32,818 research outputs found

    Ambulance Emergency Response Optimization in Developing Countries

    Full text link
    The lack of emergency medical transportation is viewed as the main barrier to the access of emergency medical care in low and middle-income countries (LMICs). In this paper, we present a robust optimization approach to optimize both the location and routing of emergency response vehicles, accounting for uncertainty in travel times and spatial demand characteristic of LMICs. We traveled to Dhaka, Bangladesh, the sixth largest and third most densely populated city in the world, to conduct field research resulting in the collection of two unique datasets that inform our approach. This data is leveraged to develop machine learning methodologies to estimate demand for emergency medical services in a LMIC setting and to predict the travel time between any two locations in the road network for different times of day and days of the week. We combine our robust optimization and machine learning frameworks with real data to provide an in-depth investigation into three policy-related questions. First, we demonstrate that outpost locations optimized for weekday rush hour lead to good performance for all times of day and days of the week. Second, we find that significant improvements in emergency response times can be achieved by re-locating a small number of outposts and that the performance of the current system could be replicated using only 30% of the resources. Lastly, we show that a fleet of small motorcycle-based ambulances has the potential to significantly outperform traditional ambulance vans. In particular, they are able to capture three times more demand while reducing the median response time by 42% due to increased routing flexibility offered by nimble vehicles on a larger road network. Our results provide practical insights for emergency response optimization that can be leveraged by hospital-based and private ambulance providers in Dhaka and other urban centers in LMICs

    Spatial optimization for land use allocation: accounting for sustainability concerns

    Get PDF
    Land-use allocation has long been an important area of research in regional science. Land-use patterns are fundamental to the functions of the biosphere, creating interactions that have substantial impacts on the environment. The spatial arrangement of land uses therefore has implications for activity and travel within a region. Balancing development, economic growth, social interaction, and the protection of the natural environment is at the heart of long-term sustainability. Since land-use patterns are spatially explicit in nature, planning and management necessarily must integrate geographical information system and spatial optimization in meaningful ways if efficiency goals and objectives are to be achieved. This article reviews spatial optimization approaches that have been relied upon to support land-use planning. Characteristics of sustainable land use, particularly compactness, contiguity, and compatibility, are discussed and how spatial optimization techniques have addressed these characteristics are detailed. In particular, objectives and constraints in spatial optimization approaches are examined

    Shuttle Planning for Link Closures in Urban Public Transport Networks

    Get PDF
    Urban public transport systems must periodically close certain links for maintenance, which can have significant effects on the service provided to passengers. In practice, the effects of closures are mitigated by replacing the closed links with a simple shuttle service. However, alternative shuttle services could reduce inconvenience at a lower operating cost. This paper proposes a model to select shuttle lines and frequencies under budget constraints. We propose a new formulation that allows a minimal frequency restriction on any line that is operated and minimizes passenger inconvenience cost, which includes transfers and frequency-dependent waiting time costs. This model is applied to a shuttle design problem based on a real-world case study of the Massachusetts Bay Transportation Authority network of Boston, Massachusetts. The results show that additional shuttle routes can reduce passenger delay compared to the standard industry practice, while also distributing delay more equally over passengers, at the same operating budget. The results are robust under different assumptions about passenger route choice behavior. Computational experiments show that the proposed formulation, coupled with a preprocessing step, can be solved faster than prior formulations

    Shuttle Planning for Link Closures in Urban Public Transport Networks

    Get PDF
    Urban Public Transport systems must periodically close certain links for main- tenance, which can have significant effects on the service provided to passengers. In practice, the effects of closures are mitigated by replacing the link with a simple shuttle service. However, alternative shuttle services could reduce inconvenience at lower op- erating cost. This paper proposes a model to select shuttle lines and frequencies under budget constraints. A new formulation is proposed that allows a minimal frequency restriction on any line that is operated, and minimizes passenger inconvenience cost, including transfers and frequency-dependent waiting time. This model is applied to a shuttle design problem based on a real world case study of the MBTA network of Boston (USA). The results show that additional shuttle routes can reduce passenger delay in comparison to the standard industry practice, while also distributing delay more equally over passengers, at the same operating budget. The results are robust under different assumptions about passenger route choice behavior. Computational experiments show that the proposed formulation, coupled with a preprocessing step, can be solved faster than prior formulations

    Food Superstores, Food Deserts and Traffic Generation in the UK: A Semi-Parametric Regression Approach

    Get PDF
    This study contributes another route towards explaining and tackling ‘food desert’ effects. It features the estimation of a (semi-parametric) trip attraction model for food superstores in the UK using a composite dataset. The data comprises information from the UK Census of Population, the NOMIS (National Online Manpower Information System) archive and traffic and site-specific data from the TRICS (Trip Rate Information Computer System) databases. The results indicate that traffic to a given food superstore, ceteris paribus, increases with household car ownership, store parking provision, site size (floor space), and distance to the nearest competitor. Furthermore, increases in public transport provision are shown to be associated with increasing car trips. This latter effect is discussed in the light of planning policy for development control purposes and a role linked to the reinforcement of ‘food deserts’. The results also reveal activity-specific household economies of scope and scale. It is suggested how these may also further perpetuate unsustainable development and ‘food desert’ characteristics.Traffic Generation, Food Superstores, Food Deserts, Activity Based Travel, Sustainable Development, Modelling
    • …
    corecore