1,442 research outputs found

    Contextual anomaly detection in crowded surveillance scenes

    Get PDF
    AbstractThis work addresses the problem of detecting human behavioural anomalies in crowded surveillance environments. We focus in particular on the problem of detecting subtle anomalies in a behaviourally heterogeneous surveillance scene. To reach this goal we implement a novel unsupervised context-aware process. We propose and evaluate a method of utilising social context and scene context to improve behaviour analysis. We find that in a crowded scene the application of Mutual Information based social context permits the ability to prevent self-justifying groups and propagate anomalies in a social network, granting a greater anomaly detection capability. Scene context uniformly improves the detection of anomalies in both datasets. The strength of our contextual features is demonstrated by the detection of subtly abnormal behaviours, which otherwise remain indistinguishable from normal behaviour

    Anomalous Payload-Based Network Intrusion Detection

    Get PDF
    We present a payload-based anomaly detector, we call PAYL, for intrusion detection. PAYL models the normal application payload of network traffic in a fully automatic, unsupervised and very efficient fashion. We first compute during a training phase a profile byte frequency distribution and their standard deviation of the application payload flowing to a single host and port. We then use Mahalanobis distance during the detection phase to calculate the similarity of new data against the pre-computed profile. The detector compares this measure against a threshold and generates an alert when the distance of the new input exceeds this threshold. We demonstrate the surprising effectiveness of the method on the 1999 DARPA IDS dataset and a live dataset we collected on the Columbia CS department network. In once case nearly 100% accuracy is achieved with 0.1% false positive rate for port 80 traffic

    Classification, testing and optimization of intrusion detection systems

    Get PDF
    Modem network security products vary greatly in their underlying technology and architecture. Since the introduction of intrusion detection decades ago, intrusion detection technologies have continued to evolve rapidly. This rapid change has led to the introduction of a wealth of security devices, technologies and algorithms that perform functions originally associated with intrusion detection systems. This thesis offers an analysis of intrusion detection technologies, proposing a new classification system for intrusion detection systems. Working closely with the development of a new intrusion detection product, this thesis introduces a method of testing related technologies in a production environment by outlining and executing a series of denial of service and scan and probe attacks. Based on the findings of these experiments, a series of enhancements to the core intrusion detection product is introduced to improve its capabilities and adapt to modem needs of security products

    A Behavior-Based Approach To Securing Email Systems

    Get PDF
    The Malicious Email Tracking (MET) system, reported in a prior publication, is a behavior-based security system for email services. The Email Mining Toolkit (EMT) presented in this paper is an offline email archive data mining analysis system that is designed to assist computing models of malicious email behavior for deployment in an online MET system. EMT includes a variety of behavior models for email attachments, user accounts and groups of accounts. Each model computed is used to detect anomalous and errant email behaviors. We report on the set of features implemented in the current version of EMT, and describe tests of the system and our plans for extensions to the set of models

    An Interactive Relaxation Approach for Anomaly Detection and Preventive Measures in Computer Networks

    Get PDF
    It is proposed to develop a framework of detecting and analyzing small and widespread changes in specific dynamic characteristics of several nodes. The characteristics are locally measured at each node in a large network of computers and analyzed using a computational paradigm known as the Relaxation technique. The goal is to be able to detect the onset of a worm or virus as it originates, spreads-out, attacks and disables the entire network. Currently, selective disabling of one or more features across an entire subnet, e.g. firewalls, provides limited security and keeps us from designing high performance net-centric systems. The most desirable response is to surgically disable one or more nodes, or to isolate one or more subnets.The proposed research seeks to model virus/worm propagation as a spatio-temporal process. Such models have been successfully applied in heat-flow and evidence or gestalt driven perception of images among others. In particular, we develop an iterative technique driven by the self-assessed dynamic status of each node in a network. The status of each node will be updated incrementally in concurrence with its connected neighbors to enable timely identification of compromised nodes and subnets. Several key insights used in image analysis of line-diagrams, through an iterative and relaxation-driven node labeling method, are explored to help develop this new framework
    • …
    corecore