240,065 research outputs found

    Communication and rational responsiveness to the world

    Get PDF
    Donald Davidson has long maintained that in order to be credited with the concept of objectivity – and, so, with language and thought – it is necessary to communicate with at least one other speaker. I here examine Davidson’s central argument for this thesis and argue that it is unsuccessful. Subsequently, I turn to Robert Brandom’s defense of the thesis in Making It Explicit. I argue that, contrary to Brandom, in order to possess the concept of objectivity it is not necessary to engage in the practice of interpersonal reasoning because possession of the concept is independently integral to the practice of intrapersonal reasoning

    Unknown Quantum States and Operations, a Bayesian View

    Full text link
    The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. In this paper, we motivate and review two results that generalize de Finetti's theorem to the quantum mechanical setting: Namely a de Finetti theorem for quantum states and a de Finetti theorem for quantum operations. The quantum-state theorem, in a closely analogous fashion to the original de Finetti theorem, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an "unknown quantum state" in quantum-state tomography. Similarly, the quantum-operation theorem gives an operational definition of an "unknown quantum operation" in quantum-process tomography. These results are especially important for a Bayesian interpretation of quantum mechanics, where quantum states and (at least some) quantum operations are taken to be states of belief rather than states of nature.Comment: 37 pages, 3 figures, to appear in "Quantum Estimation Theory," edited by M.G.A. Paris and J. Rehacek (Springer-Verlag, Berlin, 2004

    Random sets and exact confidence regions

    Full text link
    An important problem in statistics is the construction of confidence regions for unknown parameters. In most cases, asymptotic distribution theory is used to construct confidence regions, so any coverage probability claims only hold approximately, for large samples. This paper describes a new approach, using random sets, which allows users to construct exact confidence regions without appeal to asymptotic theory. In particular, if the user-specified random set satisfies a certain validity property, confidence regions obtained by thresholding the induced data-dependent plausibility function are shown to have the desired coverage probability.Comment: 14 pages, 2 figure

    A Theoretical Analysis of Two-Stage Recommendation for Cold-Start Collaborative Filtering

    Full text link
    In this paper, we present a theoretical framework for tackling the cold-start collaborative filtering problem, where unknown targets (items or users) keep coming to the system, and there is a limited number of resources (users or items) that can be allocated and related to them. The solution requires a trade-off between exploitation and exploration as with the limited recommendation opportunities, we need to, on one hand, allocate the most relevant resources right away, but, on the other hand, it is also necessary to allocate resources that are useful for learning the target's properties in order to recommend more relevant ones in the future. In this paper, we study a simple two-stage recommendation combining a sequential and a batch solution together. We first model the problem with the partially observable Markov decision process (POMDP) and provide an exact solution. Then, through an in-depth analysis over the POMDP value iteration solution, we identify that an exact solution can be abstracted as selecting resources that are not only highly relevant to the target according to the initial-stage information, but also highly correlated, either positively or negatively, with other potential resources for the next stage. With this finding, we propose an approximate solution to ease the intractability of the exact solution. Our initial results on synthetic data and the Movie Lens 100K dataset confirm the performance gains of our theoretical development and analysis

    Probability and nonclassical logic

    Get PDF

    Partial Truthfulness in Minimal Peer Prediction Mechanisms with Limited Knowledge

    Full text link
    We study minimal single-task peer prediction mechanisms that have limited knowledge about agents' beliefs. Without knowing what agents' beliefs are or eliciting additional information, it is not possible to design a truthful mechanism in a Bayesian-Nash sense. We go beyond truthfulness and explore equilibrium strategy profiles that are only partially truthful. Using the results from the multi-armed bandit literature, we give a characterization of how inefficient these equilibria are comparing to truthful reporting. We measure the inefficiency of such strategies by counting the number of dishonest reports that any minimal knowledge-bounded mechanism must have. We show that the order of this number is Θ(logn)\Theta(\log n), where nn is the number of agents, and we provide a peer prediction mechanism that achieves this bound in expectation
    corecore