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Abstract: RFID applications usually rely on RFID deployments to manage high-level events such as tracking

the location that products visit for supply-chain management, localizing intruders for alerting services, and so

on. However, transforming low-level streams into high-level events poses a number of challenges. In this paper,

we deal with the well known issues of data redundancy and data-information mismatch: we propose an on-line

summarization mechanism that is able to provide small space representation for massive RFID probabilistic data

streams while preserving the meaningfulness of the information. We also show that common information needs,

i.e. detecting complex events meaningful to applications, can be effectively answered by executing temporal prob-

abilistic SQL queries directly on the summarized data. All the techniques presented in this paper are implemented

in a complete framework and successfully evaluated in real-world location tracking scenarios.

Key–Words: RFID data streams, Data summarization, Probabilistic Data Management, Object tracking, Proba-

bilistic Database

1 Introduction

In the last several years, RFID technology has gained

significant popularity due to its ability of detecting ob-

jects and people. RFID applications usually rely on

RFID deployments to manage high-level events such

as tracking the location that products visit for supply-

chain management [13, 15], monitoring the location

and status of patients in hospital environment [23], lo-

calizing intruders for alerting services [7], and so on.

In an RFID system, an environment is deployed with

the RFID readers and antennas, while users and ob-

jects carry RFID tags. RFID readers detect the pres-

ence of tags in their vicinity and generate streams of

low-level observations in the form of TREs (Tag Read

Events) (tag id, antenna id, time) that show when

and where tags are being sighted. Since the nature of

RFID data stream is noisy, redundant and unreliable,

streams of low-level tag-reads such as “Tag 101 was

seen at antenna 12 at 10:00” must be transformed into

meaningful relation instances such as “Alice entered

office 1-10 at 10:00”.

The nature of an RFID data stream is noisy, re-

dundant and unreliable. Thus, RFID data it unsuit-

able for direct use in applications, and the process of

transforming low-level streams into high-level events

poses a number of challenges [5, 19]. RFID deploy-

ments, generally, produce imprecise data because of:

(a) Conflicting Readings: Readings in the presence

of contradiction i.e., when an RFID tag is simulta-

neously detected by two antennas that cover adjacent

areas, it becomes difficult to establish the actual loca-

tion of tag [22]; Missing Readings: Loss of reading

instances in which RFID tags are not detected by the

antenna while actually being present within its cover-

age area [11, 22]. A common approach to effectively

solve these problems for real-time applications is to

use models (e.g. an Hidden Markov Model, HMM)

that continuously infer location data based on sen-

sor readings (such as in the filtering and uncertainty

management approach proposed in [7, 17]). In this

way, the stream can be transformed into a probabilistic

data stream (tagID, location, time, prob): an exam-

ple is (101,1-10,10:00,0.7), which indicates

that tag 101 at time 10:00 was in office 1-10 with prob-

ability 0.7.

However, two main problems still need to be

solved in order to make the generated stream suitable

to be usefully exploited in applications:

1. Extreme redundancy and huge size of data:

RFID tags continually send out their IDs at

pre-programmed intervals (few seconds) and for

each tag read, the number of probabilistic tuples
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equals the number of reference locations. There-

fore, an HMM for RFID deployments produces

huge volumes of uncertain data that can reach

in practical cases the size of gigabytes in a day.

Storing all these probabilistic tuples is extremely

expensive and, even more important, most often

not necessary. For instance, Figure 1 (a,b) de-

picts one sample scenario, having a total duration

of 2 hours and 20 minutes. In Figure 1(a), Paul,

a user wearing an RFID tag that transmits ev-

ery second, works in his office O1 for two hours.

Then, Paul goes to the research lab (R2) by pass-

ing through the hall (H1), where he stays for

some minutes talking with one of his colleagues.

Since the number of locations in this scenario

is three, 21, 600=(60 seconds * 120 minutes *

3 locations) probabilistic tuples are produced for

the first two hours which report more or less the

same location information for him (stay in of-

fice). This represents a rather realistic scenario,

as usually person or good movements are notice-

ably slower than RFID transmission rates;

2. Data-Information Mismatch: Mismatch between

the information to which the application is con-

cerned and the available data stream. Typically

an application is particularly interested in high-

level information such as “Find when Paul was

seen last time at his office”, “Did it happen that

Paul and Suzy were together in one of the recre-

ation rooms?”. In order to be able to effectively

and efficiently solve such kinds of queries, it is

very important to rely on strong data manipula-

tion systems that can simplify the information

extraction process while preserving the proba-

bilistic nature of the data.

In this paper, we deal with the two above men-

tioned problems and close the circle for RFID data

management in a location tracking scenario by:

• exploiting a newly introduced on-line summa-

rization mechanism, which is able to provide

small space representation for massive RFID

probabilistic data streams while preserving the

meaningfulness of the information;

• promptly storing the result of the summariza-

tion in a probabilistic database (we use MayBMS

[20]). In such a way, we show that common in-

formation needs, i.e. detecting complex events

meaningful to applications, can be effectively an-

swered by executing simple temporal probabilis-

tic SQL queries.

The simple on-line summarization mechanism we

propose draws inspiration from the field of clustering
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Figure 1: (a) A visual representation for Paul move-

ments; (b) The stream of probabilistic tuples before

and after applying the summarization mechanism

[21]. The main idea is to keep on aggregating tuples

until a state transition is detected. Our data aggrega-

tion algorithm processes probabilistic tuples as they

arrive, i.e. directly taking a probabilistic data stream

generated by our filtering and uncertainty manage-

ment techniques [7, 17] as its input, hence avoiding

the use of expensive and offline disk based operations

such as sorting and summarization. Finally, the use of

a probabilistic database for storing and querying the

resulting stream greatly simplifies and bridges the gap

between stream data and required information.

All the techniques presented in this paper are im-

plemented in a complete framework and evaluated

under real-cases in the context of location tracking.

However, they are general enough to be applicable to

other RFID data management application contexts.

The rest of the paper is organized in the follow-

ing way: in Section 2 we shortly describe the RFID

deployment and the data filtering techniques which,

even if not in the scope of the paper, are needed to

understand the context in which we operate. Section

3 discusses the summarization/aggregation algorithm,

while in Section 4 we deepen how to store and query

the aggregated probabilistic tuples. In Section 5 we

present extensive experiments in real object tracking

scenarios, showing a very good reliability of the pro-

posed techniques. Finally, Section 6 analyzes related

works and gives some concluding remarks.

2 Background

In this section, we will shortly describe the back-

ground information that is needed to understand the
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context in which the techniques presented in this pa-

per are applied. First of all, in Section 2.1 we shortly

describe the reference RFID deployment for acquiring

the raw data; then, in Section 2.2 we show the filtering

techniques that are employed in order to transform the

raw stream into a probabilistic stream. This stream

will be the actual input of the data aggregation and

querying techniques which are at the focus of this pa-

per and we will describe in detail in Section 3.

2.1 Acquiring Raw RFID Data

As discussed in the introduction, RFID readers de-

tect the presence of tags in their vicinity and gener-

ate streams of low-level observations in the form of

TREs (Tag Read Events) (tag id, antenna id, time)
that show when and where tags are being sighted. In

order to acquire such raw data, we exploit an RFID de-

ployment for location tracking purposes, populated by

RFID devices including RFID tags and readers. RFID

tags are attached to the objects and people that have

to be tracked, while RFID readers receive data from

these tags in the form of radio signals and convert

them in digital form to pass it to the upper levels of

the framework. The following are some details on our

hardware configuration (to which the results presented

in Section 5 will refer):

• Reader: we use a fixed reader that can interro-

gate tags at distances of up to 300 feet (100 me-

ters). The reader establishes the connection to

the host system by using the RS422 interface.

For data exchange, a simple master/slave proto-

col is used by the reader. The protocol also gives

us some additional information such as time of

data reception, signal strength and number of

times the tag has been read by the reader;

• Antennas: the choice of antennas depends on the

type and requirement of the application. An El-

liptical Polarized Antenna has a wide apex angle

of (120◦), which enables it to cover large read

zone. Therefore, it is capable of reading a large

number of tags at one time even at fast speeds.

The orientation of the tags relative to the antenna

is not important. On the other hand, a Linear

Polarized Antenna is more suitable for applica-

tions in which read zones are restricted and data

collection must be selective. This antenna has

smaller apex angle of (60◦). The field of antenna

is either horizontally or vertically polarized de-

pending on the mounting direction, thus requir-

ing the tag to have the same orientation. Ellipti-

cal antennas are the ones most suited to our pur-

poses and are the ones used for final experimen-

tation;

• Tags: we employ active RFID tags based on

UHF radio frequency. The tags are capable of

providing long range for wireless applications

and can transmit data at distances of up to 300

feet (100 meters) to readers. The tags contin-

uously send static data written in their memory

at pre-programmed intervals known as ping rate.

Ping rate can be one second to four minutes (one

second in our setup). Due to the ultra-low power

consumption of the active tags, an operational

lifetime of up to 6 years can be expected, mak-

ing them suitable for identification and tracking

applications.

2.2 Filtering Acquired Data

The Data Filtering techniques receive raw data and

perform online filtering and uncertainty management

on it. In particular, by exploiting a specially de-

signed data model which is based on a Hidden Markov

Model (HMM) and ad-hoc particle filtering tech-

niques [7, 17], we take the raw RFID data stream as

input and produce as output a probabilistically cleaned

and filtered RFID data stream.

In our location tracking context, given m tags

T1, T2, . . . , Tm and n locations λ1, λ2, . . . , λn, data

filtering produces a stream of timestamp ordered prob-

abilistic tuples:

XT1

1 , XT2

1 , . . . , XTm

1 , XT1

2 , . . . , XTm

2 , . . .

where each tuple X
Ti

t has the form:

(Ti, t, P (LTi,t = λ1), P (LTi,t = λ2), . . . , P (LTi,t = λn))

where P (LTi,t) is the probability distribu-

tion of the random variable LTi,t over locations

λ1, λ2, . . . , λn, one for each tag Ti. In other words,

for each location λk, P
(

LTi,t = λk
)

represents the

probability that tag Ti is in λk at time t. Please note

that, for ease of presentation and without loss of gen-

erality, we assume that tuples arrive in tag order and

that the discrete probability distribution of the location

random variable is represented as one tuple instead of

n different tuples.

3 Aggregating Probabilistic RFID

Data

An HMM filtering technique, as the one shortly de-

scribed in the last section, produces huge volumes of

uncertain data that can become really difficult to man-

age. Moreover, high level events such as a location
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Figure 2: Block Diagram of our Data Aggregation and Query Processing Approach

change by a subject are still implicit in the data and

could require expensive data scans in order to be iden-

tified. Our aggregation/summarization technique (see

top part of Figure 2 for a block diagram) gives an an-

swer to such problems. It receives the probabilistic

RFID data streams and aggregates them by applying

an on-line aggregation algorithm.

The aggregation algorithm outputs a stream of

probabilistic tuples of the form:

X
Ti

[ts,te]
= (Ti, ts, te, P (LTi,[ts,te] = λ1),

P (LTi,[ts,te] = λ2), . . . , P (LTi,[ts,te] = λn)

such that:

• for each pair of tuples on the same tag Ti,

X
Ti

[ts1 ,te1 ]
and X

Ti

[ts2 ,te2 ]
, [ts1 , te1 ] ∩ [ts2 , te2 ] = ∅;

• for each source tuple X
Ti

t , a result tuple X
Ti

[ts,te]

exists such that t ∈ [ts, te].

The aggregation algorithm (Algorithm 1) works

on the intuition that if a person wearing a tag Ti is

stationary or resides at the same location for a pe-

riod of time [ts, te], the corresponding probabilistic

tuples X
Ti

ts
, . . . , X

Ti

te
should show “similar” probabil-

ity distributions. Therefore, in order to derive X
Ti

[ts,te]

it draws inspiration from the large dataset clustering

field [16] in that it incrementally groups together con-

secutive “similar” tuples. To this end, at each times-

tamp t the algorithm maintains at most m clusters, one

for each tag Ti, and for each cluster c
Ti

t it treats the tu-

ple region collectively through some statistics statc
Ti
t ,

providing a summarized description for the cluster.

When a new tuple X
Ti

t+1 arrives, the algorithm tries

to add it to the cluster associated to the corresponding

tag c
Ti

t by updating the corresponding statc
Ti

t+1 val-

ues (see lines 3–5 of Algorithm 1). Then, a boundary

condition is checked (line 6) and, if it is the case, the

tuple is inserted into the cluster by replacing its statis-

tics with the newly computed ones statc
Ti

t+1 (line 7).

On the other hand, if a violation is detected:

• c
Ti

t is closed and discarded from the set of current

clusters S (line 10);

• a tuple X
Ti

[ts,t]
describing the behavior of the tag

T in the period in which the cluster c
Ti

t was active

is stored in the database (line 11);

• a new cluster for Ti is created including tuple

X
Ti

t+1 only, its statistics is computed and it is

added to S (lines 12 and 13).

Until now, we intentionally left our aggregation model

generic. In the following, we show how the clusters

are represented and how cluster statistics are com-

puted.

3.1 Cluster Representation

In many clustering applications, the resulting clusters

have to be represented or described in a compact form

to achieve data abstraction. Basically, the most typical

compact description of a cluster is given in terms of

cluster prototypes or representative patterns such as

the centroid [21]. The centroid is the logical center

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Razia Haider, Federica Mandreoli 

Riccardo Martoglia

E-ISSN: 2224-3402 151 Volume 12, 2015



Algorithm 1 Tuple aggregation algorithm

Require: n number of locations, m number of tags ,

B critical boundary

1: S = current set of clusters; //S contains at most

m elements

2: repeat

3: receive the next stream point X
Ti

t+1

4: c
Ti

t = identifyCluster(X
Ti

t+1, S) //statc
Ti
t is ex-

tracted from c
Ti

t

5: statc
Ti

t+1= updateStatistics(statc
Ti
t ,X

Ti

t+1)

6: if testBoundaryCondition(statc
Ti

t+1) then

7: c
Ti

t+1 = add(X
Ti

t+1,c
Ti

t ); //statc
Ti
t is replaced

with statc
Ti

t+1

8: update S with c
Ti

t+1;

9: else

10: close and discard c
Ti

t from S;

11: insert X
Ti

[ts,t]
in the database;

12: c
Ti

t+1 = createNewCluster(X
Ti

t+1);

13: add c
Ti

t+1 to S;

14: end if

15: until data stream ends

of the cluster, usually computed as the average of all

cluster points. The use of the centroid to represent a

cluster is a very popular schema and works well when

the clusters are compact, as in our case.

Therefore, we represent tuples in the n-

dimensional Cartesian space as points whose coordi-

nates are the probability values for the n locations.

For instance, going back to our reference example,

the number of locations is three, therefore each tuple

would be a point in a 3-dimensional space, whose co-

ordinates are the probability values for the locations

O1, H1 and R2. Since Paul is residing at a same place

(his office) for a long period, a large number of points

would be concentrated in a specific region of the plane

(“O1 region”); all these points could be aggregated in

one point which will be representative of the behav-

ior of all of them. As Paul moves from O1 to H1 and

consequently to R2, there is a transition that could be

seen in the form of some scattered points on the graph

plane. Hereinafter, whenever the context is clear, we

will use X
Ti

t to denote either a probabilistic tuple

(Ti, t, P (LTi,t = λ1), P (LTi,t = λ2), . . . , P (LTi,t =
λn)) or its representation in the Cartesian space

(P (LTi,t = λ1), P (LTi,t = λ2), . . . , P (LTi,t = λn)).

Then, we incrementally compute the centroid

V
c
Ti
t

of each cluster c
Ti

t while it evolves and, when

it is closed, we store X
Ti

[ts,t]
as (Ti, ts, t, Vc

Ti
t

).

3.2 Determining When to Close a Cluster

The main objective of the boundary condition test is to

be able to discriminate when a cluster has to be closed

in order to avoid distortion. To this end, we draw in-

spiration from techniques at the state of the art for

cluster validity measurement [26]. Two measurement

criteria are typically used for evaluating a clustering

schema [26]: compactness and separation. While the

former expresses the requirement that the members of

each cluster should be as close to each other as possi-

ble, the latter refers to the fact that the clusters them-

selves should be widely separated and it is not par-

ticularly interesting for our scenario; we thus focus

on compactness and consider three different methods

for quantifying it. The three models, which provide

different indices that can be used in the boundary con-

dition test, are:

• Maximum Probability Change (MPC): it moni-

tors the probability distribution trends. To this

end, let L
X

Ti
t

(L
c
Ti
t

) be the location with the max-

imum probability value in X
Ti

t (c
Ti

t ). For each

cluster c
Ti

t , MPC maintains L
c
Ti
t

as statistics, and

the boundary condition is satisfied when L
c
Ti
t

=

L
X

Ti

t+1

. The main disadvantage of this method is

that it is very sensitive to noise and thus makes

more clusters with fewer points in it;

• Diameter-oriented (DM): it measures how large

the cluster shape is. To this end it uses

the cluster diameter as statistics and checks

whether the latter is within a threshold B:

max
X,Y ∈c

Ti

t+1

{d(X,Y )} ≤ B. The main disad-

vantage of this approach is the time and space

complexity, due to the fact that the distance be-

tween all pairs of points have to be computed and

constantly kept updated on the arrival of new data

elements. This function is also very sensitive to

noise, since the maximum cluster diameter can

quickly become large in a noisy environment;

• Centroid Vs Latest Reading Comparison

(CLRC): it gives a measure of the mutual

distance between the centroid V
c
Ti
t

and the latest

point X
Ti

t+1. To this end, it checks whether

d(V
c
Ti
t

, X
Ti

t+1) ≤ B. The main advantage of this

method w.r.t. the DM model is that computations

are less time and space consuming, as V
c
Ti
t

can

be computed incrementally.

Regarding distance d(·, ·) between tuples, our ap-

proach is independent from the actually adopted func-
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tion. Several alternatives are possible for its imple-

mentation since we only require it is applicable in a

n-dimensional space. In our experiments we adopted

the Euclidean distance. Finally, note that for both DM

and CLRC, we can control the quality of the cluster-

ing process by properly selecting the threshold B: low

values of B produce a high number of small and tight

clusters, while we have an opposite behavior for high

values of B.

4 Querying Probabilistic Aggregated

Data

In this section, we will describe how the summarized

probabilistic tuples produced by the aggregation al-

gorithm can be effectively and efficiently managed.

Given their probabilistic nature, we show that they

can be directly stored and queried in a probabilistic

database management system.

A probabilistic database (we use MayBMS [1])

stores data by means of special U-relational tables,

providing a complete and concise representation of

the large number of possible worlds that are gener-

ated in the presence of probabilistic tuples [3]. It

also provides an expressive query language that sup-

ports the entire set of capabilities offered by SQL

and extends it with features designed to support the

probability and to work with uncertainty. For in-

stance, special functions such as conf(), aconf() are

available for calculating the confidence of the tuples,

argmax(), esum(), ecount() are approximate aggre-

gation functions, and so on. This language is suffi-

ciently general because it adopts semantics indepen-

dent of the details related to the mode of data repre-

sentation and composition.

Due to its compatibility with the relational alge-

bra and standard SQL, a comprehensive set of con-

structs for data transformation can be easily exploited.

In this way, complex high-level events can be success-

fully extracted by means of standard (probabilistic)

SQL queries. In the following, we show some signifi-

cant examples of possible queries that can be issued

on the probabilistic data we generate. The queries

contain constraints (interval or snapshot) over the tem-

poral history of the RFID data and are used to iden-

tify and track RFID objects in the test environment.

The queries are expressed directly on the summarized

version of the data: in Section 5, we will also ex-

perimentally prove that the effectiveness of the ob-

tained answers is the same as the one achieved by ex-

ecuting the queries on the whole unsummarized data.

start time() and cur time() are user-defined

functions for retrieving the startup time of the used

data set and the current system time. The employed

relational schema is the following:

cluster data(tag id,

time in, time out, location id,

probability),

which directly reflects the contents of the output tu-

ples as discussed in Section 3.

———————————————————-

Q1. Find who was at location ’L1’ 10 seconds

ago?

———————————————————-

SELECT tag id, conf()

FROM cluster data

WHERE location id=’L1’

AND time in < SELECT cur time()

- interval ’00:00:10’

AND time out > SELECT cur time()

- interval ’00:00:10’

GROUP BY tag id;

———————————————————-

———————————————————-

Q2. Find where was person ’P1’ at time ’t’?

———————————————————-

SELECT location id, conf()

FROM cluster data

WHERE tag id=’P1’

AND time in < ’t’

AND time out > ’t’

GROUP BY location id;

———————————————————-

———————————————————-

Q3. Find when ’P1’ was seen last time at location

’L1’?

———————————————————-

SELECT time out, conf()

FROM cluster data

WHERE location id= ’L1’

AND tag id = ’P1’

AND time out=

(SELECT max(time out)

FROM cluster data

WHERE location id = ’L1’

AND tag id = ’P1’

AND probability > 0.5)

GROUP BY time out;

———————————————————-

———————————————————-

Q4. Find where and which persons are detected

at the first moment by the system?

———————————————————-
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SELECT location id, tag id,

conf()

FROM cluster data

WHERE time in=

(SELECT start time())

GROUP BY location id, tag id;

———————————————————-

———————————————————-

Q5. Whether it happened that ’P1’ and ’P2’ are

together at the same location at the same

time? Where?

———————————————————-

SELECT c1.location id, conf()

FROM cluster data c1,

cluster data c2

WHERE c1.tag id = ’P1’

AND c2.tag id = ’P2’

AND c1.location id =

c2.location id

GROUP BY c1.location id;

———————————————————-

———————————————————-

Q6. Find when ’P1’ moved from location ’L1’ to

’L2’?

———————————————————-

SELECT c2.time in,conf()

FROM cluster data c1,

cluster data c2

WHERE c1.tag id = ’P1’

AND c1.tag id = c2.tag id

AND c1.location id = ’L1’

c2.location id = ’L2’

AND (c2.time in-c1.time out) <=

interval ’00:00:02’

AND (c2.time in-c1.time out) >=

interval ’00:00:00’

GROUP BY c2.time in;

———————————————————-

5 Experimental Evaluation

In order to evaluate the performance of the presented

approach, we have conducted several experiments in

different location tracking scenarios, collecting data

from persons wearing RFID tags. The experimental

scenarios are all set in three indoor locations (denoted

L1, L2 and L3) and capture different possible move-

ment behaviors: (i) “No Stay”, where people rapidly

move between locations without staying on any spe-

cific one; and (ii) “Stay”, where people move between

locations and spend some time on each of them. Both

types of scenarios have been tested with one/multiple

tags. In all the experiments, we apply the aggregation

methods we propose to the stream of tuples generated

by the RFID Online Filtering and Uncertainty Man-

agement Module.

The goal of our evaluation studies is two-fold:

(i) to validate and compare the effectiveness of each

method in precisely summarizing the movement be-

haviors which actually took place in the scenarios

(Section 5.1); and (ii) to evaluate the best performing

method on realistic target applications, i.e. to com-

pare the results which can be obtained by querying

the RFID data via a temporal probabilistic database

with and without applying the aggregation method to

the involved data (Section 5.2).

5.1 Effectiveness of Aggregation Methods

We analyze the performance of the presented aggre-

gation methods by means of five experiments con-

ducted on different movement scenario types (stay/no

stay) and with a varying number of actually visited

locations and tags. The experimental setup and the

obtained results are summarized in the left and right

parts of Table 1, respectively. For each experiment,

we measure the effectiveness of the methods based

on four parameters: (a) number of output clusters

(#Cluster); (b) fraction of occupied space w.r.t. non-

aggregated data (SP); (c) percentage of time at actual

location (%TAL); and (d) average location error (Av-

gLocError) between clustered and actual locations.

The basic intuition for (a) is that the nearer it is to

the number of actually visited locations, the more ef-

fective is the method; (b) provides a clear quantifi-

cation of the space required by the aggregated tuples

(the smaller the fraction the higher the saved space).

Beyond these “overview” approaches, (c) and (d) pro-

vide us with more detailed information on the actual

contents of the generated clusters. More specifically,

the %TAL is the percentage of time for which ag-

gregated data reports the same location as of ground

truth; besides correctness, this gives us an idea about

the promptness of each method to adjust the output

to the ground truth over the experiment duration (the

higher the value the better). Finally, average location

error takes into account how much the summarized

description of each generated cluster is near to the ac-

tual ground truth values. We devised the measure so to

highlight how long and how much each method differs

from the ground truth: it is calculated by means of an

average Euclidean distance between the ground truth

and the aggregated summarized descriptions over the

total time span, only considering those time instants

when a “wrong” location is reported. Values of Av-

gLocError are between 0 and 1, therefore the lower

the value the better the estimate.
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Table 1: Performance Evaluation of (a) MPC, (b) DM and (c) CLRC

EXP Scenario #Tags #Locs #Clusters %SP %TAL

1 No Stay 1 3 3 (=) 0.033 98.91

2 Stay 1 5 13 (+160%) 0.026 95.93

3 No Stay 2 Tag 1 5 9 (+80%) 0.080 86.61

Tag 2 5 11 (+120%) 0.097 83.04

4 Stay 2 Tag 1 4 8 (+100%) 0.033 92.89

Tag 2 4 10 (+150%) 0.041 95.82

5 Stay 2 Tag 1 4 16 (+300%) 0.053 82.16

Tag 2 4 13 (+225%) 0.043 86.96

Mean +141% 0.050 90.29

EXP Scenario #Tags #Locs #Clusters %SP %TAL

1 No Stay 1 3 3 (=) 0.033 98.91

2 Stay 1 5 5 (=) 0.010 96.95

3 No Stay 2 Tag 1 5 5 (=) 0.044 88.39

Tag 2 5 5 (=) 0.044 85.71

4 Stay 2 Tag 1 4 5 (+25%) 0.020 94.14

Tag 2 4 8 (+100%) 0.033 95.82

5 Stay 2 Tag 1 4 6 (+50%) 0.020 84.95

Tag 2 4 8 (+100%) 0.026 87.96

Mean +34% 0.040 91.60

EXP Scenario #Tags #Locs #Clusters %SP %TAL

1 No Stay 1 3 3 (=) 0.033 98.91

2 Stay 1 5 5 (=) 0.010 96.95

3 No Stay 2 Tag 1 5 5 (=) 0.044 88.39

Tag 2 5 5 (=) 0.044 85.71

4 Stay 2 Tag 1 4 4 (=) 0.016 94.14

Tag 2 4 5 (+25%) 0.020 96.65

5 Stay 2 Tag 1 4 4 (=) 0.013 88.63

Tag 2 4 5 (+25%) 0.016 89.97

Mean +6% 0.024 92.41

AvgLocError

AvgLocError

AvgLocError

(a) MPC

(b) DM

(c) CLRC

0.0136

0.0452

0.1549

0.0445

0.1957

0.0707

0.0453

0.1929

0.1495

0.108

0.0136

0.0383

0.1419

0.1739

0.0608

0.0879

0.1696

0.1374

0.0975

0.0136

0.0383

0.1410

0.1739

0.0596

0.0393

0.1190

0.1185

Besides the complete report shown in the right

part of Table 1, Figures 3(a-d) offer an immediate

graphical comparison between the three aggregation

methods on the basis of the experimental results. The

values shown in the graphs are the mean values be-

tween all the different experiments.

From the obtained experimental results, we see

that MPC is very sensitive to noise and thus performs

poorly in the presence of noisy data. On average, it

makes 141% more clusters than expected (up to 300%

more in EXP5), while the average location error is

quite high, for instance with values of 0.19 for EXP3

and EXP5 (0.108 on mean for all the experiments).

TAL is about 90% on mean, with the lowest values

being 83% (EXP3) and 82% (EXP5).

DM performs better than MPC but its diameter

can quickly become very large in presence of noisy

data. DM has an average location error of 0.0975 and

average TAL of approximately 92%, while it makes

34% more clusters than expected.

CLRC shows superior performance to MPC and

DM, giving good results even in noisy environments.

The average TAL is about 92%, whereas the average

location error is approximately 0.0879; on average, it

only makes 6% more clusters than expected, which,

together with the other figures, represents a very en-

couraging result. The same holds for the very consis-

tent space savings produced by all methods (ranging

from 0.05% of the space required by non-aggregated

data to the most compact 0.024%, given by MPC and

CLRC, respectively).

5.2 Aggregation Effects on Temporal Proba-

bilistic Query Processing

After having evaluated the goodness of the output

data per se, we now want to assess the performance

of a probabilistic DBMS in answering some typical

queries over the summarized versus non-summarized

data of our five experiments. For the tests in this sec-
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Figure 3: Comparison between aggregation methods

tion we will exploit the CLRC method, since it has

been proven the best performing one (see Section 5.1).

As described in Section 4, in order to handle the

uncertainty associated to our probabilistic streams, we

use the MayBMS database management system [20].

In our experiments, we validated the results obtained

on the aggregated and complete data over a num-

ber of queries. The ones we selected are those dis-

cussed in Section 4; the obtained results are summa-

rized in Table 2. In particular, the table shows, for

each of the five experiments (columns) and of the six

queries (rows), from left to right, the actual (expected)

and computed output results over aggregated and non-

aggregated data. Note that, in some of the experi-

ments (EXP1, EXP4 and EXP5) the actual answer to

Q1 should be “no one” (“-” in Table 2). Furthermore,

Q5 is not applicable to EXP1 and EXP2, since only

one tag is used.

In all cases, we can see that the results on sum-

marized data are correct and with a confidence which

is very near (almost identical) to the non-aggregated

data results; this shows that, even if data in aggregated

form contain less detailed information, they provide

accurate answers to the queries. Moreover, in some

cases the confidence of the correct answer is higher on

the summarized data, due to the noise that is present

in the non-summarized data (see for instance Q2 in

experiments 1-4).

Finally, Q6 is an interesting case of high-level

event detection, in this case a transition between loca-

tions. As expected, the results we got from the DBMS

experimentally prove that transitions are much eas-

ier to identify on the aggregated data, since the com-

plete data contain a lot of “noise”, thus producing a

very large quantity of irrelevant and/or incorrect re-

sults (“*” in Table 2).

6 Related Works and Concluding

Remarks

One of the main concerns for data management is

that the rate of RFID data streams is quite high and,

therefore, the resulting volume of the stream is quite

huge. For RFID data compression, several proposals

have been recently discussed in literature. A graph-

based model is discussed in [6] for providing com-

pression in RFID systems. This model captures the

possible object locations and their containment rela-

tionships. However, high detection rates at the RFID

readers are required in order to have accurate results.

In [14], a new model for warehousing RFID data has

been proposed. The proposed model provides signifi-

cant data compression and path-dependent aggregates

while preserving the object transitions. The proposed

work basically takes advantage of object movements

in bulk, of data generalization and the merge or col-

lapse of the path segment that RFID objects follow.

In [4] the authors present an aggregation mech-

anism for RFID data streams based on temporal and

spatial aggregations. The proposed algorithm exploits

the time and space dimension to reduce the volume of

input RFID data streams. A special data cube termed

as Flowcube is introduced in [12] for RFID systems.

The Flowcube is a data cube computed for a large col-
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Table 2: Probabilistic Query Results for Aggregated and Non-Aggregated (Complete) Data

Actual Actual

conf conf conf conf

Q1 P1 P1 0.983 P1 0.996 _ P1 0.027 P1 0.004

Q2 L2 L1 0.105 L1 0.482 L3 L2 0.213 L2 0.606

L2 0.831 L2 0.518 L3 0.786 L3 0.394

L3 0.062

Q3 2:09:34 2:09:34 0.983 2:09:34 0.78 5:20:55 5:20:55 0.984 5:20:55 1

Q4 L1,P1 L1,P1 0.983 L1,P1 0.994 L1,P1 L1,P1 0.975 L1,P1 1

Q5

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Q6 2:09:35 2:09:35 0.817 5:14:44 5:14:48 0.879

2:09:46 0.022 * * 5:16:47 0.005 * *

5:19:50 0.0001

Actual Actual

conf conf conf

Q1 P1 P1 0.981 P1 1 _ P1 0.033 P1 0.016

P2 P2 0.988 P2 1 P2 0.004 P2 0.04

Q2 L2 L1 0.026 L2 0.976 L2 L1 0.053 L1 0.216

L2 0.944 L3 0.024 L2 0.898 L2 0.784

L3 0.03 L3 0.048

Q3 4:41:24 4:41:24 0.94 4:41:24 0.516 6:05:10 6:05:10 0.989 6:05:10 0.801

Q4 L1,P1 L1,P1 0.988 L1,P1 1 L1,P1 L1,P1 0.996 L1,P1 1

L1,P2 L1,P2 0.981 L1,P2 1 L1,P2 L1,P2 0.989 L1,P2 1

Q5 L1 L1 0.998 L1 1 L1 L1 0.987 L1 1

L2 L2 0.974 L2 1 L2 L2 0.991 L2 1

L3 L3 0.686 L3 0.999 L3 L3 0.654 L3 1

Q6 4:40:03 4:40:04 0.701 6:05:11 6:05:12 0.882

4:40:20 0.028 * * 6:06:08 0.001 * *

4:41:03 0.001

Actual

conf conf

Q1 _ P1 0.037 P1 0.002

P2 0.021

Q2 L3 L2 0.166 L2 0.146

L3 0.833 L3 0.854

Q3 6:26:45 6:26:39 0.988 6:26:56 0.518

Q4 L1,P1 L1,P1 0.998 L1,P1 1

L1,P2 L1,P2 0.988 L1,P2 1

Q5 L1 L1 0.988 L1 1

L2 L2 0.969 L2 1

L3 L3 0.73 L3 1

Q6 6:26:46 6:26:40 0.842

6:28:02 0.022 * *

Non-Aggregated Data

Aggregated Data Non-Aggregated Data

EXP1 EXP2

EXP3 EXP4

EXP5

Aggregated Data Non-Aggregated Data Aggregated Data Non-Aggregated Data

Aggregated Data Non-Aggregated Data Aggregated Data

lection of paths. The Flowcube computes the move-

ment trends of each specific item instead of comput-

ing aggregated measurements like in a traditional data

cube. Basically, the Flowcube examines item flows in

an RFID system. Since RFID data has different flow

of information from the traditional data, data storage

and query processing tasks are difficult. Lee et al. has

discussed this aspect of RFID data in [25]. They pro-

posed an efficient storage scheme and query process-

ing for supply chain management. They used an effec-

tive path encoding method to represent the flow infor-

mation representing movements of products. A stor-

age scheme is developed to process tracking queries

and path oriented queries efficiently based on path en-

coding scheme and numbering scheme.

Another approach for RFID data compression in

a supply chain scenario is presented in [8]. This

approach takes advantage of the property that ob-

jects move together. In particular, this work repre-

sents an incremental aggregation approach based on

various combinations of attributes describing RFID

data other than paths and locations. Using this com-

pression approach, the authors develop a lossless,

relational-based storage model which preserves infor-

mation about both path dependent and path indepen-

dent items. In [10], a lossy compression technique is

proposed for RFID data streams. In particular, the au-

thors define a data structure to represent compressed

RFID warehouses. Moreover, they proposed an archi-

tecture that gathers readings from RFID readers and
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store them in a compact way.

Also, in the database community, various algo-

rithms have been proposed for a number of clustering

problems and several methods working on very large

amounts of data gained popularity, such as DBSCAN

[9], CURE [16] and BIRCH [30]. Besides purely de-

terministic approaches, the vague and uncertain nature

of the data stream has recently captured a lot of re-

search attention and many clustering algorithms have

been proposed which also take into account the prob-

abilities associated to the involved data. In this con-

text, a fuzzy version of DBSCAN has been presented

as FDBSCAN [24]. This algorithm, instead of find-

ing regions with high density, identifies regions with

high expected density, based on the probability distri-

butions of the objects.

Another probabilistic extension is P-DBSCAN

[28], which takes advantage of the probability distri-

bution information of the object locations in the def-

inition and computation of probabilistic core object

and probabilistic density-reachability.

In [27], an extension of the K-means algorithm is

proposed, named as UK-means algorithm, which con-

siders expected distance between the object and the

representative of the cluster.

As UK-means is based on classical K-means al-

gorithm, it can be sensitive to noise. UMicro [2] uses

a general model of the uncertainty and keeps track

of the standard errors of each dimension within each

cluster, showing that the use of even general uncer-

tainty model during the clustering process is enough

to improve the quality of results over purely deter-

ministic approaches. Other similar related approaches

are the two-phase clustering algorithm discussed by

Zhang et al. in [29], named as LuMicro, and PW-

Stream [18], which has been proposed for the specific

problem of sliding windows.

The objective of most of the methods discussed

above is to analyze incoming data and judge on their

“certainty”, thus producing the highest quality possi-

ble clusters both in terms of compactness and high

probability, discarding low quality ones. Further, they

work on the assumption of knowing specific informa-

tion characterizing the uncertainty, such as having the

entire probability density function or standard error

data available. The number of clusters to be produced

is also usually known in advance.

On the other hand, the method presented in this

paper is targeted for a different objective, i.e. a sum-

marization task in a location tracking context, and

is thus designed to work on a different perspective.

More specifically, our ultimate goal is to correctly

identify and highlight state transitions, while avoiding

redundant information produced in stable states. In

this context, not only one active cluster per tag suffices

but, even more importantly, we never have to judge

on the quality (probability) of the created clusters; in-

stead, we purely and “objectively” summarize the re-

ceived data in order to make it available to upper level

applications in a more compact but equally meaning-

ful way. In this way, as experimentally proven, a prob-

abilistic database such as MayBMS can effectively an-

swer a wide range of probabilistic queries on the sum-

marized version of the data, which only take up a frac-

tion of the original space.

In the future, we will test our summarization and

querying approach in larger settings, also involving

open environments and/or a higher number of anten-

nas. Moreover, we will also consider other applica-

tion scenarios beyond location tracking and see how

the method can be customized for them in order to

maintain its high level of effectiveness.
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