

8. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E., GROMACS 4: Algorithms

for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem.

Theory. Comput. 2008, 4, 435-447.

9. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics. J.

Comput. Phys. 1995, 117, 1-19.

10. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;

Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,

H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.;

Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,

M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.;

Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;

Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.

C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.;

Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;

Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;

146

Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich,

S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.

Gaussian 09, Revision C. 01; Gaussian, Inc: Wallingford, CT, 2009.

11. Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam,

H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L., NWChem: A Comprehensive

and Scalable Open-Source Solution for Large Scale Molecular Simulations. Comput.

Phys. Commun. 2010, 181, 1477-1489.

12. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.;

Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S., General Atomic and

Molecular Electronic Structure System. J. Comput. Chem. 2004, 14, 1347-1363.

13. Kong, J.; White, C. A.; Krylov, A. I.; Sherrill, D.; Adamson, R. D.; Furlani, T. R.;

Lee, M. S.; Lee, A. M.; Gwaltney, S. R.; Adams, T. R., Q‐Chem 2.0: A High‐Performance

Ab Initio Electronic Structure Program Package. J. Comput. Chem. 2000, 21, 1532-1548.

14. Jaguar, Version 7.5; Schrödinger, L.L.C.: New York, NY, 2008.

15. Vienna Ab Initio Simulation Package (VASP), Version 5.3.3; 2012.

16. Beveridge, D. L.; Cheatham, T. E., III; Mezei, M., The ABCs of Molecular

Dynamics Simulations on B-DNA, Circa 2012. J. Biosci. (Bangalore, India) 2012, 37,

379-397.

17. Lavery, R.; Zakrzewska, K.; Beveridge, D.; Bishop, T. C.; Case, D. A.; Cheatham,

T., III; Dixit, S.; Jayaram, B.; Lankas, F.; Laughton, C.; Maddocks, J. H.; Michon, A.;

Osman, R.; Orozco, M.; Perez, A.; Singh, T.; Spackova, N.; Sponer, J., A Systematic

Molecular Dynamics Study of Nearest-Neighbor Effects on Base Pair and Base Pair Step

Conformations and Fluctuations in B-DNA. Nucleic Acids Res. 2010, 38, 299-313.

18. Beveridge, D. L.; Barreiro, G.; Byun, K. S.; Case, D. A.; Cheatham, T. E.; Dixit,

S. B.; Giudice, E.; Lankas, F.; Lavery, R.; Maddocks, J. H.; Osman, R.; Seibert, E.;

Sklenar, H.; Stoll, G.; Thayer, K. M.; Varnai, P.; Young, M. A., Molecular Dynamics

Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. I.

Research Design and Results on d(CpG) Steps. Biophys. J. 2004, 87, 3799-3813.

19. Dixit, S. B.; Beveridge, D. L.; Case, D. A.; Cheatham, T. E.; Giudice, E.; Lankas,

F.; Lavery, R.; Maddocks, J. H.; Osman, R.; Sklenar, H.; Thayer, K. M.; Varnai, P.,

Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA

Oligonucleotides. II: Sequence Context Effects on the Dynamical Structures of the 10

Unique Dinucleotide Steps. Biophys. J. 2005, 89, 3721-3740.

20. The Grid 2: Blueprint for a New Computing Infrastructure. second ed.; Morgan

Kaufmann: San Francisco, CA, 2003.

147

21. Ng, M. H.; Johnston, S.; Wu, B.; Murdock, S. E.; Tai, K.; Fangohr, H.; Cox, S. J.;

Essex, J. W.; Sansom, M. S. P.; Jeffreys, P., BioSimGrid: Grid-Enabled Biomolecular

Simulation Data Storage and Analysis. Future Gener. Comp. Sy. 2006, 22, 657-664.

22. Simms, A. M.; Toofanny, R. D.; Kehl, C.; Benson, N. C.; Daggett, V.,

Dynameomics: Design of a Computational Lab Workflow and Scientific Data Repository

for Protein Simulations. Protein Eng. Des. Sel. 2008, 21, 369-377.

23. Alfredsson, M. eMinerals: Science Outcomes Enabled by New Grid Tools. In

Proc. UK eScience All Hands Meeting, 2005; 2005; pp 788-795.

24. Calleja, M.; Bruin, R.; Tucker, M. G.; Dove, M. T.; Tyer, R.; Blanshard, L.; Van

Dam, K. K.; Allan, R. J.; Chapman, C.; Emmerich, W., Collaborative Grid Infrastructure

for Molecular Simulations: The eMinerals Minigrid as a Prototype Integrated Compute

and Data Grid. Molecular Simulation 2005, 31, 303-313.

25. Meyer, T.; D'Abramo, M.; Hospital, A.; Rueda, M.; Ferrer-Costa, C.; Perez, A.;

Carrillo, O.; Camps, J.; Fenollosa, C.; Repchevsky, D.; Lluis Gelpi, J.; Orozco, M.,

MoDEL (Molecular Dynamics Extended Library): A Database of Atomistic Molecular

Dynamics Trajectories. Structure 2010, 18, 1399-1409.

26. Hospital, A.; Andrio, P.; Fenollosa, C.; Cicin-Sain, D.; Orozco, M.; Lluis Gelpi, J.,

MDWeb and MDMoby: An Integrated Web-Based Platform for Molecular Dynamics

Simulations. Bioinformatics 2012, 28, 1278-1279.

27. Vohra, S.; Hall, B. A.; Holdbrook, D. A.; Khalid, S.; Biggin, P. C., Bookshelf: A

Simple Curation System for the Storage of Biomolecular Simulation Data. Database: the

Journal of Biological Databases and Curation 2010.

28. Rajasekar, A.; Moore, R.; Hou, C.; Lee, C. A.; Marciano, R.; de Torcy, A.; Wan,

M.; Schroeder, W.; Chen, S. Y.; Gilbert, L., iRODS Primer: Integrated Rule-Oriented

Data System. Synthesis Lectures on Information Concepts, Retrieval, and Services 2010,

2, 1-143.

29. Fielding, R. T., Chapter 5: Representational State Transfer (REST). Architectural

Styles and the Design of Network-based Software Architectures, Dissertation 2000.

30. Baru, C.; Moore, R.; Rajasekar, A.; Wan, M. The SDSC Storage Resource Broker.

In Proceedings of the 1998 Conference of the Centre for Advanced Studies on

Collaborative Research, 1998; IBM Press: 1998; p 5.

31. Chiang, G.-T.; Clapham, P.; Qi, G.; Sale, K.; Coates, G., Implementing a Genomic

Data Management System Using iRODS in the Wellcome Trust Sanger Institute. BMC

Bioinf. 2011, 12, 361.

148

32. Goff, S. A.; Vaughn, M.; McKay, S.; Lyons, E.; Stapleton, A. E.; Gessler, D.;

Matasci, N.; Wang, L.; Hanlon, M.; Lenards, A.; Muir, A.; Merchant, N.; Lowry, S.;

Mock, S.; Helmke, M.; Kubach, A.; Narro, M.; Hopkins, N.; Micklos, D.; Hilgert, U.;

Gonzales, M.; Jordan, C.; Skidmore, E.; Dooley, R.; Cazes, J.; McLay, R.; Lu, Z.;

Pasternak, S.; Koesterke, L.; Piel, W. H.; Grene, R.; Noutsos, C.; Gendler, K.; Feng, X.;

Tang, C.; Lent, M.; Kim, S.-J.; Kvilekval, K.; Manjunath, B. S.; Tannen, V.; Stamatakis,

A.; Sanderson, M.; Welch, S. M.; Cranston, K. A.; Soltis, P.; Soltis, D.; O'Meara, B.; Ane,

C.; Brutnell, T.; Kleibenstein, D. J.; White, J. W.; Leebens-Mack, J.; Donoghue, M. J.;

Spalding, E. P.; Vision, T. J.; Myers, C. R.; Lowenthal, D.; Enquist, B. J.; Boyle, B.;

Akoglu, A.; Andrews, G.; Ram, S.; Ware, D.; Stein, L.; Stanzione, D., The iPlant

Collaborative: Cyberinfrastructure for Plant Biology. Front. Plant. Sci. 2011, 2.

33. Herráez, A., Biomolecules in the Computer: Jmol to the Rescue. Biochem. Mol.

Biol. Educ. 2006, 34, 255-261.

34. Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F.; Brice, M. D.;

Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M., The Protein Data Bank. Eur. J.

Biochem. 2008, 80, 319-324.

35. Wang, Y.; Xiao, J.; Suzek, T. O.; Zhang, J.; Wang, J.; Bryant, S. H., PubChem: A

Public Information System for Analyzing Bioactivities of Small Molecules. Nucleic Acids

Res. 2009, 37, W623-W633.

36. Allen, F. H.; Taylor, R., Research Applications of the Cambridge Structural

Database (CSD). Chem. Soc. Rev. 2004, 33, 463-475.

37. Shahrokh, K.; Orendt, A.; Yost, G. S.; Cheatham, T. E., 3rd, Quantum

Mechanically Derived AMBER-Compatible Heme Parameters for Various States of the

Cytochrome P450 Catalytic Cycle. J. Comput. Chem. 2012, 33, 119–133.

CHAPTER 6

IBIOMES LITE: SUMMARIZING BIOMOLECULAR

SIMULATION DATA IN LIMITED SETTINGS1

Abstract

As the amount of data generated by biomolecular simulations dramatically

increases, new tools need to be developed to manage these data at the individual

investigator or small research group level. In this paper we introduce iBIOMES Lite, a

light-weight tool for biomolecular simulation data indexing and summarization. The main

goal of iBIOMES Lite is to provide a simple interface to summarize computational

experiments in a setting where the user might have limited privileges and limited access

to IT resources. A command-line interface allows the user to summarize, publish, and

search local simulation datasets. Published datasets are accessible via static HTML pages

summarizing the simulation protocol and presenting analysis data graphically. The

publication process is customized via XML descriptors while the HTML summary

template is customized though XSL stylesheets. iBIOMES Lite was tested on different

platforms and at several national computing centers against various datasets generated

through classical and quantum molecular dynamics, quantum chemistry, and QM/MM.

1 Reproduced in part with permission from Thibault, J.C., Cheatham III, T.E., and Facelli, J.C. (2014).

iBIOMES Lite: Summarizing Biomolecular Simulation Data in Limited Settings. Journal of Chemical

Information and Modeling, 54 (6), 1810-1819. Copyright 2014 American Chemical Society.

150

The associated parsers currently support AMBER, GROMACS, Gaussian, and NWChem

dataset publication. The code is available at: https://github.com/jcvthibault/ibiomes.

Background

The use of high-performance computing resources to push the limits of

biomolecular simulations has been a necessity for decades. As more computational power

becomes available, researchers can tackle larger systems and longer time scales. While it

was common practice to run the simulations on remote clusters and bring back the

resulting data to the home institution, this paradigm now breaks down. Data have to be

postprocessed directly at the source to minimize data movements and minimize the

amount of disk space necessary for storage. For example trajectories can be compressed

and/or stripped of unnecessary information (e.g., solvent) before being copied over.

Another approach is to simply run the analysis remotely, where the data reside. No matter

which approach is preferred, researchers need to deal with huge amount of data

distributed over local and national resources.

Several repository architectures have been proposed to manage large biomolecular

simulation datasets in a distributed environment. BioSimGrid1 was deployed in the UK to

integrate several computational centers into a grid, where data could be deposited,

searched and analyzed. Trajectory and provenance metadata were stored in a relational

database. iBIOMES2 on the other hand offers a distributed infrastructure that allows

biomolecular simulation data indexing with data deposit (explicit copy) or in-place

registration to avoid data movements. Trajectory files are stored and indexed via the

iRODS distributed file system,3 where metadata are represented as Attribute-Value-Unit

triplets. While these approaches might work well to manage large distributed

https://github.com/jcvthibault/ibiomes

151

environments, the deployment of such infrastructure depends on access to substantial IT

expertise and resources, such as web servers, relational databases, and distributed file

systems, which may not be available to many single investigators or small research

groups. Many researchers also depend on local or national computational and storage

resources that are allocated for a finite period of time. Usage of these resources is usually

very restrictive for security reasons and the installation of heavy components such as

databases is not an option to manage the data hosted at these remote locations. Another

limitation of current repositories is the need to copy the simulation data to a remote

server for publication. This can be a tedious task that requires extra storage cost if a copy

of the data has to be kept at its original location. In this paper we introduce iBIOMES

Lite, a new tool for biomolecular simulation data indexing and summarization, designed

to run in limited settings, where the users might have limited privileges and limited

access to IT resources. A command-line interface allows the user to summarize, publish,

and search simulation datasets locally or remotely via secure shell (SSH). Published

datasets are summarized through a static web interface that describes the simulation

protocols and graphically represent analysis results. iBOMES Lite can be easily installed

on any data server to enable summarizations of old datasets and figure out what their

content is and what methods were used, or to facilitate progress tracking by exposing

current simulation results. In contrast with simple tools such as Bookshelf4 and UMM-

MoDEL5 that have been proposed to publish simulation data, but exhibit dependencies on

database components, iBIOMES Lite allows data indexing and summarization while

removing dependencies on external components that would require root access or special

support for deployment.

152

Design

Scope and requirements

iBIOMES Lite’s goal is to provide the means for researchers to index and

summarize simulation data in limited settings, so they can keep track of their lab work

and share progress or results with collaborators. The main user action supported by

iBIOMES Lite is the publication of experiments: the user specifies a file directory or

subdirectory that contains all the simulation files (input and output data), then with

minimal input from the user, the tool generates a detailed description of the

computational experiment workflow along with textual and graphical summaries,

rendered through a simple web interface. Once an experiment is published it can be

searched via keywords representing the experiment metadata (e.g., molecule name,

residue sequence, computational method). Unlike the full fledge iBIOMES repository,2

iBIOMES Lite does not provide access to the files associated to the published

experiments. All files are categorized and listed, but only files presenting analysis data

are made available for download. This limitation was required to keep simplicity as a key

design criterion for this tool. This criterion was applied at 3 different levels: deployment,

usage, and customization as follows:

 Deployment: the tool should be able to run in most environments, independently

from the operating system running on the host (e.g., Unix, Windows). The tool

should also be able to run whether a graphical user interface is available or not.

Root permissions should not be a prerequisite to install the program. This can be

achieved by removing dependencies on heavy-weight components such as

databases, web servers, or specific file systems.

153

 Usage: the tool should be usable in a multiuser and distributed environment by

providing simple commands. The command-line interface provides a Unix-like

interface to summarize simulation data, publish them into a static HTML web site,

and perform keyword searches.

 Customization: the publication process should be easily customizable by the user

so that the resulting summaries provide an accurate and pertinent representation

of the raw data. The actual code should not have to be modified to perform such

customization. Instead customization should be enabled through templates, and

configuration files.

Web interface

The entry point for the web interface is a page listing all the published

experiments, as shown in the iBIOMES Lite demonstration instance presented in Figure

6.1. General information about the experiments (e.g., method, targeted molecular system,

software package) is provided and can be used to sort the listing. By selecting one of the

listed experiments the user can access more details. Currently, each experiment is

associated to 4 different HTML pages. The summary page (Figure 6.2) presents a

summary of the experiment protocol along with possible analysis data, plots and 3D

structures, rendered via Jmol.6 A second HTML page provides a tree view of the protocol

used in the experiment, so that the user can access the details of interest, while keeping

the overall picture of the workflow (Figure 6.3). A third HTML page provides a tree view

that allows the user to browse the directory and subdirectories associated to the

experiment and list their content (Figure 6.4).

154

Finally a last HTML page gives details about the execution of the tasks and the

computing environment (Figure 6.5). Execution times and resources used to run the tasks

(e.g., number of CPUs and GPUs) are reported, along with hardware information (e.g.,

GPU architecture). Tasks that did not terminate correctly are flagged. This view is

intended for users to track the progress of current simulations and assess the performance

of their simulation engine within the host environment.

Implementation

Overview

iBIOMES Lite was implemented in Java 7 to ease the development of a platform-

independent tool. Although Java 6 is arguably a more popular version, Java 7 offers

enhanced file I/O libraries (NIO 2) that might prove to be useful for future developments

(e.g., file change listeners, file tree searches), and it is still available at most US

computing centers. A set of Bash scripts for Unix-like operating systems (i.e., Linux and

Mac OS-X) and Win32 (.bat) scripts for Windows were written to wrap the Java calls into

simple commands. These scripts can be easily called in a console locally or remotely, via

SSH for example.

Publication process

Users publish computational experiments to iBIOMES Lite to create HTML

summaries and index their data for searches. A user publishes a computational

experiment by specifying a directory or subdirectory that contains all the simulation files

(input and output) and the name of the software package that was used to generate these

files (Figure 6.6). A set of file parsers extract topology, method, and parameter

155

information to generate a representation of the simulation workflow, based on the data

model introduced in previous work.7 The workflow and file tree structures are stored as

XML files then transformed into several HTML pages via XSL (eXtensible Stylesheet

Language8). Plots are generated for analysis files when applicable then stored in the

iBIOMES Lite web directory along with the HTML files.

The final output of the publication process is a set of XML files, static HTML

files, images, and other analysis data files (e.g., spreadsheets). These output files can be

exposed via an HTTP server such as Apache (http://httpd.apache.org/), or viewed locally

if a graphical user interface is available. If neither option is available, the files can also be

copied to a different host for rendering. Since the HTML is not generated on-the-fly by

server-side code the web content can always be copied without information loss.

In the next sections we describe in more details the data extraction step performed

by the file parsers and the data transformation step used to generate the HTML

summaries.

Parsers

The role of the parsers is to map a given computational experiment file tree on

disk to a logical representation of the protocol and output of the experiment. The data

model introduced in 7 was used to guide the logical representation, for both the definition

of the Java classes and the XML schema used to represent individual computational

experiments, i.e., the simulations. The parsers work at the file level, extracting important

data or metadata for file summary, and at the file tree level, trying to build the logical

model based on the file directory structure and the file-extracted data.

http://httpd.apache.org/

156

File parsers

The file parsers are format-specific, although they are expected to build certain

common objects based on their type: topology, parameter/method, or hybrid. For example

both the AMBER parameter/topology and Protein Structure File (PSF) parsers are

expected to build an object representing a molecular system, composed of one or multiple

molecules, each represented by residues and/or atoms. On the other hand the AMBER

MD input and NAMD configuration file parsers are building objects representing the

methods and parameters used to run a computational task. Implementation of the parsers

then requires understanding of the target format and the expected object(s) to build. All

parsers target the data model introduced in7 to provide a common representation of the

computational protocol that is not software-specific. The list of current parsers provides

different levels of support for various software packages, including AMBER,9

GROMACS,10 NAMD,11 NWChem,12 and Gaussian.13

File tree parsers

The implementation of file tree parsers is not as straight forward. The structure of

a file is inferred from its format while the structure of a directory does not follow any

strict rule. While we cannot force users to store their files following a given directory

structure, manual inspection of files structure from many computational experiments

performed in our lab by numerous graduate students and post docs lead us to assume that

the protocol of the computational experiment can be inferred by parsing certain files if

the original owner can provide a description of the file tree structure and the naming

conventions used to organize the data.

157

The preprocessing step in the mapping process is to parse all the files in the input

directory and its subdirectories using the file-specific parsers. The resulting file tree

associates each file with a set of descriptive data about the molecular system or

computational methods. The second step is to build a logical representation of the

computational experiment protocol using these objects. When publishing a new

experiment the user needs to specify the main software package that was used to run the

simulations (e.g., AMBER, NAMD, Gaussian, NWChem). Depending on this argument

different rules are used to build the logical representation of the experiment. For example

in AMBER, both MD input and MD output files can be used to retrieve the methods and

parameters of a run. As for most software packages the output/log files are preferred over

input files to extract this type of data. Output files are typically richer as they usually

repeat information from the input file(s) and provide explicit values to parameters that

have not been set in the input, but which are used as the default values in the particular

software. Output files can also present some calculation details, such as the evolution of

the energy of system over a certain cycle of iterations, that can be easily exposed and of

potential value to better understand the experiment protocol.

Other rules can be triggered based on the computational method used or the type

of calculation performed. For example if minimization tasks and MD tasks are detected

within the experiment, minimization tasks are grouped together, while MD tasks are

divided into a “heating” process, an “equilibration” process and a “production MD”

process. Heating tasks represent MD runs where temperature of the system is slowly

increased, to eventually reach a reference temperature for the production runs. Distinction

between equilibration and production runs is currently made based on the textual

158

description of the task if it is available. Regular expressions were created to detect

keywords such as “production,” “prod,” “equilibration,” and “equil.”

For Replica-Exchange MD (REMD), some extra step might be needed to group

replicas for the same run together. In AMBER for example, an output file is created for

each replica. In our data model, all replicas for a single run are grouped together under a

single REMD task instead of having separate MD tasks representing individual replicas.

Each REMD task is described like any other MD task and it also has a certain number of

replicas and a type of exchange (e.g., temperature, Hamiltonian, multidimensional). This

representation helps summarizing the data, especially when running REMD simulations

with hundreds of replicas. By default REMD output files stored in the same folder are

assumed to represent replicas from the same group. This would apply for example if a

user stored 3 4-replica REMD runs in 3 different folders with each 4 output files.

Experience shows that this approach is not unique, and some people might prefer to have

all REMD output in a single folder. Replica identification and grouping is then based on

file naming conventions. Using the same example, a user could store all the REMD

output files in a single folder and name the files using the pattern that identifies both the

run and the replica within this run, such as:

remd.[IDRUN].[IDREPLICA].out,

where 0 ≤ IDRUN ≤ 2 and 0 ≤ IDREPLICA ≤ 3.

The user can specify this type of naming convention in the iBIOMES Lite general

configuration file or at run time using the –remd command line argument. If no run

identifier is present in the name pattern then grouping is solely based on the directory

structure. This type of rule-based grouping is currently applied to REMD tasks only but it

could be expended to include any type of parallel enhanced sampling task.

159

Data transformations

XML representation

After the logical model of an experiment is built within the Java code it is stored

on disk as an XML file. Mapping between the Java object-oriented data model and the

XML schema is performed via JAXB (Java Architecture for XML Binding). An example

of such XML is presented in Appendix E. A second XML file is generated based on the

file tree structure, where each file is associated to a set of metadata, represented as

attribute-value-units (AVU) triplets. This representation is very similar to the approach

used for the iBIOMES repository2 to enable indexing within iRODS (Integrated Rule-

Oriented Data System3). An example of such an XML file tree is illustrated in Appendix

E. The AVUs are derived from the objects extracted by the file parsers, such as molecular

system definitions or parameter sets. Each of these entities implement a getMetadata()

method that translates the logical entity (object) into a list of AVUs. For example the

getMetadata() method for the Thermostat class will generate AVUs for the followings

attributes: THERMOSTAT_ALGORITHM (e.g., Berendsen, Langevin) and

THERMOSTAT_TIME_CONSTANT if applicable.

These XML documents provide two different perspectives on the data: one that

emphasizes on the experiment protocol, the logical view, and another one that emphasizes

on the physical organization of the input and output files. While the first view can

provide some insight on the protocol used to run the simulations, the second view enables

simple data indexing via keywords. A copy of these XML files is stored directly in the

experiment folder. Another copy is pushed to the iBIOMES Lite web folder, in a

subdirectory dedicated to the experiment. A separate XML document representing the list

160

of published experiments is also updated by copying experiment-level AVUs from the

XML document storing the experiment file tree.

Analysis data

Beside the experiment protocol and the file tree, iBIOMES Lite can present

analysis data in the experiment summary page. The user can edit an XML configuration

file to define which piece of data should be presented and how it should be presented.

This is achieved by associating file name patterns to analysis descriptions, as introduced

in iBIOMES.2 Any file that is marked as analysis data is copied to the iBIOMES Lite web

folder to enable display and/or download. For example PDB files that are marked as

analysis data can be rendered via Jmol,6 and image files (e.g., PNG, JPEG) are presented

as thumbnails linking to a copy of the original picture. For column delimited text files

(e.g., tab- or comma-delimited files) the tool attempts to create a graphical representation

of the content. The XML configuration files can be used to define the type of plot to be

generated (e.g., line plot, histogram, heatmap), its labels, units, and title. The resulting

plot is exported as an image and copied over to the iBIOMES Lite web folder, along with

the original data file.

Transformation

Once the XML files and data files have been copied to the iBIOMES Lite web

directory, all data and metadata of interest are ready to be visually rendered by

transforming the XML into HTML. Multiple XSL stylesheets define the mappings

between the XML and the various HTML pages necessary to list the published

161

experiments and provide details about individual experiments. The actual XSL 2.0 based

transformation process in the Java code is performed via the Saxon processor.14 Since

XSL stylesheets are defined as separate documents one could easily customize these

HTML templates to fit their need.

Shared iBIOMES Lite web folder for multiuser use

iBIOMES Lite allows multiple users to share the same web directory to publish

experiments. This means that all the members of a lab for example can publish

experiments stored on a shared file system to a single portal. From a user-interface

perspective, information about the publication event needs to be tracked: each experiment

is associated to a publication date (different from the dataset creation date) and a

publisher (i.e., the file system username). From a publication perspective, safeguards

have to be created to ensure data integrity when two users try to publish an experiment

simultaneously. If both users try to publish the same experiment then one should be

blocked to allow the other user’s action to parse the associated directory and generate the

descriptor files. Whether the target experiments are different or not, the web directory

containing the listing and the index of experiments should not be updated concurrently.

A locking system was implemented to prevent concurrent updates. If somehow

two users are trying to publish the same experiment folder concurrently, the second user’s

publication action is automatically cancelled and the user is warned. If two users are

trying to publish different experiments simultaneously, updates from the second user on

the experiment listing will be queued until the first users’ publication process is over.

162

Commands

Various Unix-like commands are available to manage the published experiments

in iBIOMES Lite. A complete description of these commands is available on the

iBIOMES Wiki (http://ibiomes.chpc.utah.edu/mediawiki/). Here we only present a

summary of the most important ones: the publish (ibiomes-lite-publish), the search

(ibiomes-lite-search), and clean (ibiomes-lite-clean) commands.

Publish experiments

To publish an experiment into iBIOMES Lite – i.e., to parse the experiment folder

and generate the associated web content – one should use the ibiomes-lite-publish

command:

ibiomes-lite-publish -i <experiment-dir> [-s software] [-x xml-

descriptor] [...]

[experiment-dir] Path to the root of the experiment directory

[software] Name of the software package used to run the

simulation/calculations (e.g., amber, nwchem)

[xml-descriptor] Path to the XML descriptor that specifies metadata

generation rules. If no file is specified default values defined in the

API are used.

Search experiments

iBIOMES Lite offers a simple search function: the user provides a list of

keywords that are matched against the AVU values in the XML document listing all the

published experiments. Paths to experiments that contain all provided keywords are

returned. Searches are performed via the ibiomes-lite-search command, defined as:

http://ibiomes.chpc.utah.edu/mediawiki/

163

ibiomes-lite-search < keywords >

[keywords] List of keywords separated by '+' character. Wildcards can

be specified using '%'. Example:

ibiomes-lite-search %dynamics+rna+amber.

2 experiment(s) found:

[0] /home/user1/ibiomes/test/amber/rnamodrd

[1] /home/user1/ibiomes/test/amber/tutorial1

Clean web content

Remove content (XML and HTML) from iBIOMES Lite website. XML

descriptors at the experiment directory level are conserved, and can be published again. If

the -i option is not specified then all experiments are removed:

ibiomes-lite-clean

ibiomes-lite-clean -i < experiment-dir >

[experiment-dir] Physical path to the experiment to remove from iBIOMES

Lite.

Tests in limited settings

Methods

A critical test for iBIOMES Lite is to demonstrate its ability to work in a variety

of environments, including large computational clusters hosted by national centers and

single PI labs. A successful deployment here is defined by the following criteria:

1. All prerequisites (i.e., Java 7) are installed or can be installed on the targeted

system

2. The user can install iBIOMES Lite on the targeted system, i.e., copy the files and

set up the necessary environment variables, and configuration parameters.

164

3. The user can publish datasets within the targeted system and visualize the

generated website within this system or an external one (e.g., home institution).

4. To demonstrate these capabilities iBIOMES Lite was deployed on various

machines, such as desktop computers and laptops running different operating

systems, and at various US computational centers.

Results

iBIOMES Lite was successfully deployed on different desktop computers and

laptops, running the following operating systems: Linux (Fedora Core 18), Windows 7,

and Mac OS X 10. iBIOMES Lite was also deployed at the following facilities: the

Center for High Performance Computing (CHPC) at the University of Utah, the National

Center for Supercomputing Applications (NCSA), the Texas Advanced Computing

Center (TACC), and the San Diego Supercomputing Center (SDC). The actual

computational environments targeted for testing purpose are described in Table 6.1.

More detailed benchmarking on the parser was performed on Blue Waters

(NCSA) and Stampede (TACC). The dataset descriptions and associated directory parsing

timings are reported in Table 6.2. All the reported timings were obtained by submitting

several batch jobs to these two clusters, using a single computational node. The reported

average and standard deviation (Std. dev.) for the processing times were calculated based

on 10 jobs for each dataset.

Dependence between log file (AMBER MD output) sizes and parser execution

times is presented in Figure 6.7. As expected, the larger the aggregated size of all log files

the longer the execution time since MD output files are the main target of the parsers. The

165

timings presented here are only presented as a rough estimate for various types of

AMBER datasets. In our example datasets the number of topology files (e.g., PDB,

AMBER parameter/topology) is fairly small compared to the number of MD output files

but the timings are still dependent on these files. For example if a large number of PDB

files representing trajectory snapshots or representative structures with solvent

information are present in the input directory, the MD output might not have as much

impact on the overall parsers’ performance. Note that trajectory files (e.g., AMBER

NetCDF, CHARMM DCD) are not actually parsed since they are typically very large

(~MB-TB) and they do not provide extra information about the topology or methods used

in the simulation.

The parsers were also tested on Blue Waters using an interactive session. The

parsers seem to be faster with an average execution time of 94.20 seconds, versus 119.4

seconds for the equivalent batch job. The standard deviation was higher (14.85 seconds

vs. 2.1 seconds), which can be explained by the fact that the interactive node was shared

with other users running various tasks.

Discussion

Thanks to its simplicity, iBIOMES Lite can be deployed in limited environments

where users have limited permissions and no access to heavy components such as

database system managers. More importantly, we showed here that iBIOMES Lite can be

used at major computational centers where Big Data is generated. Our current parsers and

protocol model builders may not be adapted to all types of directory structure, but this

limitation should be circumvented in the future by including more configurable rules

based on naming conventions, file content, computational methods, and textual

166

descriptions to enable an accurate representation of the experiment protocol with minimal

input from the user.

Summarization does not require bringing back the raw data to the home

institution: iBIOMES Lite can be run at the source despite the limitations due to security

concerns in such infrastructures. Since the published summaries are static and provide a

compressed view of the simulation, the results of the publications can be easily copied to

a new location for rendering via the web, or simply to centralize the summaries from

different computing centers at a single location. Scripts could be created to automate this

process, as well as to regenerate the summaries to make sure that they are up to date with

the associated raw data. Since the publication process is performed via a command line

interface, the iBIOMES Lite summarization step can be added to a regular simulation job

description when running in a cluster. Another alternative when targeting data hosted at a

computational center is to run the publication process via an interactive session. For very

large datasets with thousands of files the parsers might take over half an hour to go

through all the files. Running such tasks on the login nodes of a cluster is usually not

recommended by the hosting institution as other users might observe a dramatic

slowdown when trying to access their data or submit a job. Most computing centers allow

users to request interactive sessions, which are usually provided within minutes, unlike

batch job submissions which might stay queued for hours or days.

Although most demonstrations for iBIOMES Lite have been done through the

publication of AMBER-generated datasets, the parsers support datasets generated by

other MD engines such as GROMACS and NAMD. The development of the data model

and parsers has been guided by our experience with AMBER but the support for other

167

software packages has allowed us to avoid software-specific data representations and

parsing rules. Parsers for QM datasets (e.g., GAUSSIAN, NWChem) were also

developed to demonstrate the generalizability of the data model and the web interface.

Although nowadays MD is a de facto standard approach to run biomolecular simulations,

QM cannot be excluded from this realm. First MD can be dependent on QM when new

force field parameters have to be created for nonstandard residues or small ligands. Then

QM has promise in the study of biomolecules, at least for small systems.15 The inclusion

of less common and more complex methods in the data model such as Replica-Exchange

MD, QM/MM and Quantum MD has proven the decomposition of parameters into sets of

method-specific parameters to be fairly generalizable. These methods are currently

supported only for the AMBER software package, which enables QM/MM MD,16 Semi-

empirical Born-Oppenheimer MD (SEBOMD17), and replica-exchange MD. The initial

rationale behind the development of iBIOMES Lite was the need for a simple tool that

would be able to mimic the features offered by the iBIOMES repository2 in a non-

distributed environment controlled by a strict security policy. This has been a successful

attempt as iBIOMES Lite can create rich summaries with graphical rendering (Jmol,

plots) and basic search capabilities. One advantage of iBIOMES Lite over the distributed

repository is the ability to provide a detailed and logical description of the computational

experiment protocol via XML transformation. The current AVU model used by the

iBIOMES repository to index data is very flexible but relationships between data

elements cannot be described. The addition of a relational database to the repository

architecture to keep track of the experiment workflow is part of our effort to provide a

generic infrastructure for biomolecular simulation data sharing.7 One of the major

168

limitations of iBIOMES Lite, by design, is the fact that the web interface does not

provide access to the raw data. iBIOMES Lite is not a replacement for data repositories.

Instead it should be seen as a way for researchers to summarize data at the source for

progress tracking and result sharing. Our end-goal is to enable the integration of

iBIOMES Lite summaries into the iBIOMES repository. Researchers would be able to

summarize their data within a computational center that does not support iRODS-based

data transfers, and publish the summary into the iBIOMES repository. The raw data

would not be available for download but users would be able to search for both full

experiments datasets and experiment summaries via a single entry point: the repository

web portal. This effort is currently supported by a common data model, a common set of

parsers, and similar web interfaces.

Conclusion

iBIOMES Lite provides the means for researchers to track and share biomolecular

simulation datasets via automatic summarization. Summaries are supported by a

software-independent data model that can describe quantum chemistry, classical and

quantum MD, REMD, and QM/MM datasets. Thanks to a simple design, the tool can be

easily installed on machines where users have limited privileges, whether they are hosted

locally or at a national computing center. iBIOMES Lite is an open-source project and is

part of the iBIOMES distribution, available at: https://github.com/jcvthibault/ibiomes.

https://github.com/jcvthibault/ibiomes

169

F
ig

u
re

 6
.1

,
L

is
ti

n
g
 o

f
p
u

b
li

sh
ed

 e
x

p
er

im
en

ts
 i

n
 i

B
IO

M
E

S
 L

it
e

w
eb

si
te

.

170

F
ig

u
re

 6
.2

,
S

u
m

m
ar

y
 o

f
an

 e
x

p
er

im
en

t
w

it
h
in

 t
h
e

iB
IO

M
E

S
 L

it
e

w
eb

si
te

.

171

Figure 6.3, Workflow details of an experiment within the

iBIOMES Lite website

172

Figure 6.4, Experiment file listing within the iBIOMES Lite

website

173

F
ig

u
re

 6
.5

,
E

x
ec

u
ti

o
n
 s

u
m

m
ar

y
 w

it
h
in

 t
h
e

iB
IO

M
E

S
 L

it
e

w
eb

si
te

.
In

 t
h
is

 e
x

am
p
le

,
a

li
st

 o
f

R
E

M
D

 r
u
n
s

(1
9
2
 r

ep
li

ca
s

ea
ch

)
is

 p
re

se
n
te

d
 t

o
 t

h
e

u
se

r
w

it
h
 j

o
b
 c

o
n
fi

g
u
ra

ti
o
n
 d

et
ai

ls
 (

e.
g
.,

n
u
m

b
er

 o
f

C
P

U
s

an
d
 G

P
U

s)
.

E
x

tr
a

co
m

p
u
ti

n
g
 e

n
v
ir

o
n
m

en
t

in
fo

rm
at

io
n
,

su
ch

 a
s

ex
ec

u
ta

b
le

d
et

ai
ls

 a
n
d
 C

P
U

/G
P

U
 a

rc
h
it

ec
tu

re
,

ca
n
 b

e
d
is

p
la

y
ed

 b
y
 h

o
v

er
in

g
 o

v
er

 t
h
e

as
so

ci
at

ed
 e

le
m

en
ts

.

174

Figure 6.6, iBIOMES Lite publication process.

Figure 6.7, Dependence between parsing execution time and total

output/log file size

175

Table 6.1, List of computing centers where iBIOMES Lite was successfully

deployed.

Resource Center Description OS Java version

Blue Waters NCSA
Cray XE6/XK7 system, over 25,000 nodes,

including NVIDIA GK110 GPUs
UNICOS 1.7.0_07-b10

Stampede TACC
6,400 nodes, InfiniBand Mellanox

Switches/HCAs
BusyBox 1.7.0_45-b18

Gordon SDSC 1,024 nodes, QDR InfiniBand interconnect CentOS 1.7.0_13-b20

Ember CHPC
262 nodes, 3144 cores, InfiniBand and

Gigabit Ethernet interconnects
RHEL 6.4 1.7.0_03-b04

Table 6.2, Parsers’ benchmarking on Blue Waters (NCSA) and Stampede (TACC).

Dataset 1 2 3 4 5 6

Resource Blue Waters Blue Waters Blue Waters Stampede Stampede Stampede

System

description
RNA tetraloop RNA tetraloop RNA tetraloop

polymer-ligand

complex

Coiled-coil

dimer
Protein

Replicas/copies
192 REMD

replicas

360 REMD

replicas

576 REMD

replicas

8 ligand

configurations
5 config. 1

Number of

atoms
7,622 6,071 15,599 ~122,000 38,744 ~22,500

Number of

runs
1 1 1 147 / config. 8 / config. 12

Trajectory

length*
9,600 ns 7,200 ns 17,280 ns 6,960 ns 1,000 ns 300 ns

Number of

files
1,160 2,536 4,043 3,425 357 404

Total directory

size
659 GB 54 GB 315 GB 816 GB 221 GB 24 GB

Log write

interval
2 ps 10 ps 2 ps 10 ps 2 ps 2 ps

Average log

file size
16 MB 1.8 MB 9.5 MB 0.5 MB 8 MB 20 MB

Total

processed

size**

3072 MB 648 MB 5472 MB 588 MB 320 MB 240 MB

Execution time

Average (sec) 264.2 119.4 504.6 64.8 26.4 14.9

Std. dev. (sec) 58.3 2.1 43.7 1.2 0.7 0.3

*Aggregated length of all trajectories in the input folder.

**Sum of the sizes of all the MD output files in the directory.

176

References

1. Ng, M. H.; Johnston, S.; Wu, B.; Murdock, S. E.; Tai, K.; Fangohr, H.; Cox, S. J.;

Essex, J. W.; Sansom, M. S. P.; Jeffreys, P., BioSimGrid: Grid-Enabled Biomolecular

Simulation Data Storage and Analysis. Future Gener. Comp. Sy. 2006, 22, 657-664.

2. Thibault, J. C.; Facelli, J. C.; Cheatham, T. E., 3rd, iBIOMES: Managing and

Sharing Biomolecular Simulation Data in a Distributed Environment. J. Chem. Inf.

Model. 2013, 53, 726-736.

3. Rajasekar, A.; Moore, R.; Hou, C.; Lee, C. A.; Marciano, R.; de Torcy, A.; Wan,

M.; Schroeder, W.; Chen, S. Y.; Gilbert, L., iRODS Primer: Integrated Rule-Oriented

Data System. Synthesis Lectures on Information Concepts, Retrieval, and Services 2010,

2, 1-143.

4. Vohra, S.; Hall, B. A.; Holdbrook, D. A.; Khalid, S.; Biggin, P. C., Bookshelf: A

Simple Curation System for the Storage of Biomolecular Simulation Data. Database: the

Journal of Biological Databases and Curation 2010.

5. Goni, R.; Apostolov, R.; Lundborg, M.; Bernau, C.; Jamitzky, F.; Laure, E.;

Lindhal, E.; Andrio, P.; Becerra, Y.; Orozco, M.; Lluis Gelpi, J., Standards for Data

Handling. ScalaLife White Paper 2013.

6. Herráez, A., Biomolecules in the Computer: Jmol to the Rescue. Biochem. Mol.

Biol. Educ. 2006, 34, 255-261.

7. Thibault, J. C.; Roe, D. R.; Facelli, J. C.; Cheatham III, T. E., Data Model,

Dictionaries, and Desiderata for Biomolecular Simulation Data Indexing and Sharing. J.

Cheminform. 2014, 6, 4.

8. W3C The Extensible Stylesheet Language Family (XSL).

http://www.w3.org/Style/XSL/

9. Case, D. A.; Cheatham, T. E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.,

Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J., The Amber Biomolecular

Simulation Programs. J. Comput. Chem. 2005, 26, 1668-1688.

10. Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.

R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E., GROMACS 4.5:

A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit.

Bioinformatics 2013, 29, 845-54.

11. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.;

Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K., Scalable Molecular Dynamics with

NAMD. J. Comput. Chem. 2005, 26, 1781-1802.

http://www.w3.org/Style/XSL/

177

12. Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam,

H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L., NWChem: A Comprehensive

and Scalable Open-Source Solution for Large Scale Molecular Simulations. Comput.

Phys. Commun. 2010, 181, 1477-1489.

13. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;

Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,

H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.;

Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,

M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.;

Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;

Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.

C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.;

Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;

Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;

Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich,

S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.

Gaussian 09, Revision C. 01; Gaussian, Inc: Wallingford, CT, 2009.

14. Saxonica Saxon-HE (Home Edition), 9.5; 2014.

15. Šponer, J.; Šponer, J. E.; Mládek, A.; Banáš, P.; Jurečka, P.; Otyepka, M., How to

Understand Quantum Chemical Computations on DNA and RNA Systems? A Practical

Guide for Non-Specialists. Methods 2013, 64, 3-11.

16. Götz, A. W.; Clark, M. A.; Walker, R. C., An Extensible Interface for QM/MM

Molecular Dynamics Simulations with AMBER. J. Comput. Chem. 2014, 35, 95-108.

17. Monard, G. SEBOMD (SemiEmpirical Born-Oppenheimer Molecular Dynamics):

Techniques and Applications. In CECAM Workshop: Approximate Quantum-Methods:

Advances, Challenges & Perspectives, University of Bremen, Germany, 2010; University

of Bremen, Germany, 2010.

CHAPTER 7

DISCUSSION

Summary

Biomolecular simulation data representation

Chapter 3 introduced a common data model for biomolecular simulations.

Elements described by the model cover the concepts of authorship, molecular system,

computing environments, and computational method. The model introduced here is the

first attempt to provide a common representation for biomolecular simulation

experiments as a set of computational tasks that can use different levels of theories and

different sets of parameters. The model is extensible and allows the representation of a

wide variety of computational methods, including molecular dynamics, quantum

chemistry and QM/MM. This model was successfully used for the design of file parsers

that provide a software-independent representation of the computational experiments.

Both the iBIOMES repository and iBIOMES Lite use these parsers to automatically

generate common metadata and/or a logical representation of the experiments being

published in these systems. The model was also used to guide the development of

different prototypes, including a Grid data service that maps the logical data model to a

physical database schema.

179

The data model was supplemented with a set of dictionaries to provide standard

values and definitions for certain data elements such as computational method names. In

Chapter 4 the data model and dictionaries were reorganized into a controlled vocabulary

inspired by the UMLS metathesaurus. The controlled vocabulary introduces a new

hierarchy between concepts and a set of semantic types to provide high-level categories

for concept search and filtering. The controlled vocabulary was extended to a Simple

Knowledge Organization System and a simple OWL ontology for use in a semantic web

context. The ontology builds upon various OBO ontologies to enable interoperability

with other popular biomedical ontologies.

Biomolecular simulation data summarization and sharing

Chapter 5 introduces the iBIOMES repository, a distributed environment to

publish, index, search, and download large datasets generated by biomolecular

simulations. The repository architecture builds upon the iRODS data handling system to

manage files stored in distributed resources. Files and directories published in iBIOMES

can be indexed using common data elements (Chapter 3) and user-specified data

elements. The common data elements are defined in a separate database that includes

textual descriptions and known value sets. Before a computational experiment is

published into iBIOMES, the file parsers automatically extract the common data elements

that summarize the experiment protocol. iBIOMES includes a web portal that can be used

to build distributed queries using these data elements. Raw data can be downloaded either

from the web portal or directly via the iRODS command-line interface, without prior

knowledge about the physical location of the data. iBIOMES is the first open architecture

180

for a distributed repository enabling biomolecular simulation data sharing. The system

can be deployed by researchers at their own sites, independently from the computational

resources that are used to generate the data. iBIOMES provides an alternative to simple

centralized repositories (e.g., Bookshelf1) that cannot scale to a community-level

approach, and to full computing environments that require users to run their simulations

under a set of constraints (e.g., limited types of biomolecules, computational methods,

and/or software packages). With iBIOMES, researchers do not need to adopt a new

simulation workflow or give up high-performance computing resources they already have

access to. Data are exposed to the repository through a simple publication process. Data

exchange is enabled by indexing the raw data via common data elements while

collaboration is enabled through authentication and authorization mechanisms to protect

private data and open public datasets to anonymous users.

While the iBIOMES repository provides a distributed solution to biomolecular

simulation data storage and indexing, other solutions are needed to manage data hosted in

limited settings where the user does not have root privileges or access to IT support to

deploy database components. Chapter 6 introduced iBIOMES Lite, a light-weight tool

that can be deployed and used in these limited settings to summarize biomolecular

simulation datasets. iBIOMES Lite is a standalone Java program that can be run in

various operating systems and hardware architectures. The use of simple technology such

as XSL transformation to generate HTML summaries makes it a viable solution in most

environments. iBIOMES Lite was successfully deployed in various US national

computing centers where big data is generated every day. Since iBIOMES Lite also uses

the logical data model introduced in Chapter 3, a common representation of the data can

181

be provided, despite the heterogeneity of the computational methods and parameters

available to researchers. iBIOMES Lite is the first effort aiming at summarizing data at

the source, whether it is on a personal laptop or at national computing centers with

thousands of computational nodes. This tool may benefit many researchers, no matter

what their IT resources are and regardless of where their data reside. Until now

management systems for biomolecular simulation data have focused on creating complex

infrastructures that would provide all the services necessary to run, store, analyze, and

share simulations.2, 3 Replication of such environments is not trivial because of the

hardware requirements (e.g., local computational cluster, disk servers) and the IT

expertise required to deploy and maintain such environments. While these integrated

environments are the end-goal for simulation data management, they are currently not

adapted to the distributed and heterogeneous resources researchers use. iBIOMES Lite is

a simpler solution that aims to be usable by any researcher in the field, enabling data

summarization, progress report, and old dataset rediscovery. As new users adopt the tool

new applications for such summaries might become more obvious. The use of the raw

XML summaries versus the HTML for example would provide a great solution to keep

track of the provenance metadata when transferring data between institutions or when

making the raw data available for download.

Limitations and future directions

The iBIOMES project

This research proposed two different architectures to satisfy researchers’ needs of

data indexing and sharing. On one hand iBIOMES Lite offers a simple tool that can be

used by any researcher in any environment to summarize data. On the other hand the

182

iBIOMES repository offers an infrastructure that provides a distributed solution to data

storage and indexing to enable sharing and collaboration. At this point these two

architectures are not interoperable. Although the same parsers are used to extract the

metadata and build the logical representations of the experiments published in these

environments, some work remains to be done. A long-term goal for the iBIOMES

repository is to allow the publication of iBIOMES Lite-generated descriptors. The

iBIOMES environment requires that the host of the data being published is already

integrated in the underlying iRODS zone. If in-place registration is not possible then the

raw data need to be copied to a remote iRODS-enabled server. In certain cases, neither

solution will be an option. For example, if terabytes of temporary data reside at a secured

computing center, it is unlikely that these data will be copied over to another resource. On

the other hand the data owner might still need to keep track of these data through

summaries like the ones generated by iBIOMES Lite. By allowing the publication of such

summaries into the iBIOMES repository, researchers would be provided with a single

end-point to track and search their datasets. Since iBIOMES Lite and the iBIOMES

repository use the same parsers there is no limitation in the current architectures that

would prevent such integration. For now the AVU representation would have to be

chosen over the richer logical representation because of the way the iBIOMES repository

indexes data. In order to store a logical representation with the same level of granularity

as iBIOMES Lite a new relational database will be needed. The necessary schema has

already been developed for the Grid prototype presented in Chapter 3, where logical and

physical data models were mapped via Hibernate.4 The logical representation built by the

iBIOMES parsers can be persisted in this database via a Hibernate-based API module that

183

was implemented to populate and test the Grid service prototype. Most of the remaining

work will focus on the development of the web services and interfaces to query and

update the relational schema. One of the advantages of the current AVU model used to

tag experiment data is its simplicity: data owners can easily add, edit and remove AVU

triplets, whether they are standard or user-specified attributes. One of the challenges will

be to create a new mechanism that will assure consistency between the relational model

and the AVU model. For example a daemon could be run to regenerate the AVU triplets

on a regular basis by checking the current state of the logical model stored in the

relational database. Conserving this consistency would provide two ways to query the

data: either doing a keyword search (via the iRODS AVU index) or a complex query (via

the relational database).

Another future direction for the iBIOMES project is the inclusion of analysis

workflows as part of the data publication process. In the current versions of iBIOMES

and iBIOMES Lite, analysis data can be published along with the raw data, but no

mechanism is in place to assure that a minimal set of analysis tasks has been run before

publication for data quality assessment. The implementation of such a mechanism will

require the creation of new configuration files to define rules that will trigger alerts or

actual analysis runs based on the content (i.e., file names) of the directory being

published. The flags could be displayed in the current web interfaces to the data owner to

provide recommendations on the analysis to run. The implementation of a process for

automatic analysis of published data is more complex since it will likely require the

integration of existing analysis tools and the creation of generic interfaces to wrap them

into computational workflows.

184

Data representation

This dissertation presented two solutions to biomolecular simulation data

summarization and sharing, but other approaches might be required to fulfill different

requirements. For example, MDWeb2 provides an environment to set up and run

biomolecular simulations via a web portal. The resulting data are automatically stored,

described, and accessed by the owner. Although this type of environment does not allow

the publication of datasets generated outside the system it is well suited to newcomers to

the field who might need help setting up their simulations. With the number of

approaches available to researchers to run and store their data, a “one tool fits all”

solution is unlikely. Therefore, one of the future challenges will be to develop data

repositories and management tools that are interoperable. Creating a common data model

for biomolecular simulations is a first step in this direction. In this dissertation we

presented a new common data model that can represent biomolecular simulations at the

experiment level, where multiple simulations and analysis tasks can be run. Although this

model has already been applied to various tools, it will likely evolve as more

implementations are undertaken. Nevertheless, the current model should be generic

enough so that higher-level concepts such as “experiment,” “task,” and “parameter” will

not be modified over time. On the other hand we can expect method-specific concepts to

be refined and reorganized. There are several ongoing efforts in the quantum chemistry

and the MD community that aim to provide a detailed description of computational task

input and output.5-7 Integration of these models into our common data model would

provide a unified and rich representation of biomolecular simulations to support data

exchange and interoperability. The development of a standard model for biomolecular

185

simulation data exchange will take time and will need support from the major

stakeholders, i.e., the users and the method developers. In this dissertation we presented a

set of recommendations built upon community feedback and refined based on experience

gained from various data exchange application implementations. These recommendations

should not be taken as a new standard, but rather as a framework that will guide the

development of a standard model upon which the community can agree. For example the

logical model presented in Chapter 3 provides a common representation of biomolecular

simulations at an abstract level, independently from any assumption about the

technology. The creation of a standard will require making such assumptions to move

towards syntactic interoperability. For example the definition of an XML schema will be

necessary for researchers to provide stand-alone descriptors when compressing and/or

moving their raw data. A standard XML schema would also enable the creation of web

service interfaces on top of existing repositories that would return standard output

directly reusable by external analysis or visualization tools.

Integration into the semantic web would go a step further towards interoperability.

A format such as OWL, which is not domain-dependent, would allow researchers to open

their data to a wider community on one hand and benefit from described and computable

data sources outside their field of expertise on the other hand. In this research we

presented initial work on the development of an OWL ontology that integrates popular

biomedical ontologies and opens the field of biomolecular simulations to the wider field

of biomedical investigations, where computational and experimental disciplines coexist.

A formal evaluation of the proposed ontology is still to be done, and like the logical data

model and the future data exchange formats, this will be achieved by involving groups of

186

experts such as the Blue Obelisk8 consortium, and developers from the MOSAIC7 and the

Scalalife5 projects.

Conclusions

This dissertation introduced new models for the description of biomolecular

simulations, a new repository architecture for the management of large datasets in a

distributed environment (iBIOMES), and a light-weight tool for data summarization in

limited settings (iBIOMES Lite). All these components were shown to facilitate data

indexing and sharing to help researchers manage their data and collaborate within and

outside the biomolecular simulation community. The data model introduced in this

dissertation is the first effort to create a computable representation of the wide spectrum

of computational methods used in biomolecular simulations. The two architectures based

on this common representation, iBIOMES and iBIOMES Lite, not only offer solutions to

the current problems faced by researchers in the field, but also an assessment of common

model-driven approaches that should guide the development of future repositories.

References

1. Vohra, S.; Hall, B. A.; Holdbrook, D. A.; Khalid, S.; Biggin, P. C., Bookshelf: A

Simple Curation System for the Storage of Biomolecular Simulation Data. Database: The

Journal of Biological Databases and Curation 2010.

2. Hospital, A.; Andrio, P.; Fenollosa, C.; Cicin-Sain, D.; Orozco, M.; Lluis Gelpi, J.,

MDWeb and MDMoby: An Integrated Web-Based Platform for Molecular Dynamics

Simulations. Bioinformatics 2012, 28, 1278-1279.

3. Simms, A. M.; Toofanny, R. D.; Kehl, C.; Benson, N. C.; Daggett, V.,

Dynameomics: Design of a Computational Lab Workflow and Scientific Data Repository

for Protein Simulations. Protein Eng. Des. Sel. 2008, 21, 369-377.

4. Hibernate. http://hibernate.org/

http://hibernate.org/

187

5. Goni, R.; Apostolov, R.; Lundborg, M.; Bernau, C.; Jamitzky, F.; Laure, E.;

Lindhal, E.; Andrio, P.; Becerra, Y.; Orozco, M.; Lluis Gelpi, J., Standards for Data

Handling. ScalaLife White Paper 2013.

6. Phadungsukanan, W.; Kraft, M.; Townsend, J. A.; Murray-Rust, P., The Semantics

of Chemical Markup Language (CML) for Computational Chemistry : CompChem. J.

Cheminform. 2012, 4, 15.

7. Hinsen, K., MOSAIC: A Data Model and File Formats for Molecular Simulations.

J. Chem. Inf. Model. 2013.

8. Guha, R.; Howard, M. T.; Hutchison, G. R.; Murray-Rust, P.; Rzepa, H.;

Steinbeck, C.; Wegner, J.; Willighagen, E. L., The Blue Obelisk-Interoperability in

Chemical Informatics. J. Chem. Inf. Model. 2006, 46, 991-8.

APPENDIX A

SURVEY FOR COMMON DATA ELEMENTS

Survey

Figure A.1 shows the section of the online survey that was used to assess the

computational platform-related data elements. Table A.1 presents results of the survey,

based on the following Likert scale: 1 = “Not important at all,” 2 = “Not very important,”

3 = “Not sure,” 4 = “Important,” 5 = “Very important,” N/A = “Not applicable.” N is the

number of responses for a particular data element. The reported score is the average of

points assigned by responders using the Likert scale. Table A.2 summarizes the

comments of the respondents for each category of data elements. The last column lists

only the comments that were either proposing new data elements or changes to the

original ones, and that were related to the data element category. The number of

respondents N is the number of people who provided at least one comment for the

associated category.

Final set of common data elements

Tables A.3, A.4, A.5, A.6, A.7, and A.8 present the final list of common data

elements by category. Each data element can be described through multiple attributes.

Recommended attributes are marked with an “R” and attributes that can be derived from

189

other attributes are marked with a “D”. Attributes that should be associated to a unit are

marked with a “U”.

190

Figure A.1, Online survey extract.

191

Table A.1, Results of the survey

Authorship data elements

Not

important at

all

Not very

important

Not

sure
Important

Very

important
N/A N Score

Username (e.g. jthibault) 10 12 6 6 3 0 37 2.46

Full name (e.g. Julien Thibault) 3 2 3 12 19 0 39 4.08

Institution Name (e.g.

University of Utah)
5 3 3 16 11 0 38 3.66

E-mail (e.g.

julien.thibault@utah.edu)
3 3 4 16 12 1 39 3.72

Publication that is related to the

current experiment (e.g. URL,

DOI)

0 2 4 13 19 1 39 4.18

Publication that is based on the

results of this run (e.g. URL,
DOI)

0 2 0 15 21 1 39 4.33

Platform data elements

Not

important at

all

Not very

important

Not

sure
Important

Very

important
N/A Responses Score

Resource domain (e.g. kraken

(NICS), CHPC (Utah))
5 14 8 9 3 0 39 2.77

Operating system (e.g. Linux,

Windows NT)
4 12 4 13 6 0 39 3.13

Hardware architecture (e.g. x86,

PowerPC)
2 11 2 18 6 0 39 3.38

GPU-accelerated (yes/no) 3 7 5 15 9 0 39 3.51

Execution time (e.g. 35h) 3 10 5 12 9 0 39 3.36

Software name (e.g. AMBER,

NAMD, CHARMM, Gaussian,

NWChem)

0 0 0 4 34 1 39 4.77

Software version (e.g. 1.0, 11,

alpha, beta)
0 2 0 6 30 1 39 4.56

Molecular system data elements

Not

important at

all

Not very

important

Not

sure
Important

Very

important
N/A Responses Score

Composition of the solvent (e.g.

Water, Na+)
0 1 1 7 29 1 39 4.56

Number of water molecules in

the system
1 2 0 12 22 2 39 4.18

Number of atoms in the system 0 1 1 9 27 1 39 4.51

Number of ions in the system 0 3 1 9 24 2 39 4.23

Molecule type (e.g. Protein,

RNA, DNA, chemical

compound, nano-particle)

1 1 1 5 30 1 39 4.51

Molecule name (e.g. Alanine,

Sucrose, Tamoxifen)
1 2 2 12 21 1 39 4.21

Sequence (Amino-acid or

nucleotide sequence)
1 0 1 15 21 1 39 4.33

Reference structure (e.g.

PDB:1BIV, PubChem:2733526)
0 0 1 13 24 1 39 4.49

Molecular formula (e.g.

C26H29NO)
1 7 4 14 12 1 39 3.67

Molecular weight (e.g.

371.51456 g/mol)
1 16 7 9 5 1 39 2.95

192

Table A.1, Continued

Computational method data

elements

Not

important at

all

Not very

important

Not

sure
Important

Very

important
N/A Responses Score

General method name (e.g.

Molecular dynamics, QM,
Coarse-grain Dynamics,

QM/MM)

0 0 0 8 30 1 39 4.67

Method reference citation (e.g.

DOI, URL)
2 8 8 9 11 1 39 3.41

Whether the method simulate

the dynamics of the system (Yes
/ No)

1 2 8 12 15 1 39 3.90

Type of boundary conditions

(Periodic, non-periodic)
0 1 3 6 28 1 39 4.49

Whether the run has converged

(yes/no)
3 2 7 8 16 3 39 3.59

Convergence criteria (e.g. 10^-

3)
3 4 5 8 17 2 39 3.67

Representation of the solvent

(implicit, explicit, in vacum)
1 0 1 6 30 1 39 4.56

Molecular Dynamics data

elements

Not

important at
all

Not very

important

Not

sure
Important

Very

important
N/A Responses Score

Force field (e.g. AMBER FF 99,

GROMOS 43A1 , ReaxFF)
0 0 0 5 33 1 39 4.74

Force field type (e.g. classical,

polarizable, reactive)
0 1 1 14 22 1 39 4.38

Unit shape (e.g. cuboid,

octahedron, cap, shell)
0 8 4 12 14 1 39 3.74

Ensemble type (e.g. NVE, NVT,

NPT, Generalized)
0 3 2 10 23 1 39 4.28

Barostat (e.g. Andersen,

Berendsen, Parrinello-Rahman)
1 7 1 14 14 1 38 3.79

Barostat time constant (e.g.

1000 fs)
1 8 3 16 10 1 39 3.59

Thermostat (e.g. Berendsen,

Nose, Nose-Poincare)
1 5 3 14 14 1 38 3.84

Thermostat time constant (e.g.

100 fs)
1 7 3 17 10 1 39 3.64

Molecular mechanics integrator

(e.g. Euler, Runge-Kutta, Verlet,
Leapfrog)

1 11 3 15 8 1 39 3.38

Constraint algorithm (e.g.

LINCS, RATTLE, SHAKE,

SETTLE)

1 7 3 16 11 1 39 3.67

Electrostatics modeling (e.g.

Cutoff, Classic ewald, PME,
reaction field)

0 3 3 7 24 1 38 4.29

Time step length (e.g. 1

picosecond)
1 3 2 13 19 1 39 4.10

Total simulated time (e.g. 450

picoseconds)
0 0 0 9 29 1 39 4.64

193

Table A.1, Continued

Quantum Mechanics data

elements

Not

important at

all

Not very

important

Not

sure
Important

Very

important
N/A Responses Score

Category of QM method (e.g.

Hartree-Fock, Moeller-Plesset,
DFT, Configuration Interaction)

0 0 2 3 30 4 39 4.31

Level of theory (e.g. SCF, MP2,

MP4, CCSD(T))
0 0 2 1 32 4 39 4.36

Basis set (e.g. STO-3G, 6-

31++G*, cc-pCDVZ)
0 0 3 2 30 4 39 4.28

Basis set family (e.g. minimal,

Pople, correlation consistent)
1 7 7 8 12 4 39 3.28

Table A.2, Summary of survey comments for each data element category
Data element

category
N Proposed data elements and changes

Authorship 4
- Missing: grant information

- Missing: timestamp / upload date

Platform

(hardware/software)
4

- Missing: software compiled in single or double precision

- Change: GPU-accelerated is part of hardware architecture

- Missing: memory requirement, problems encountered during run

Molecular system 5

- Change: number of water molecules should be number of solvent molecules

- Missing: rigid parameters (e.g. some coordinate)

- Missing: water model is important

Molecule 5

- Missing: apparent pH

- Missing: information about the ligand (geometry and parameters)

- Missing: important functional groups

Method (all) 7

- Missing: broad classification of methods (empirical, semi-empirical, DFT, ab initio

or combo of these) as well as static vs. dynamic.

- Change: convergence is both case dependent (energy vs. entropy vs. heat

capacity...), and is also quite subjective.

- Change: convergence criteria would be difficult to track as the user will decide how

to judge this

- Change: convergence is a moving target at best. Maybe there should be an overall

convergence criteria metric, and if this minimum is met, it could be filed under

"converged."

MD methods 6

- Missing: advanced sampling details, output details (e.g. steps per write), simulation

scheme (whether this was a production run with such and such minimization and

equilibration)

- Missing: restraints

- Missing: for PME, order of interpolation. For LINCS, order of expansion of the

series.

- Missing: parallelization scheme

QM methods 4

- Missing: general property classifications (e.g. electron properties, pseudopotentials,

frozen core)

- Missing: set of output properties available, and if QM method uses density

functional theory related choices of exchange correlation and cut-offs

194

Table A.3, Data elements related to authorship

Authorship (scope: experiment) Attribute U R D

Author

Full name (e.g. John Doe)

R

Institution name (e.g. university, company)

E-mail (e.g. john.doe@my.university.edu)

Citation
Identifier (e.g. DOI, PubMed ID)

R

URL

Publication based on the experiment results
Identifier (e.g. DOI, PubMed ID)

R

URL

Grant

Identifier

R

Source

Title

Table A.4, Data elements related to the computational platform (hardware/software)

Platform (scope: task) Attribute U R D

Computational

environment

Resource domain (e.g. Kraken (NICS), Gordon (SDSC))

Machine/supercomputer architecture (e.g. Cray XK7, IBM Blue

Gene/Q)

Operating system (e.g. Linux, Windows NT)

CPU architecture (e.g. x86, PowerPC)

GPU architecture (e.g. Nvidia GTX 780)

Execution

Execution time (e.g. 35h) U

Normal termination

R

Number of CPUs used

Number of GPUs used

Software
Name (e.g. AMBER, NAMD, CHARMM, Gaussian, NWChem)

R

Version (e.g. 1.0, 11, alpha, beta)

R

195

Table A.5, Data elements related to the molecular system definition

Molecular system Attribute U R D

System

Composition of the solvent (e.g. Water, Na+)

R

Number of solute molecules

R

Number of solvent molecules

R

Number of atoms in the system

R

Number of ions in the system

R

Apparent pH

Molecule

Type (e.g. Protein, RNA, DNA, chemical compound, nano-particle)

R

Name (e.g. Alanine, Sucrose, Tamoxifen)

R

Residue sequence (Amino-acid or nucleotide sequence)

R

Reference structure (e.g. PDB:1BIV, PubChem:2733526)

R

Molecular formula (e.g. C26H29NO)

Molecular weight (e.g. 371.51456 g/mol) U

Whether it is part of the solvent or the solute

R

Main functional groups

Table A.6, Data elements common to any type of computational method

Method (scope:

task)
Attribute U R D

Method

General method name (e.g. MD, QM, Coarse-grain Dynamics,

QM/MM)
R

Method reference citation (e.g. DOI, URL)

Whether the method simulates the dynamics of the system (Yes / No)

Boundary conditions Type (Periodic, non-periodic)

R

Solvent model
Representation of the solvent (implicit, explicit, in vacuum)

R

Implicit solvent model name (e.g. GB HCT)

196

Table A.7, Data elements specific to molecular dynamics

MD (scope: task) Attribute U R D

Electrostatics model Name (e.g. Cutoff, Classic ewald, PME, reaction field)

R

Unit shape Type (e.g. cuboid, octahedron, cap, shell)

Ensemble Type (e.g. NVE, NVT, NPT, Generalized)

R

Molecular mechanics integrator Name (e.g. Euler, Runge-Kutta, Verlet, Leapfrog)

Constraint
Algorithm (e.g. LINCS, RATTLE, SHAKE, SETTLE)

Target

Restraint
Type (e.g. bond, angle)

Target

Force field
Name (e.g. AMBER FF 99, GROMOS 43A1 , ReaxFF)

R

Type (e.g. classical, polarizable, reactive)

R D

Barostat
Name (e.g. Andersen, Berendsen, Parrinello-Rahman)

Time constant (e.g. 1000 fs) U

Thermostat
Name (e.g. Berendsen, Nose, Nose-Poincare)

Time constant (e.g. 100 fs) U

Time

Time step length (e.g. 1 picosecond) U R

Number of time steps

R

Total simulated time (e.g. 450 picoseconds) U R D

Context of the run Type (minimization, equilibration, or production)

Enhanced sampling method Name (e.g. umbrella sampling, replica-exchange)

Table A.8, Data elements specific to quantum chemistry

QM (scope: task) Attribute U R D

QM method

Specific name (e.g. SCF, MP2, MP4, CCSD(T), B3LYP)

R

Family (e.g. Hartree-Fock, Moeller-Plesset, DFT, Configuration

Interaction)
R D

Basis set
Name (e.g. STO-3G, 6-31++G*, cc-pCDVZ)

R

Family (e.g. minimal, split-valence, plane-wave)

D

Spin multiplicity Value

Total charge Value

Froze core Uses frozen core (yes/no)

Pseudo-potential
Implementation name (e.g. Martins-Trouiller)

Plane-wave cutoff U

Convergence
Whether the run has converged (yes/no)

Convergence criteria (e.g. 10^-3) U

Exchange-correlation

functional
Name (e.g. B3LYP)

APPENDIX B

COMMON REPRESENTATION FOR ANALYSIS

DATA: EXAMPLES

Two examples of how the proposed data elements might be applied to common

analysis data will be given. Note that currently the programs used in these examples do

not necessarily report all of the metadata for these attributes; rather this is a

recommendation of what metadata these programs could include in their output.

The first example is the calculation of a distance between two atoms in a protein

over the course of a molecular dynamics simulation totaling 101 ps in length, with the

trajectory recorded at 1 frame per ps. The generated data set metadata can be as follows:

Analysis Name: Distance

Description: Distance in Cartesian space.

File: end-to-end.dat

Timestamp: Sat Nov 30 09:49:37 MST 2013

Filter on space: (Residue 2 atom CA), (Residue 12 atom CA)

Number Data Set Dimensions: 1

 Dimension[1] size: 101

Number of variables: 2

 Variable[1] units: picosecond

 Variable[1] label: Time

 Variable[1] type: float

 Variable[1] uses dimension: 1

 Variable[2] units: Angstrom

 Variable[2] label: End to end distance

 Variable[2] type: float

 Variable[2] uses dimension: 1

Program: VMD

 Version: V1.9.1

198

 Command: distance “resid 2 and name CA” “resid 12 and name

CA” 1 end-to-end.dat distr.dat

Note that there are actually two arrays sharing the same dimension, one (‘End to

end distance’) containing the distance data and another (‘Time’) that holds the

corresponding time steps of the data.

The next example is the calculation of a mass-weighted coordinate covariance

matrix for C-alpha atoms (12 atoms total) over 10 frames. Again there are two variables,

but in this case the ‘Time’ variable would record which frames were used in generating

the matrix, while the ‘matrix1’ variable is the 12x12 matrix itself.

Name: Mass-weighted Covariance Matrix

File: mwcovar.dat

Timestamp: Sat Nov 30 09:58:22 MST 2013

Filter on space: (All CA atoms)

Number Data Set Dimensions: 3

 Dimension[1] size: 12

 Dimension[2] size: 12

 Dimension[3] size: 10

Number of variables: 2

 Variable[1] units: picosecond

 Variable[1] label: Time

 Variable[1] type: float

 Variable[1] uses dimension: 3

 Variable[2] units: Angstrom*amu^0.5

 Variable[2] label: matrix1

 Variable[2] type: float

 Variable[2] uses dimensions: 1, 2

Program: Cpptraj

 Version: V13.12

 Command: matrix mwcovar out mwcovar.dat name matrix1

APPENDIX C

DICTIONARY EXAMPLES

Table C.1 lists a few force field parameter sets available for popular MD software

packages. Each entry in the table is described through an ID (ID), a name (TERM), a

description (DESCRIPTION), a possible list of citations (CITATION), a force field type

ID (TYPE_ID), and whether the force field is coarse grain or not

(IS_COARSE_GRAIN).

Table C.2 lists “specific” methods which can be referenced within an input file for

a computational task. Each entry in the table is described through an ID (ID), a name

(TERM), a description (DESCRIPTION), and a possible list of citations (CITATION).

200

Table C.1, Extract from the force field dictionary.

ID TERM DESCRIPTION CITATION

10 AMBER

FF10

AMBER FF10 force

field

AMBER Tools 10 manual. Available at:

http://ambermd.org/doc10/AmberTools.pdf

11 AMBER

FF12SB

AMBER FF12SB

force field

AMBER Tools 12 manual. Available at:

http://ambermd.org/doc12/AmberTools12.pdf

12 AMBER

GAFF

General Amber Force

Field (GAFF) for

small molecules

Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollamn, P.A.; Case,

D.A. Development and testing of a general Amber force

field. J. Comput. Chem., 2004, 25, 1157-1174

50 CHARMM

19

CHARMM 19 force

field

Reiher, III WH (1985). 'Theoretical studies of hydrogen

bonding'. PhD Thesis at Harvard University.

51 CHARMM

22

CHARMM 22 force

field

MacKerell, Jr. AD, et al. (1998). 'All-atom empirical

potential for molecular modeling and dynamics studies of

proteins'. J Phys Chem B 102 (18): 3586-3616.

52 CHARMM

27

CHARMM 27 force

field

MacKerell, Jr. AD, Banavali N, Foloppe N (2001).

'Development and current status of the CHARMM force

field for nucleic acids'. Biopolymers 56 (4): 257-265.

Table C.2, Extract from the dictionary of computational methods.

ID TERM DESCRIPTION CITATION

1 HF Hartree-Fock -

2 UHF Unrestricted Hartree-Fock -

3 ROHF Restricted open-shell Hartree-Fock -

4 SCF Self-consistent field -

5 MP2 Moeller-Plesset perturbation theory (second-order) -

6 MP3 Moeller-Plesset perturbation theory (third-order) -

7 MP4 Moeller-Plesset perturbation theory (fourth-order) -

8 MP5 Moeller-Plesset perturbation theory (fifth-order) -

9 CISD Configuration interaction singles and doubles -

10 CISDT Configuration interaction singles, doubles, and triples -

11 CISDTQ Configuration interaction singles, doubles, triples, and quadruples -

12 CCD Coupled-cluster doubles -

13 CCSD Coupled-cluster singles and doubles -

APPENDIX D

LUCENE-BASED DICTIONARY USAGE

AND LOOKUP EXAMPLE

Usage

lucene-lookup.sh [options]

Options:

lookup -i <index-path> -t <term> [-f <lookup-field>] [-n <max-hits>]

list -i <index-path>

lookup: look up a term <term> in the Lucene index at <index-path> in a

particular field <lookup-field>.

list: lists all the entries in the Lucene index at <index-path>

Example

Input command

lucene-lookup.sh lookup -i /tmp/dictionary_all -t "AMBER FF*" -n 2

Console output

Lookup field: TERM

 Term: AMBER FF*

 Max hits: 2

 Dictionary: /tmp/dictionary_all

Number of entries: 939

2 matches:

 [UID] 885

202

 [ID] 1

 [TERM] AMBER FF94

 [DESCRIPTION] AMBER FF94 force field

 [CITATION] Cornell et al. (1995), JACS 117, 5179-5197

 [TYPE_ID] 1

 [IS_COARSE_GRAIN] No

 [ATTRIBUTE_TYPE] force_field

 [UID] 886

 [ID] 2

 [TERM] AMBER FF96

 [DESCRIPTION] AMBER FF96 force field

 [CITATION] Kollman (1996), Acc. Chem. Res. 29, 461-469

 [TYPE_ID] 1

 [IS_COARSE_GRAIN] No

 [ATTRIBUTE_TYPE] force_field

APPENDIX E

XML REPRESENTATIONS FOR SIMULATION

DATA INDEXING

Figure E.1 presents an example of the XML representation that describes the file

tree associated to a given computational experiment (physical view), in this case a short

MD simulation of a DNA 10-mer helix. Each file is associated to a list of AVUs

(Attribute-Value-Units) for indexing. Figure E.2 present an example of the XML

representation of the experimental protocol (logical view) associated to the same

computational experiment.

204

Figure E.1. XML representation of the file tree associated to a

computational experiment

205

Figure E.2, XML representation of the computational experiment

protocol.

	chapter_0_cover_and_abstract.pdf
	chapter_1_intro.pdf
	chapter_2_background.pdf
	chapter_3_data_model.pdf
	chapter_4_thesaurus_ontology.pdf
	chapter_5_ibiomes_repo.pdf
	chapter_6_ibiomes_lite.pdf
	chapter_7_discussion.pdf
	appendix.pdf

