3,601 research outputs found

    An approach to filtering RFID data streams

    Full text link
    RFID is gaining significant thrust as the preferred choice of automatic identification and data collection system. However, there are various data processing and management problems such as missed readings and duplicate readings which hinder wide scale adoption of RFID systems. To this end we propose an approach that filters the captured data including both noise removal and duplicate elimination. Experimental results demonstrate that the proposed approach improves missed data restoration process when compared with the existing method.<br /

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    An Approach for Removing Redundant Data from RFID Data Streams

    Get PDF
    Radio frequency identification (RFID) systems are emerging as the primary object identification mechanism, especially in supply chain management. However, RFID naturally generates a large amount of duplicate readings. Removing these duplicates from the RFID data stream is paramount as it does not contribute new information to the system and wastes system resources. Existing approaches to deal with this problem cannot fulfill the real time demands to process the massive RFID data stream. We propose a data filtering approach that efficiently detects and removes duplicate readings from RFID data streams. Experimental results show that the proposed approach offers a significant improvement as compared to the existing approaches

    spChains: A Declarative Framework for Data Stream Processing in Pervasive Applications

    Get PDF
    Pervasive applications rely on increasingly complex streams of sensor data continuously captured from the physical world. Such data is crucial to enable applications to ``understand'' the current context and to infer the right actions to perform, be they fully automatic or involving some user decisions. However, the continuous nature of such streams, the relatively high throughput at which data is generated and the number of sensors usually deployed in the environment, make direct data handling practically unfeasible. Data not only needs to be cleaned, but it must also be filtered and aggregated to relieve higher level algorithms from near real-time handling of such massive data flows. We propose here a stream-processing framework (spChains), based upon state-of-the-art stream processing engines, which enables declarative and modular composition of stream processing chains built atop of a set of extensible stream processing blocks. While stream processing blocks are delivered as a standard, yet extensible, library of application-independent processing elements, chains can be defined by the pervasive application engineering team. We demonstrate the flexibility and effectiveness of the spChains framework on two real-world applications in the energy management and in the industrial plant management domains, by evaluating them on a prototype implementation based on the Esper stream processo

    A framework for distributed managing uncertain data in RFID traceability networks

    Get PDF
    The ability to track and trace individual items, especially through large-scale and distributed networks, is the key to realizing many important business applications such as supply chain management, asset tracking, and counterfeit detection. Networked RFID (radio frequency identification), which uses the Internet to connect otherwise isolated RFID systems and software, is an emerging technology to support traceability applications. Despite its promising benefits, there remains many challenges to be overcome before these benefits can be realized. One significant challenge centers around dealing with uncertainty of raw RFID data. In this paper, we propose a novel framework to effectively manage the uncertainty of RFID data in large scale traceability networks. The framework consists of a global object tracking model and a local RFID data cleaning model. In particular, we propose a Markov-based model for tracking objects globally and a particle filter based approach for processing noisy, low-level RFID data locally. Our implementation validates the proposed approach and the experimental results show its effectiveness.Jiangang Ma, Quan Z. Sheng, Damith Ranasinghe, Jen Min Chuah and Yanbo W

    Effective Aggregation and Querying of Probabilistic RFID Data in a Location Tracking Context

    Get PDF
    RFID applications usually rely on RFID deployments to manage high-level events such as tracking the location that products visit for supply-chain management, localizing intruders for alerting services, and so on. However, transforming low-level streams into high-level events poses a number of challenges. In this paper, we deal with the well known issues of data redundancy and data-information mismatch: we propose an on-line summarization mechanism that is able to provide small space representation for massive RFID probabilistic data streams while preserving the meaningfulness of the information. We also show that common information needs, i.e. detecting complex events meaningful to applications, can be effectively answered by executing temporal probabilistic SQL queries directly on the summarized data. All the techniques presented in this paper are implemented in a complete framework and successfully evaluated in real-world location tracking scenarios

    Exploring sensor data management

    Get PDF
    The increasing availability of cheap, small, low-power sensor hardware and the ubiquity of wired and wireless networks has led to the prediction that `smart evironments' will emerge in the near future. The sensors in these environments collect detailed information about the situation people are in, which is used to enhance information-processing applications that are present on their mobile and `ambient' devices.\ud \ud Bridging the gap between sensor data and application information poses new requirements to data management. This report discusses what these requirements are and documents ongoing research that explores ways of thinking about data management suited to these new requirements: a more sophisticated control flow model, data models that incorporate time, and ways to deal with the uncertainty in sensor data
    corecore