521 research outputs found

    A survey of QoS-aware web service composition techniques

    Get PDF
    Web service composition can be briefly described as the process of aggregating services with disparate functionalities into a new composite service in order to meet increasingly complex needs of users. Service composition process has been accurate on dealing with services having disparate functionalities, however, over the years the number of web services in particular that exhibit similar functionalities and varying Quality of Service (QoS) has significantly increased. As such, the problem becomes how to select appropriate web services such that the QoS of the resulting composite service is maximized or, in some cases, minimized. This constitutes an NP-hard problem as it is complicated and difficult to solve. In this paper, a discussion of concepts of web service composition and a holistic review of current service composition techniques proposed in literature is presented. Our review spans several publications in the field that can serve as a road map for future research

    Data-intensive service provision based on particle swarm optimization

    Get PDF
    © 2018, the Authors. The data-intensive service provision is characterized by the large of scale of services and data and also the high-dimensions of QoS. However, most of the existing works failed to take into account the characteristics of data-intensive services and the effect of the big data sets on the whole performance of service provision. There are many new challenges for service provision, especially in terms of autonomy, scalability, adaptability, and robustness. In this paper, we will propose a discrete particle swarm optimization algorithm to resolve the data-intensive service provision problem. To evaluate the proposed algorithm, we compared it with an ant colony optimization algorithm and a genetic algorithm with respect to three performance metrics

    Kooperativna evolucija za kvalitetno pružanje usluga u paradigmi Interneta stvari

    Get PDF
    To facilitate the automation process in the Internet of Things, the research issue of distinguishing prospective services out of many “similar” services, and identifying needed services w.r.t the criteria of Quality of Service (QoS), becomes very important. To address this aim, we propose heuristic optimization, as a robust and efficient approach for solving complex real world problems. Accordingly, this paper devises a cooperative evolution approach for service composition under the restrictions of QoS. A series of effective strategies are presented for this problem, which include an enhanced local best first strategy and a global best strategy that introduces perturbations. Simulation traces collected from real measurements are used for evaluating the proposed algorithms under different service composition scales that indicate that the proposed cooperative evolution approach conducts highly efficient search with stability and rapid convergence. The proposed algorithm also makes a well-designed trade-off between the population diversity and the selection pressure when the service compositions occur on a large scale.Kako bi se automatizirali procesi u internetu stvati, nužno je rezlikovati bitne usluge u moru sličnih kao i identificirati potrebne usluge u pogledu kvalitete usluge (QoS). Kako bi doskočili ovome problemu prdlaže se heuristička optimizacija kao robustan i efikasan način rješavajne kompleksnih problema. Nadalje, u članku je predložen postupak kooperativne evolucije za slaganje usluga uz ograničenja u pogledu kvalutete usluge. Predstavljen je niz efektivnih strategija za spomenuti problem uključujući strategije najboljeg prvog i najboljeg globalnog koje unose perturbacije u polazni problem. Simulacijski rezultati kao i stvarni podatci su korišteni u svrhu evaluacije prodloženog algoritma kako bi se osigurala efikasna pretraga uz stabilnost i brzu konvergenciju. Predloženi algoritam tako.er vodi računa o odnosu izme.u različitosti populacije i selekcijskog pritiska kada je potrebno osigurati slaganje usluga na velikoj skali

    Cloud Service Selection System Approach based on QoS Model: A Systematic Review

    Get PDF
    The Internet of Things (IoT) has received a lot of interest from researchers recently. IoT is seen as a component of the Internet of Things, which will include billions of intelligent, talkative "things" in the coming decades. IoT is a diverse, multi-layer, wide-area network composed of a number of network links. The detection of services and on-demand supply are difficult in such networks, which are comprised of a variety of resource-limited devices. The growth of service computing-related fields will be aided by the development of new IoT services. Therefore, Cloud service composition provides significant services by integrating the single services. Because of the fast spread of cloud services and their different Quality of Service (QoS), identifying necessary tasks and putting together a service model that includes specific performance assurances has become a major technological problem that has caused widespread concern. Various strategies are used in the composition of services i.e., Clustering, Fuzzy, Deep Learning, Particle Swarm Optimization, Cuckoo Search Algorithm and so on. Researchers have made significant efforts in this field, and computational intelligence approaches are thought to be useful in tackling such challenges. Even though, no systematic research on this topic has been done with specific attention to computational intelligence. Therefore, this publication provides a thorough overview of QoS-aware web service composition, with QoS models and approaches to finding future aspects

    Composing Distributed Data-intensive Web Services Using a Flexible Memetic Algorithm

    Full text link
    Web Service Composition (WSC) is a particularly promising application of Web services, where multiple individual services with specific functionalities are composed to accomplish a more complex task, which must fulfil functional requirements and optimise Quality of Service (QoS) attributes, simultaneously. Additionally, large quantities of data, produced by technological advances, need to be exchanged between services. Data-intensive Web services, which manipulate and deal with those data, are of great interest to implement data-intensive processes, such as distributed Data-intensive Web Service Composition (DWSC). Researchers have proposed Evolutionary Computing (EC) fully-automated WSC techniques that meet all the above factors. Some of these works employed Memetic Algorithms (MAs) to enhance the performance of EC through increasing its exploitation ability of in searching neighbourhood area of a solution. However, those works are not efficient or effective. This paper proposes an MA-based approach to solving the problem of distributed DWSC in an effective and efficient manner. In particular, we develop an MA that hybridises EC with a flexible local search technique incorporating distance of services. An evaluation using benchmark datasets is carried out, comparing existing state-of-the-art methods. Results show that our proposed method has the highest quality and an acceptable execution time overall.Comment: arXiv admin note: text overlap with arXiv:1901.0556

    Hybrid Honey Bees Mating Optimization Algorithm for Identifying the Near-Optimal Solution in Web Service Composition

    Get PDF
    This paper addresses the problem of optimality in semantic Web service composition by proposing a hybrid nature-inspired method for selecting the optimal or near-optimal solution in semantic Web Service Composition. The method hybridizes the Honey-Bees Mating Optimization algorithm with components inspired from genetic algorithms, reinforcement learning, and tabu search. To prove the necessity of hybridization, we have analyzed comparatively the experimental results provided by our hybrid selection algorithm versus the ones obtained with the classical Honey Bees Mating Optimization algorithm and with the genetic-inspired algorithm of Canfora et al

    Novel optimization schemes for service composition in the cloud using learning automata-based matrix factorization

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyService Oriented Computing (SOC) provides a framework for the realization of loosely couple service oriented applications (SOA). Web services are central to the concept of SOC. They possess several benefits which are useful to SOA e.g. encapsulation, loose coupling and reusability. Using web services, an application can embed its functionalities within the business process of other applications. This is made possible through web service composition. Web services are composed to provide more complex functions for a service consumer in the form of a value added composite service. Currently, research into how web services can be composed to yield QoS (Quality of Service) optimal composite service has gathered significant attention. However, the number and services has risen thereby increasing the number of possible service combinations and also amplifying the impact of network on composite service performance. QoS-based service composition in the cloud addresses two important sub-problems; Prediction of network performance between web service nodes in the cloud, and QoS-based web service composition. We model the former problem as a prediction problem while the later problem is modelled as an NP-Hard optimization problem due to its complex, constrained and multi-objective nature. This thesis contributed to the prediction problem by presenting a novel learning automata-based non-negative matrix factorization algorithm (LANMF) for estimating end-to-end network latency of a composition in the cloud. LANMF encodes each web service node as an automaton which allows v it to estimate its network coordinate in such a way that prediction error is minimized. Experiments indicate that LANMF is more accurate than current approaches. The thesis also contributed to the QoS-based service composition problem by proposing four evolutionary algorithms; a network-aware genetic algorithm (INSGA), a K-mean based genetic algorithm (KNSGA), a multi-population particle swarm optimization algorithm (NMPSO), and a non-dominated sort fruit fly algorithm (NFOA). The algorithms adopt different evolutionary strategies coupled with LANMF method to search for low latency and QoSoptimal solutions. They also employ a unique constraint handling method used to penalize solutions that violate user specified QoS constraints. Experiments demonstrate the efficiency and scalability of the algorithms in a large scale environment. Also the algorithms outperform other evolutionary algorithms in terms of optimality and calability. In addition, the thesis contributed to QoS-based web service composition in a dynamic environment. This is motivated by the ineffectiveness of the four proposed algorithms in a dynamically hanging QoS environment such as a real world scenario. Hence, we propose a new cellular automata-based genetic algorithm (CellGA) to address the issue. Experimental results show the effectiveness of CellGA in solving QoS-based service composition in dynamic QoS environment

    Optimal QoS aware multiple paths web service composition using heuristic algorithms and data mining techniques

    Get PDF
    The goal of QoS-aware service composition is to generate optimal composite services that satisfy the QoS requirements defined by clients. However, when compositions contain more than one execution path (i.e., multiple path's compositions), it is difficult to generate a composite service that simultaneously optimizes all the execution paths involved in the composite service at the same time while meeting the QoS requirements. This issue brings us to the challenge of solving the QoS-aware service composition problem, so called an optimization problem. A further research challenge is the determination of the QoS characteristics that can be considered as selection criteria. In this thesis, a smart QoS-aware service composition approach is proposed. The aim is to solve the above-mentioned problems via an optimization mechanism based upon the combination between runtime path prediction method and heuristic algorithms. This mechanism is performed in two steps. First, the runtime path prediction method predicts, at runtime, and just before the actual composition, execution, the execution path that will potentially be executed. Second, both the constructive procedure (CP) and the complementary procedure (CCP) heuristic algorithms computed the optimization considering only the execution path that has been predicted by the runtime path prediction method for criteria selection, eight QoS characteristics are suggested after investigating related works on the area of web service and web service composition. Furthermore, prioritizing the selected QoS criteria is suggested in order to assist clients when choosing the right criteria. Experiments via WEKA tool and simulation prototype were conducted to evaluate the methods used. For the runtime path prediction method, the results showed that the path prediction method achieved promising prediction accuracy, and the number of paths involved in the prediction did not affect the accuracy. For the optimization mechanism, the evaluation was conducted by comparing the mechanism with relevant optimization techniques. The simulation results showed that the proposed optimization mechanism outperforms the relevant optimization techniques by (1) generating the highest overall QoS ratio solutions, (2) consuming the smallest computation time, and (3) producing the lowest percentage of constraints violated number

    Evolutionary composition of QoS-aware web services: a many-objective perspective

    Get PDF
    Web service based applications often invoke services provided by third-parties in their workflow. The Quality of Service (QoS) provided by the invoked supplier can be expressed in terms of the Service Level Agreement specifying the values contracted for particular aspects like cost or throughput, among others. In this scenario, intelligent systems can support the engineer to scrutinise the service market in order to select those candidates that best fit with the expected composition focusing on different QoS aspects. This search problem, also known as QoS-aware web service composition, is characterised by the presence of many diverse QoS properties to be simultaneously optimised from a multi-objective perspective. Nevertheless, as the number of QoS properties considered during the design phase increases and a larger number of decision factors come into play, it becomes more difficult to find the most suitable candidate solutions, so more sophisticated techniques are required to explore and return diverse, competitive alternatives. With this aim, this paper explores the suitability of many-objective evolutionary algorithms for addressing the binding problem of web services on the basis of a real-world benchmark with 9 QoS properties. A complete comparative study demonstrates that these techniques, never before applied to this problem, can achieve a better trade-off between all the QoS properties, or even promote specific QoS properties while keeping high values for the rest. In addition, this search process can be performed within a reasonable computational cost, enabling its adoption by intelligent and decision-support systems in the field of service oriented computation.Junta de Andalucía P12-TIC-1867Ministerio de Economía y Competitividad TIN2012-32273Junta de Andalucía TIC-5906Ministerio de Economía y Competitividad TIN2014-55252-PMinisterio de Economía y Competitividad TIN2015- 71841-REDTMinisterio de Educación, Cultura y Deportes FPU13/0146
    corecore