6,563 research outputs found

    An Approximate Bayesian Long Short-Term Memory Algorithm for Outlier Detection

    Full text link
    Long Short-Term Memory networks trained with gradient descent and back-propagation have received great success in various applications. However, point estimation of the weights of the networks is prone to over-fitting problems and lacks important uncertainty information associated with the estimation. However, exact Bayesian neural network methods are intractable and non-applicable for real-world applications. In this study, we propose an approximate estimation of the weights uncertainty using Ensemble Kalman Filter, which is easily scalable to a large number of weights. Furthermore, we optimize the covariance of the noise distribution in the ensemble update step using maximum likelihood estimation. To assess the proposed algorithm, we apply it to outlier detection in five real-world events retrieved from the Twitter platform

    Uncertainty Estimation of Deep Neural Networks

    Get PDF
    Normal neural networks trained with gradient descent and back-propagation have received great success in various applications. On one hand, point estimation of the network weights is prone to over-fitting problems and lacks important uncertainty information associated with the estimation. On the other hand, exact Bayesian neural network methods are intractable and non-applicable for real-world applications. To date, approximate methods have been actively under development for Bayesian neural networks, including but not limited to: stochastic variational methods, Monte Carlo dropouts, and expectation propagation. Though these methods are applicable for current large networks, there are limits to these approaches with either underestimation or over-estimation of uncertainty. Extended Kalman filters (EKFs) and unscented Kalman filters (UKFs), which are widely used in data assimilation community, adopt a different perspective of inferring the parameters. Nevertheless, EKFs are incapable of dealing with highly non-linearity, while UKFs are inapplicable for large network architectures. Ensemble Kalman filters (EnKFs) serve as great methodology in atmosphere and oceanology disciplines targeting extremely high-dimensional, non-Gaussian, and nonlinear state-space models. So far, there is little work that applies EnKFs to estimate the parameters of deep neural networks. By considering neural network as a nonlinear function, we augment the network prediction with parameters as new states and adapt the state-space model to update the parameters. In the first work, we describe the ensemble Kalman filter, two proposed training schemes for training both fully-connected and Long Short-term Memory (LSTM) networks, and experiment iv with 10 UCI datasets and a natural language dataset for different regression tasks. To further evaluate the effectiveness of the proposed training scheme, we trained a deep LSTM network with the proposed algorithm, and applied it on five realworld sub-event detection tasks. With a formalization of the sub-event detection task, we develop an outlier detection framework and take advantage of the Bayesian Long Short-term Memory (LSTM) network to capture the important and interesting moments within an event. In the last work, we propose a framework for student knowledge estimation using Bayesian network. By constructing student models with Bayesian network, we can infer the new state of knowledge on each concept given a student. With a novel parameter estimate algorithm, the model can also indicate misconception on each question. Furthermore, we develop a predictive validation metric with expected data likelihood of the student model to evaluate the design of questions

    Network Uncertainty Informed Semantic Feature Selection for Visual SLAM

    Full text link
    In order to facilitate long-term localization using a visual simultaneous localization and mapping (SLAM) algorithm, careful feature selection can help ensure that reference points persist over long durations and the runtime and storage complexity of the algorithm remain consistent. We present SIVO (Semantically Informed Visual Odometry and Mapping), a novel information-theoretic feature selection method for visual SLAM which incorporates semantic segmentation and neural network uncertainty into the feature selection pipeline. Our algorithm selects points which provide the highest reduction in Shannon entropy between the entropy of the current state and the joint entropy of the state, given the addition of the new feature with the classification entropy of the feature from a Bayesian neural network. Each selected feature significantly reduces the uncertainty of the vehicle state and has been detected to be a static object (building, traffic sign, etc.) repeatedly with a high confidence. This selection strategy generates a sparse map which can facilitate long-term localization. The KITTI odometry dataset is used to evaluate our method, and we also compare our results against ORB_SLAM2. Overall, SIVO performs comparably to the baseline method while reducing the map size by almost 70%.Comment: Published in: 2019 16th Conference on Computer and Robot Vision (CRV
    • …
    corecore