134,444 research outputs found

    Spreadsheet software as a teaching and learning tool: perspectives from an undergraduate financial modelling subject

    Get PDF
    Technology based teaching of accounting curriculum is widely researched by accounting educators. This paper reports the findings of the use of computers and Microsoft Excel spreadsheet program as a means to reflect on, and to enhance prior learning, of financial accounting, managerial accounting and finance concepts and problems, through a financial modelling subject, in an undergraduate program in an Australian regional university. Data were collected from the researched university's formal feedback systems, Student Feedback on Subjects (SFS), and archived course materials, over a three year period (2003-2005). Using pattern matching approach (Yin, 2003), data were analyzed for making generalizations about the effectiveness of spreadsheet software usage as a pedagogical and educational tool. The study finds that spreadsheet based teaching and learning equip students with computer literacy, and spreadsheet application skills in the areas of management accounting and finance. The study also finds that the students with a few years of work experience outperform the students without any work experience, and appreciation of the course among the students without work experience is lower than their counterpart with five years of work experience. The study has implications for accounting educators, in that difficult to learn accounting and finance concepts can be taught using a spreadsheet based modelling subject; this can provide significant insight into the relationships among numerous variables, which are difficult to manipulate and solve manually, in a traditional chalk and talk teaching environment

    Genuine lab experiences for students in resource constrained environments: The RealLab with integrated intelligent assessment.

    Get PDF
    Laboratory activities are indispensable for developing engineering skills. Computer Aided Learning (CAL) tools can be used to enhance laboratory learning in various ways, the latest approach being the virtual laboratory technique that emulates traditional laboratory processes. This new approach makes it possible to give students complete and genuine laboratory experiences in situations constrained by limited resources in the provision of laboratory facilities and infrastructure and/or where there is need for laboratory education, for large classes, with only one laboratory stand. This may especially be the case in countries in transition. Most existing virtual laboratories are not available for purchase. Where they are, they may not be cost friendly for resource constrained environments. Also, most do not integrate any form of assessment structure. In this paper, we present a very cost friendly virtual laboratory solution for genuine laboratory experiences in resource constrained environments, with integrated intelligent assessment

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap

    Managing evolution and change in web-based teaching and learning environments

    Get PDF
    The state of the art in information technology and educational technologies is evolving constantly. Courses taught are subject to constant change from organisational and subject-specific reasons. Evolution and change affect educators and developers of computer-based teaching and learning environments alike – both often being unprepared to respond effectively. A large number of educational systems are designed and developed without change and evolution in mind. We will present our approach to the design and maintenance of these systems in rapidly evolving environments and illustrate the consequences of evolution and change for these systems and for the educators and developers responsible for their implementation and deployment. We discuss various factors of change, illustrated by a Web-based virtual course, with the objective of raising an awareness of this issue of evolution and change in computer-supported teaching and learning environments. This discussion leads towards the establishment of a development and management framework for teaching and learning systems

    Weblogs in Higher Education - Why Do Students (Not) Blog?

    Get PDF
    Positive impacts on learning through blogging, such as active knowledge construction and reflective writing, have been reported. However, not many students use weblogs in informal contexts, even when appropriate facilities are offered by their universities. While motivations for blogging have been subject to empirical studies, little research has addressed the issue of why students choose not to blog. This paper presents an empirical study undertaken to gain insights into the decision making process of students when deciding whether to keep a blog or not. A better understanding of students' motivations for (not) blogging may help decision makers at universities in the process of selecting, introducing, and maintaining similar services. As informal learning gains increased recognition, results of this study can help to advance appropriate designs of informal learning contexts in Higher Education. The method of ethnographic decision tree modelling was applied in an empirical study conducted at the Vienna University of Technology, Austria. Since 2004, the university has been offering free weblog accounts for all students and staff members upon entering school, not bound to any course or exam. Qualitative, open interviews were held with 3 active bloggers, 3 former bloggers, and 3 non‑ bloggers to elicit their decision criteria. Decision tree models were developed out of the interviews. It turned out that the modelling worked best when splitting the decision process into two parts: one model representing decisions on whether to start a weblog at all, and a second model representing criteria on whether to continue with a weblog once it was set up. The models were tested for their validity through questionnaires developed out of the decision tree models. 30 questionnaires have been distributed to bloggers, former bloggers and non‑ bloggers. Results show that the main reasons for students not to keep a weblog include a preference for direct (online) communication, and concerns about the loss of privacy through blogging. Furthermore, the results indicate that intrinsic motivation factors keep students blogging, whereas stopping a weblog is mostly attributable to external factors

    Simulation modelling: Educational development roles for learning technologists

    Get PDF
    Simulation modelling was in the mainstream of CAL development in the 1980s when the late David Squires introduced this author to the Dynamic Modelling System. Since those early days, it seems that simulation modelling has drifted into a learning technology backwater to become a member of Laurillard's underutilized, ‘adaptive and productive’ media. Referring to her Conversational Framework, Laurillard constructs a pedagogic case for modelling as a productive student activity but provides few references to current practice and available resources. This paper seeks to complement her account by highlighting the pioneering initiatives of the Computers in the Curriculum Project and more recent developments in systems modelling within geographic and business education. The latter include improvements to system dynamics modelling programs such as STELLA¼, the publication of introductory textbooks, and the emergence of online resources. The paper indicates several ways in which modelling activities may be approached and identifies some educational development roles for learning technologists. The paper concludes by advocating simulation modelling as an exemplary use of learning technologies ‐ one that realizes their creative‐transformative potential

    Empirical modelling principles to support learning in a cultural context

    Get PDF
    Much research on pedagogy stresses the need for a broad perspective on learning. Such a perspective might take account (for instance) of the experience that informs knowledge and understanding [Tur91], the situation in which the learning activity takes place [Lav88], and the influence of multiple intelligences [Gar83]. Educational technology appears to hold great promise in this connection. Computer-related technologies such as new media, the internet, virtual reality and brain-mediated communication afford access to a range of learning resources that grows ever wider in its scope and supports ever more sophisticated interactions. Whether educational technology is fulfilling its potential in broadening the horizons for learning activity is more controversial. Though some see the successful development of radically new educational resources as merely a matter of time, investment and engineering, there are also many critics of the trends in computer-based learning who see little evidence of the greater degree of human engagement to which new technologies aspire [Tal95]. This paper reviews the potential application to educational technology of principles and tools for computer-based modelling that have been developed under the auspices of the Empirical Modelling (EM) project at Warwick [EMweb]. This theme was first addressed at length in a previous paper [Bey97], and is here revisited in the light of new practical developments in EM both in respect of tools and of model-building that has been targetted at education at various levels. Our central thesis is that the problems of educational technology stem from the limitations of current conceptual frameworks and tool support for the essential cognitive model building activity, and that tackling these problems requires a radical shift in philosophical perspective on the nature and role of empirical knowledge that has significant practical implications. The paper is in two main sections. The first discusses the limitations of the classical computer science perspective where educational technology to support situated learning is concerned, and relates the learning activities that are most closely associated with a cultural context to the empiricist perspective on learning introduced in [Bey97]. The second outlines the principles of EM and describes and illustrates features of its practical application that are particularly well-suited to learning in a cultural setting
    • 

    corecore