
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-2006

Classification, testing and optimization of intrusion detection Classification, testing and optimization of intrusion detection

systems systems

Javier Leon
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Leon, Javier, "Classification, testing and optimization of intrusion detection systems" (2006). Theses. 429.
https://digitalcommons.njit.edu/theses/429

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Ftheses%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/429?utm_source=digitalcommons.njit.edu%2Ftheses%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

CLASSIFICATION, TESTING AND OPTIMIZATION OF
INTRUSION DETECTION SYSTEMS

by
Javier Leon

Modern network security products vary greatly in their underlying technology and

architecture. Since the introduction of intrusion detection decades ago, intrusion

detection technologies have continued to evolve rapidly. This rapid change has led to

the introduction of a wealth of security devices, technologies and algorithms that

perform functions originally associated with intrusion detection systems.

This thesis offers an analysis of intrusion detection technologies, proposing a new

classification system for intrusion detection systems. Working closely with the

development of a new intrusion detection product, this thesis introduces a method of

testing related technologies in a production environment by outlining and executing a

series of denial of service and scan and probe attacks. Based on the findings of these

experiments, a series of enhancements to the core intrusion detection product is

introduced to improve its capabilities and adapt to modern needs of security products.

CLASSIFICATION, TESTING AND OPTIMIZATION OF
INTRUSION DETECTION SYSTEMS

by
Javier Leon

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

May 2006

APPROVAL PAGE

CLASSIFICATION, TESTING AND OPTIMIZATION OF
INTRUSION DETECTION SYSTEMS

Javier Leon

Dr. Constantine Manikopoulos, Thesis Advisor	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Robert Statica, Committee Member 	 Date
Information Technology Program Administrator, NJIT

Dr. Jie Hu, Committee Member	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Javier Leon

Degree:	 Master of Science

Date:	 April 2006

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, N.J., 2006

• Bachelor of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, N.J., 1999

Major:	 Computer Engineering

Presentations and Publications:

Leon, Javier Simms, Dennis and Redmond, Michael,
"A Strategy for Network Convergence,"
The Sixth International Symposium on Personal, Indoor and Mobile Radio
Educause, Sacramento, CA, October 2003.

iv

To my beloved family, without which I would not have the courage and confidence to
succeed.

v

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Constantine Manikopoulos, who

acted as my research supervisor, providing valuable and countless resources, insight, and

intuition. I appreciate his efforts towards a deeper understanding of the technology

behind network security. I would also like to extend my appreciation for the efforts of

my committee members Dr. Robert Statica and Dr. Jie Hu.

Many of my fellow graduate students in the Computer Engineering program are

deserving of recognition for their support. Witnessing the efforts of doctoral students

under the leadership of Dr. Manikopoulos has provided me with a deeper appreciation of

the benefits of graduate and doctoral research and the capabilities of motivated

individuals with genuine leadership.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Intrusion Detection 	 1

1.2 Intrusion Detection Mechanisms 	 2

1.2.1 Statistic Based Mechanisms 	 3

1.2.2 Content Based Mechanisms 	 4

1.3 Conex Intrusion Detection System 	 11

2 CONEX IDS TESTING 	 12

2.1 Testing Environment 	 12

2.2 DOS Testing 	 20

2.2.1 DOS Attacks 	 20

2.2.2 DOS Tools.. 	 24

2.2.3 DOS Tests Performed.. 	 25

2.2.4 DOS Test Results 	 25

2.3 Scan and Probe Testing 	 27

2.3.1 Scan and Probe Attacks 	 27

2.3.2 Scan and Probe Tools 	 47

2.3.3 Scan and Probe Tests Performed.. 	 49

2.3.4 Scan and Probe Test Results

2.4 Results 	

3 INTRUSION DETECTION ENHANCEMENTS.

3.1 Commuication Mechanisms 	 56

51

54

56

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.2 Administrator Control 	 77

	

3.3 Conclusion 85

REFERENCES 	 86

viii

LIST OF TABLES

Table Page

2.1 DOS Results — Initial Test 	 26

2.2 DOS Results — Final Test 	 27

2.3 Scan and Probe Results — Initial Test 	 52

2.4 Scan and Probe Results — Final Test 	 53

3.1 IDMEF Fields 	 61

3.2 Communication Ring 	 71

3.3 Routing Table 	 72

3.4 Table Entries 	 72

3.5 Table Rows Calculations 	 73

3.6 Scribe Groups 	 75

ix

LIST OF FIGURES

Figure	 Page

1.1 Tipping point reconnaissance filters 	 4

1.2 Signature detection mechanisms 	 5

2.1 Existing test environment 	 12

2.2 Gigabit interface output. 	 17

2.3 Modified test environment 	 18

2.4 Final test environment 	 19

2.5 ICMP echo request 	 30

2.6 ICMP info request 	 31

2.7 ICMP netmask request 	 32

2.8 ICMP timestamp request 	 33

2.9 TCP half connect 	 35

2.10 TCP connect 	 37

2.11 SYN stealth 	 39

2.12 TCP fin connect 	 41

2.13 TCP null connect 	 43

2.14 TCP XMAS connect 	 45

2.15 UDP connect 	 47

3.1 Standalone Conex station 	 56

3.2 General IDMEF message 	 58

3.3 Full IDMEF message 	 59

3.4 Modified IDMEF message 	 60

3.5 Sample RAP or FSD message 	 63
x

LIST OF FIGURES
(Continued)

Figure Page

3.6 Sample RAP/FSD alert. 	 64

3.7 Modified RAC message 	 66

3.8 Sample RAC message. 	 67

3.9 Centralized communication module 	 68

3.10 Distributed communication module 	 69

3.11 Scribe communication 	 74

3.12 Multicast tree - Original 	 75

3.13 Multicast tree — After E exits 	 76

3.14 Multicast tree — After G exits 	 76

3.15 Threshold filters 	 77

3.16 Reconnaissance filters 	 78

3.17 SYN flood filters 	 79

3.18 Threshold dialog box 	 79

3.19 Intrusion responses 	 81

3.20 Anomaly dialog boxes 	 82

3.21 Proposed dialog box1 	 84

3.22 Proposed dialog box2 	 85

xi

CHAPTER 1

INTRODUCTION

1.1 Intrusion Detection

The birth of Intrusion Detection is most often credited to James Anderson's two

published reports on computer security [1] [2]. In his 1972 paper, "Computer Security

Technology Planning Study," Anderson identifies the need to "determine what

constitutes an appropriate defense against malicious attack, and then develop hardware

and software with the defensive mechanism(s) built in." In 1980 his paper suggested "an

outline of a system design and the basis for providing statistical detection of abnormal

use." Since these early beginnings intrusion detection technologies have quickly

evolved. While computer security technologies have experienced tremendous change in

the past two decades, many of the issues and solutions identified two decades ago are still

true today.

Intrusion detection is defined by SANS [4] as "the art of detecting inappropriate,

incorrect, or anomalous activity." Because of the complexity behind IDS technologies,

opinions, definitions, and practices continue to differ significantly throughout the security

industry. While products and technologies offering protection against security threats

have continued to change, the number of reported vulnerabilities and incidents has

continued to grow.

Between the years 2000 and 2003, the CERT Coordination center [3] has

published an increase of over 340% in reported vulnerabilities.630% in reported security

incidents. Between 1988 and 2002, the increase of reported vulnerabilities and incidents

is over 1500% and 2100% respectively.

1

2

1.2 Intrusion Detection Mechanisms

Although changes to Intrusion Detection products and technology have led to a variety of

different categories of products, the underlying technologies behind today's modern

products are essentially the same. In this thesis, I propose the following definition of

Network Intrusion Detection: A set of technologies designed to identify and report on

indications of network policy violations.

Today's network security products tout the ability to predict, detect, eliminate or

prevent network security violations. This can only be achieved with the assistance of

intrusion detection mechanisms offering the ability to detect indications of policy

violations. The Common Intrusion Detection Framework Architecture (CIDF) [5]

defines the components of an Intrusion Detection System Architecture as Event

generators ("E-boxes"), Event analyzers ("A-boxes"), Event databases ("D-boxes") and

Response units ("R-boxes"). The Intrusion Detection mechanisms presented in this

section would act as A-boxes in a complete IDS system. Analyzers receive information,

performs analysis and return resultant information.

In the following analysis of intrusion detection mechanisms, various technologies

employed by Intrusion Detection devices to detect violations are analyzed and a new

system of categorizing these technologies is proposed.

Intrusion Detection Mechanisms can be separated into two main categories.

Detection mechanisms will function by analyzing either the content of data being

analyzed or the statistics generated by the analysis of the data. Content based

mechanisms can be further categorized by the type of content analysis performed.

3

• Statistic Based

• Content Based

o Signature Detection

o Protocol Anomaly

o Behavior

1.2.1 Statistic Based Mechanisms

Statistic based intrusion detection mechanisms use statistics generated from the analysis

of observed data rather than the content of the data itself. Statistic based mechanisms act

as anomaly detection tools by identifying anomalous behavior from gathered statistics.

Analyzed statistics range from basic packet counts to complex protocol analysis.

Tipping Point's [6] Port Scan/Host Sweep reconnaissance filter detection analyzes five

categories of statistics: (1) Port Scan TCP (2) Port Scan UDP (3) Host Sweep TCP (4)

Host Sweep UDP (5) Host Sweep ICMP. Each of these filters is accompanied by a

timeout and threshold value to determine the number of hits necessary in a given period

of time that would indicate a port scan or host sweep. In contrast, RAP and HIDE

algorithms [7] function by comparing from an exhaustive set of statistics to determine

whether analyzed traffic matches the statistics of known attacks. In analyzing TCP traffic

as many as six IP features and 41 TCP features can be analyzed.

Statistic based mechanisms are fundamentally anomaly based in the sense that it

can only detect an event based on the comparison of current statistics to a baseline. The

purpose of the baseline is to identify the statistical characteristics of what can be

considered "normal" behavior. The baseline set of statistics to which data is compared

can range from a set of basic data manually supplied by an administrator to the results of

4

complex learning algorithms capable of determining baseline characteristics from

complex analysis of live traffic.

Simple statistical analysis devices such as Tipping Point's Unity-400 [6] is made

up of a set of total packet counts over a period of time categorized only by protocol type

as seen in Figure 1.1. An anomaly is detected by comparing the defined value to that of

the current packet count. RAP [7], on the other hand employs a complex analysis of a

large set of data through a neural network in order to derive the resulting distribution

statistics. These values will then be compared to the results of a complex learning

algorithm that generates the "normal" distribution.

Figure 1.1 Tipping point reconnaissance filters.
Source: [6]

1.2.2 Content Based Mechanisms

Content Based Intrusion Detection mechanisms are able to identify a security event based

on the content of observed data. Such content can include fields within a single packet,

packet payload, data transmitted throughout a communication session or any form of

supported communication. Content based mechanisms can be classified into one of three

types.

5

1.2.2.1 Signature Based Content Mechanisms. A fundamental method of detecting a

security policy violation is through the use of signatures. A signature is a string of data,

whose presence in network traffic indicates an intrusion detection event.

A challenge in the use of signature detection is the "zero day" problem.

Commonly used to refer to the exploit of unremedied and often unidentified threats, the

use of a signature database to store instances of such exploits provides no protection

against those that have not yet been identified.

Examples of commercial Intrusion Detection Systems that are primarily signature

based include ISS Realsecure [8], Symantec's Intruder Alert/Net Prowler [9]. Open

source solution Snort [10] is an example of an IDS that is primarily signature based.

Figure 1.2 Signature detection mechanisms.

Signature based intrusion detection mechanisms are relatively simple mechanisms

in that they rely on matching signatures to network traffic. Only direct matches of the

identified string(s) will result in a related event. In order to effectively compare a

signature to detected traffic, a system must be capable of accurately reconstructing and

normalizing communication flows regardless of fragmentation, retransmission or similar

methods capable of bypassing early intrusion detection mechanisms.

6

Effectiveness of signature based intrusion detection mechanisms can be enhanced

through more effective handling of the comparison mechanisms or the creation of more

accurate signatures. Many commercial products such as Top Layers IPS 550 [11],

Tipping Point 2400 [12], and Juniper's ISG [13] rely on ASIC driven hardware and

programmable ROMs to allow high speed comparisons at multi-gigabit speeds.

Snort [10] signatures consist of single statement rules that define the string to be

matched against. The following example is a typical rule statement in Snort.

alert tcp any any -> any 139 (content:"15c 001P1001I1001P1001E100 5c1";)

Signature based intrusion detection algorithms are challenged by a rapidly

increasing number of signatures.

Rule clustering technologies minimize the number of comparisons necessary for

event detection. Similar methods of optimizing the comparison process include snort's

parallelization method and ASIC based parallelization. The use of decision trees such as

[14] assist in increasing the performance of signature based IDS systems by clustering

rules into feature based sets that reduce the number of direct comparisons made by

related algorithms.

Although signature detection has its inherent weaknesses, its value in an intrusion

detection mechanism is extremely high. A well crafted signature will very effectively

identify undesired traffic. Signature detection continues to play a critical role in most

intrusion detection mechanisms

1.2.2.2 Anomaly Based Content Mechanisms. 	 A protocol anomaly includes any

traffic that violates an Internet RFC. This category differs from signature detection in

7

that the identification of such an event is triggered by a violation of a set of rules rather

than the appearance of a specific bit pattern in a packet payload or data stream.

The behavior of specific network operating systems to normal network traffic as

defined in internet RFCs can vary and has been the source of both fingerprinting

mechanisms and network exploits. As a result, most intrusion detection systems are able

to use deviations from defined standards as an indication of malicious activity. As with

most intrusion mechanisms, protocol anomaly rules must be applied carefully in order to

avoid false alarms that may arise from the variations in protocol stack of various

operating systems.

Tipping Point's UnityOne [6] uses traffic Normalization filters to detect many of

these violations. These include:

• IP Header Incomplete

• IP Fragment Invalid

• IP Fragment Out of Range

• IP Duplicate Fragment

• IP Length Invalid

• IP Fragment Total Length Mismatch

• IP Fragment Overlap

• IP Fragment Bad MF Bits

• TCP Segment Overlap With Different Data

• TCP Header Length Invalid

• TCP Flags Invalid

• TCP Header Incomplete

8

• TCP Length Invalid

• TCP Reserved Flags Invalid

• ICMP Header Incomplete

• ICMP Length Invalid

• UDP Header Incomplete

• UDP Length Invalid

• Ethernet Header Incomplete

• ARP Address Invalid

• ARP Header Incomplete

• ARP Length Invalid

• Unknown Traffic Normalization

1.2.2.3 Behavior Based Content Mechanisms. 	 Behavioral anomaly mechanisms

identify security policy violations by identifying behavior of communication session(s)

that violates a set of behavioral guidelines. While the rules of internet protocols can be

easily identified, web applications vary from site to site and have become a common

target in many attacks. Traditional intrusion detection mechanisms were not well suited

to identify violations of traffic policies defined by the existence of custom web based

applications.

Behavioral anomaly mechanisms, when properly defined, are capable of

identifying attacks that would otherwise be undetectable by other mechanisms by

adapting to specific environments.

STATL [15] models penetrations as a series of state changes that lead from an

initial secure state to a target compromised state. Rules are identified by a relatively

9

complex language to define behavior as a set of well defined transition states. The

following example demonstrates a scenario in STATL language that would detect half

open TCP connections.

use netstat;
scenario halfopentcp(int timeout)
{
IPAddress victim addr;
Port victim_port;
IPAddress attacker_addr;
Port attacker_port;
timer tO;
initial state sO { }
transition SYN (s0 -> sl)
nonconsuming
{
[IP ip [TCP tcp]] :
(tcp.tcp_header.flags & TH SYN) &&
qtcp.tcp_header.flags & TITACK)
{
victim_addr=ip.header.dst;
victim_port=tcp.header.dst;
attacker_addr=ip.header.src;
attacker_port=tcp.header.src;
}
}

Bro, a network based IDS [16] uses a custom Bro scripting language to define sets

of rules that would indicate an intrusion event. Both pre-written and custom scripts can

be combined with a number of analyzers to create a set of "rules" that define normal and

anomalous behavior in a network environment.

Reliable Software Technologies [17] combines the use of three machine learning

algorithms (sting transducer, state tester and Elman Recurrent Neural Network) to

analyze the use of common UNIX command line tools in order to detect attempts to

misuse the command line tools.

"Although behavior-blocking is more effective against unknown viruses, it can

still be fooled by carefully designed viruses that propagate slowly, or replicate after a

period. For instance, if a system is set to block the behavior that an email attachment

should not cause generation of more than k other email messages, a virus that generates

10

only k-1 copies will go undetected. Similarly, an email attachment that causes time-

delayed propagation may also go undetected. More generally, a virus can employ a

combination of low propagation factor, high incubation period, and randomization to

evade behavior-blocking approaches." [18]

In reaction to common workarounds for malicious software, behavioral based

systems such as Stony Brooks' email propagation detection system [19] utilizes a

combination of specification-based anomaly detection and statistical machine-learning

mechanisms to more effectively detect email propagating viruses.

Academic designs like STAT [20] and Bro [21] are examples of systems capable

of performing detection based on analysis of communication states. In the model

presented, state change or state transition analysis techniques would be categorized as

behavioral detection.

11

1.3 Conex Intrusion Detection System

In May 2004, Zheng Zhang's dissertation entitled "Statistical Anomaly Denial of Service

and Reconnaissance Intrusion Detection" [22] led to a proof of concept design of the

(RIDS) Reconnaissance Intrusion Detection System and (HIDE) Hierarchical Intrusion

Detection Engine. The ongoing development of these systems would be driven in a large

part by the results discovered in onsite testing.

HIDE is a packet-oriented intrusion detection mechanism that would use statistics

discovered during sequential observation-windows to create a probability density

function (PDF) for each of a number of monitored parameters. These PDF's would be

compared to reference PDFs of normal behavior to create a similarity metric that would

be compared to statistics of anomalous traffic through a neural network classifier. When

tested in simulated and testbed environments, false positive rates were found to be as low

as 0.090%.

RIDS, a session oriented tool, compares discovered session statistics to results of

training algorithms to discover even stealthy network reconnaissance attacks. The RIDS

mechanism consists of two primary components; RAP and RAC.

RAP is a session-oriented module capable of detecting stealthy scanning and

probing attacks, while the RAC is an alert-correlation module that fuses the RAP alerts

into attack scenarios and discovers the distributed stealthy attack scenarios.

Misclassifications of attacks were recorded to be under .1% in simulated environment

testing.

12

CHAPTER 2

CONEX IDS TESTING

2.1 Testing Environment

Testing of the IDS was to take place in a college campus networking environment. The

environment consisted of a typical Cisco enabled internet and demilitarized zone

configuration shown below. A fractional DS3 with a total of 20Mbps of Internet traffic is

terminated in a Cisco 7206 router. Connected to the college's only Internet Service

Provider, all internet traffic packets pass through this link, crossing a pair of Cisco PIX

525 firewalls along their path. The PIX firewall performs NAT and PAT functions on

each packet in addition to comparing them against access control lists and performing

basic DOS attack detection and mitigation. Connected to the PIX firewalls are the

internal, external, and DMZ interfaces. Each of these interfaces is configured with a

separate set of access control lists and network addresses.

Figure 2.1 Existing test environment.

13

The DMZ and internal network segments are monitored by the college's

UnityOne-400 Intrusion Prevention appliance. As an inline device, all inbound and

outbound traffic traverses the security appliance and is protected by the configured rule

set of the UnityOne appliance. The UnityOne-400 security appliance specifications are

listed below [24].

• Inline device

• 400 Mbps total throughput capability

• 4 10/100Mbps interfaces

• Specialized Hardware Custom ASICs

• Scalable Parallel Processing

• Full Flow State Tracking

o IP Fragment Reassembly

o TCP Handshake

o TCP Flow Reassembly

• Support for multiple Filtering Methods:

o Application Anomaly

o Protocol Anomaly

o Traffic Anomaly

o Signature

o Full Regular Expressions

• <215 μsec Latency

• Capable of monitoring 2million simultaneous sessions

• Capable of tracking the creation of 250,000 sessions/second

14

Relevant UnityOne filters are organized into the following categories

• Application Protection — Protects from Worms, Viruses, Trojans, Internal
Attacks, Unauthorized Access

o Performs Total Inspection at Layers 2-7

o Prevents Application and 0/S Damage/Downtime

• Infrastructure Protection — Protects from Worms, Viruses, Trojans, DDoS
Attacks, SYN Floods, Traffic Anomalies

o Protects Network Equipment Vulnerabilities

o Protects Against Anomalous Traffic Behavior

o Automatic Baselining

o Rate Limit, Block, or Alert on Thresholds

o Supports Custom IP filters, ACLs

Through this combination of detection capabilities, the Intrusion Prevention

appliance is able to detect a variety of events. To establish a security rule set, each event

must have a corresponding action associated with it. The resulting alerts and statistics

generated by this existing security appliance were used to gauge the effectiveness and

accuracy of our IDS system. The UnityOne appliance is able to perform the following

actions when an event is detected.

• Permit and Notify — Allow packets to pass through the protected segment and
generate a system alert.

• Permit, Notify, and Trace — Allow packets to pass, generate an alert, and save
packets in tcpdump format for analysis.

• Block — drop packets generating the alerts and all remaining packets in the
network flow.

• Block and Notify — drop packets in corresponding flow and generate a system
alert.

15

• Block, Notify, and Trace — drop packets in corresponding flow, generate a
system alert, and record packets in tcpdump format for further analysis.

The ability to create an environment allowing the launching of DOS attacks and

scan and probe attacks while fully monitoring the desired segment in a production

environment presents several challenges that we will examine in this section.

• Positioning the IDS system

• The threat of introducing a point of failure in the network segment

• The ability to launch attacks among normal traffic without affecting the
performance of a production network

• The ability to launch DOS and Scan and Probe attacks in an environment where
such traffic would be dropped by firewall and Intrusion Prevention devices

• The ability to originate DOS and scan and probe attacks from IP addresses
outside the local segment to work with the normal operation of the IDS.

Whenever possible, the IDS should be allowed to receive and analyze the same

traffic as that of existing systems. The primary reasons for this included assurance that

unobstructed exposure to the production network's traffic, does not:

• Hinder the ability of the system to detect attacks when attack traffic is exposed
to the network traffic of a production network.

• Cause the IDS to generate alerts resulting from exposure to benign traffic that
the system has not been exposed to during its development.

Exposure to identical traffic was ensured by spanning the appropriate port on the

network switch, leading to the segments only gateway. The resulting network traffic

would include all packets entering or leaving the DMZ as well as all multicast traffic

created within the DMZ's broadcast domain.

16

Because network switches normally extend the collision domain to a single

interface, several solutions exist for allowing interface traffic to be monitored by an

external sniffer, IDS or other analysis tool. In many high availability environments,

network taps have been a preferred solution, allowing a dedicated in-line hardware

solution that eliminated some of the problems traditionally associated with software

based monitoring solutions like SPAN.

SPAN, or Switched Port Analyzer is a software feature in Cisco operating

systems that allows traffic from a specified source, to be mirrored to a specified

destination. Source and destination can be an interface, VLAN, or a remote location

through the use of the RSPAN feature. Some relevant limitations of SPAN include:

• SPAN sessions will not mirror runt or giant packets

• Malformed packets may not be forwarded

• Increased use of switch buffers

• Degradation of switch performance

While the ability to view runts, giants and malformed packets that would

otherwise be dropped by the receiving interface may be desirable in a troubleshooting

scenario, it will not have any adverse affects in the environment shown above. Such

packets would be dropped by the network firewall and/or Intrusion prevention device

before the receiving spanned interface is reached. The existence of these types of packets

can be verified by analyzing the counters in the spanned interface.

Current implementations of SPAN do not impact normal operation of the switch.

Unless oversubscribed, newer implementations eliminate concerns of degradation of

17

switch performance and buffer use. To determine the possibility of oversubscribing this

switch, the following statistics are relevant [24]:

• Cisco Catalyst 3750 switch with standard IOS

• 32 Gbps switching fabric

• 20 of 24 active interfaces

• 12 active interfaces utilize a full 1 gigabit/second full duplex link

• Spanned interface regularly reveals zero packet errors as seen below. Discarded
packets on this interface could be an indication of overloaded buffers. This is an
indication of an oversubscribed switch or interface.

show interfaces gigabitethernet 1/0/1 counters errors regularly reveals zero discarded
packets

Port	 Align-Err FCS-Err Xmit-Err Rcv-Err UnderSize
Gil /0/1	 0	 0	 0	 0	 0

Port Single-Col Multi-Col Late-Col Excess-Col Carri-Sen Runts Giants
Gil /0/1	 0	 0	 0	 0	 0	 0	 0

Figure 2.2 Gigabit interface output.

Because the traditional limitations of SPAN do not apply to the testing

environment, the use of a network tap was not deemed necessary. The Cisco Catalyst

3750 supports a total of two simultaneous span sessions, enabling the dedicated use of

one session for testing without denying college staff of a second session for

troubleshooting and testing. [24]

• monitor session 1 source interface gigabitethernet 1/0/1 both

o Specifies the source port to be monitored. Both incoming and outgoing
packets are selected for mirroring to the destination port

• monitor session 1 destination interface gigabitethernet 1/0/1

o Specifies the destination port of the monitoring session

18

Figure 2.3 Modified test environment.

The location that would most aggressively allow us to gauge the performance of

the IDS would be the external network segment. This segment would not be protected by

a network firewall, allowing all scan attempts, DOS attacks, and related events to be

monitored by the IDS system. The challenges of this design included:

• Difficulty in determining true alerts versus false alerts in a network segment
with little to no restrictions

• Full exposure to internet viruses, worms, and scans. Numbers of alerts in such
an environment is likely to be high.

• The network segment was not monitored by any existing intrusion detection or
protection system

19

The challenges faced in this initial design proved excessively difficult to work

with, forcing us to abandon the design when faced with unacceptably high false positive

rates, unreliable training techniques, and difficulty in producing usable statistics. Instead,

a more controlled and restricted environment was needed for initial testing. The existing

demilitarized zone proved itself to be an ideal option for testing to continue.

Figure 2.4 Final test environment.

The final testing environment creates a spanned segment, containing all traffic

entering or leaving the DMZ segment. Traffic between individual servers in the DMZ

segment will not be mirrored into the test environment. This is the traditional design of a

monitored network segment in is sufficient for our testing purposes. An important fact in

the creation of this environment is that the interface selected as the destination port for

the monitoring session will not allow incoming packets to enter/re-enter the traditional

20

DMZ segment, allowing attacks to be launched in the spanned segment without

interfering with normal college traffic or operations. Some limitations to the current

testing environment include the following:

• The nature of the IDS system being tested limited monitored traffic flow to
those originating from outside the local subnet, requiring the use of spoofed
source addresses and/or the ability to pass traffic through firewalls and intrusion
prevention devices.

• Strict limits on the volume of network traffic that can normally be passed across
production network links

• Lack of remote communication to the tested IDS systems resulting from a
signed agreement between the college and the thesis professor.

2.2 DOS Testing

In order to test the various intrusion detection algorithms available, tests performed were

separated into two categories. The first series of tests consisted of controlled Denial of

Service attacks of varying intensity

2.2.1 DOS Attacks

TCP SYN flood

A TCP SYN flood is indicated by an attempt to overwhelm a TCP service running

on a victim machine by sending a large number of TCP SYN packets without completing

the TCP handshake or resetting the connection.

A typical network server will contain a data structure of finite size in system

memory describing pending connections. A SYN flood will attempt to overflow this data

structure by creating large numbers of partially-open connections. Although these

connections will eventually timeout, a TCP SYN flood will normally involve a high

volume of network traffic from one or more attacking systems, overwhelming the victim

21

machines, possibly resulting in exhausting system memory, system crash, or a system

being rendered otherwise inoperative. [25] The potential of a SYN flood can be

multiplied by the TCP/RST responses generated by the victim machine.

ICMP Flood

A simple ICMP flood was tested against victims by generating a high volume of

ICMP echo requests. The attack will normally send large numbers of ICMP ping request

packets with spoofed source IP addresses, leaving the victim with the need to reply with

equally large number of response packets. An ICMP flood attempts to overload a system

with so many echo requests that the system expends all resources responding, leaving it

unable to process valid network traffic. [26]

UDP Flood

Another common category of attacks used in testing consists of a flood of UDP

network traffic. When a connection is established between two UDP services, each

producing network traffic, these two services can produce a very high number of packets

that can lead to a denial of service on the machine(s) where the services are offered. For

example, by connecting a host's chargen service to the echo service of another machine,

all affected machines may be effectively taken out of service because of the excessively

high number of packets produced. In addition, the intervening network may become

congested and deny service to all hosts whose traffic traverses that network. [27]

A UDP Flood Attack can be created by simply transmitting UDP packets to a

random port on a victim system. When the victim system receives each UDP packet, it

will determine what application is waiting on the destination port. If there is no

application waiting on the port, it will generate an ICMP packet of destination

22

unreachable. In addition to flooding the victim with UDP traffic, this attack exploits the

fact that for every UDP packet sent to a closed port, there will be an ICMP unreachable

message sent back, multiplying the attacks potential. If enough UDP packets are

delivered to ports on victim, the system can be rendered inoperative. [28]

SMURF

A smurf attack is created when an attacker generates ICMP echo request packets

directed to IP broadcast addresses of an intermediary network. The broadcast destination

address acts as an amplifier. The spoofed source address of these broadcast packets will

become the victim of the attack. If the intermediary does not filter ICMP traffic directed

to IP broadcast addresses, all machines on the network will receive this ICMP echo

request. When these machines respond to the ICMP echo requests, they send replies to

the victim's machine. The victim is subjected to network congestion that could potentially

make the network unusable. Additionally, the intermediary networks can be classified as

victims by suffering the same types of problem that the victim host receives. [29]

FRAGGLE

Fraggle, sometimes considered the cousin of the smurf attack, uses UDP echo packets in

the same fashion as the ICMP echo packets are used in the smurf attack. It was a simple

re-write of smurf that uses UDP echo and echo reply messages instead of ICMP

messages. [30] Because UDP echoes typically are filtered, Fraggle typically has a less

likelihood of having the same impact that Smurf does. [31]

BLOOP

Another simple denial of service flood attack is bloop. Bloop begins when an

attacker sends a flood of ICMP unreachable messages to a victim host. The resulting

23

effect will be a slowdown of network services and high CPU utilization on the victim

required to deal with the overwhelming number of network requests. [32]

TEARDROP

An IP fragmentation attack takes advantage of the IP protocol's fragmentation

feature to disrupt services of a remote host. While many variants exist, teardrop attacks

take advantage of a weakness in some operating systems' ability to reassemble

overlapping IP fragments. Teardrop variants include targa, SYNdrop, Boink, Nestea

Bonk, TearDrop2 and NewTear. [33]

TARGA3

Targa3 attacks consist of a combination of IP based protocol packets with values

known to be critical or bogus, causing some IP stack implementations to crash, fail, or

show other undefined behavior. [34]

Targa3 works by sending uncommon IP packets to a victim host. Packets may

consists of invalid fragment, protocol, packet size, or header values. When the victim

TCP stack receives the invalid packet, the OS kernel had to allocate resources to handle

the packet. When executed with a high number of network packets, the victim system

would crash because of exhausted resource. [35]

To simulate and create the described denial of service attacks, a number of tools

were used to generate the necessary traffic. The following tools were used either directly

or to create an IP packet capture file that could be replayed at various levels of intensity

to generate the desired attack traffic. All attack traffic would be presented to both the

college IPS equipment as well as the intrusion detection systems being developed.

24

2.2.2 DOS Tools

TFN2k (Tribe FloodNet 2k edition)

Tribe FloodNet 2k, the current version of this attack tool offers a rich set of DOS tools

that can enable an attacker to launch a variety attacks from the toolset or take control of a

large distributed network of attack hosts.

TFN features in this version include:

• Remote one-way command execution for distributed execution control

• Mix attack aimed at weak routers

• Targa3 attack aimed at systems with IP stack vulnerabilities

• Compatibility to many UNIX systems and Windows NT

• Anonymous stealth client/server communication using:

o spoofed source addresses

o strong advanced encryption

o one-way communication protocol

o messaging via random IP protocol

o decoy packets

• Attack Types available through this menu driven tool include UDP flood attack,
SYN flood attack, ICMP echo reply (ping) attack, SMURF attack, and TARGA3
attack described above. Additionally, a MIX attack will send UDP, SYN and
ICMP packets interchanged on a 1:1:1 relation. This attack can be hazardous to
routers, NIDS and sniffers.[34]

Additionally, a number of unidentified attack tools gathered from hacking websites were

obtained. Each tool was compiled and tested. The resulting network traffic was analyzed

to verify the tool's functionality. Once verified, the tool was used in testing. In most

cases, a number of tools were used to launch a tested attack type to ensure that results

25

were not based on the effects of a specific tool rather than attack type.

2.2.3 DOS Tests Performed

Denial of service tests consisted of 16 types of tests. Each test type was run at four levels

of intensity ranging from a low intensity test to a full flood utilizing all available

bandwidth. Results of each instance were recorded against both the Conex IDS system

and the college IPS appliance. Attacks consisted of the following:

• Two SYN flood attacks using hping and an anonymous SYN flood tool.

• Distributed SYN, UDP flood, ICMP flood, mix, smurf, and targa3 attacks using
tfn2k.

• A distributed fraggle attack using an anonymous attack tool

• ICMP, UDP, and mix flood attacks using hping3.

• Smurf, bloop, teardrop, and fraggle attacks using anonymous tools.

2.2.4 DOS Test Results

Denial of service results varied at first. While Tipping Point was able to detect 100% of

tests performed, the Conex IDS was unable to detect a small number of attacks. After

some examination of the attacks performed, the Conex IDS system was retrained to

include the new attack codes. When completed, the tests were repeated with much more

positive results. Results are summarized in the Table 2.1 and Table 2.2

26

Table 2.1 DOS Results — Initial Test

Table 2.2 DOS Results — Final Test

27

2.3 Scan and Probe Testing

The next series of tests performed consisted of scan and probe attacks of varying

intensity. Using various tools, a number of reconnaissance scanning techniques were

used to compare the Conex system's detection capabilities to that of existing systems.

28

2.3.1 Scan and Probe Attacks

The following section describes the contents of eleven types of scan and probe attacks

used to test the capabilities of the Conex system. The output of each tool was run and

recorded as a TCP CAP file to ensure that the test was as simple as possible. A number

of scan and probe tools were found to be excessively "noisy" when run at default settings.

This would most likely lead to questionable results. In order to ensure that the detection

of an IDS alert resulted only from the most basic scan and probe attack, the output from a

number of tools were tested and the most basic was selected and described in the

following section. Scan and probe attacks consisted of the following:

• ICMP Echo Request

• ICMP Info Request

• ICMP Netmask Request

• ICMP Timestamp Request

• TCP Connect and Half Connect

• SYN Stealth

• TCP FIN Connect

• TCP NULL Connect

• TCP XMAS Connect

• UDP Connect

2.3.1.1 ICMP Echo Request. 	 A fundamental method of detecting the existence of

a functional IP stack on a remote computer is to utilize ICMP Ping. Simple ICMP Ping

request and reply packets are exchanged between two hosts as seen below. Many

security conscious administrators may block ICMP packets at their border firewalls.

29

Otherwise, it is a simple method of detecting systems that provides the first steps of

reconnaissance to a scanner.

ICMP can prove very effective when not blocked by corporate firewall policy. The

presence of ICMP packets traversing a network is most often ignored by intrusion

detection systems unless combined with other more revealing types of traffic.

While most implementations of PING require a timeout period, dozens of network

scanners exist that allow for ping sweeps across an IP subnet and very strong control of

ICMP packet speeds, sometimes enough to provide a primitive form of DOS.

Figure 2.5 ICMP echo request.

30

31

2.3.1.2 ICMP Info Request. 	 An alternative to ICMP PING packets that may be

dropped is the ICMP Information request. Generating an automatic response, it can be

used to test the existence of a system.

Figure 2.6 ICMP info request.

2.3.1.3 	 ICMP Netmask Request. ICMP Network Mask requests are another

alternative that can be used to both reveal the existence of a functional node and its

subnet mask when other ICMP packets may be blocked by a firewall.

32

Figure 2.6 ICMP netmask request.

2.3.1.4 ICMP Timestamp Request. 	 Another ICMP alternative is the timestamp

function. Generating an automatic response, it can be used to test the existence of a

system when other ICMP traffic types may be blocked.

Below is an example of an ICMP request and response using the SING (Send ICMP

Network Garbage) utility.

33

Figure 2.8 ICMP timestamp request.

2.3.1.5 TCP Half Connect. An alternative method of detecting the presence of an IP

stack on a remote host without the use of ICMP ping is to attempt a TCP connection.

Easily detectable by local system logs, firewalls, and IDS systems, it is common to

attempt connections to common TCP ports without following the TCP handshake.

Instead, an ACK packet is sent to a host. Internet standards require a reset be sent in

response to a TCP ACK without the proper completion of a TCP handshake. While

34

Microsoft operating systems do not behave this way, TCP ACK packets are an effective

alternative to PING.

This method does not reveal the status of the port (open, closed) because the end system

will send a reset regardless of the state. Also, stateful firewalls will not respond to these

requests at all and will instead generate errors easily detectable by firewall administrators

as shown below.

The example below utilizes the HPING 2 utility to attempt a single connection to port 21

on a remote host.

Figure 2.9 TCP half connect.

35

36

2.3.1.6 TCP Connect.	 A full TCP connect scan reliably reveals the state of each

scanned port on an IP enabled host. It is, however, easy to detect on firewalls, IDS

systems, and host logs. A more stealthy solution is a TCP SYN stealth scan.

Below is an example of nmap performing this type of scan on three separate ports of a

single host, identifying the three possible states and the behavior exhibited by a host in

each of these states.

Figure 2.10 TCP connect.

37

38

2.3.1.7 SYN Stealth.	 A TCP SYN stealth scan offers reliable results on the state

of scanned ports with a higher degree of stealth. Because full connections are not made,

a scanner is able to gain the same level of reliability in results as a full TCP Connect scan

without the logging and detectability of these scans because the three way handshake is

not completed.

Below is the same nmap scan performed in the full TCP scan using the stealthier TCP

SYN alternate.

Figure 2.11 SYN stealth.

39

40

2.3.1.8 TCP FIN Connect. FIN Scans are TCP port scans identified by setting the FIN

flag on the probe packets. RFC 793 states that systems should respond with a RST flag

for a closed port.

Below is an example of a FIN scan on a Unix host with nmap. The lack of response

indicates an open port as seen below.

Figure 2.12 TCP fin connect.

41

42

2.3.1.9 TCP NULL Connect. 	 NULL Scans are TCP port scans identified by the

absence of any flags on the TCP probe packets. RFC 793 states that systems should

respond with a RST flag for a closed port.

Below is an example of a NULL scan on a Unix host with nmap. The lack of response

indicates an open port as seen below.

Figure 2.12 TCP null connect.

43

44

2.3.1.10 TCP XMAS Connect. Below is an example of an XMAS scan on a

Unix host with nmap. XMAS Scans are TCP port scans identified by setting the FIN,

URG, and PUSH flags on the probe packets. RFC 793 states that systems should respond

with a RST flag for a closed port. The lack of response indicates an open port as seen

below.

Figure 2.14 TCP XMAS connect.

45

46

2.3.1.11 UDP Connect. UDP scanning is not as reliable as TCP scanning. Because

there is no handshake process, a listening UDP port will not generate a response. Most

invalid UDP ports will generae an ICMP port unreachable as seen below when a scan is

generated using nmap.

It is impossible to distinguish between an open UDP port on a scanned server and a port

that has been blocked by a firewall, this explains the resulting output of the scan

displayed below. Port 7051 in this case is open and 7050 is closed on the scanned server.

Figure 2.15 UDP connect.

2.3.2 Scan and Probe Tools

47

NMAP

48

Nmap ("Network Mapper") is an extremely popular open source utility for network

exploration and security auditing. Its most fundamental use if to perform basic network

scanning. Its flexile design allows it to easily scan a single host or a set of large

networks. It is capable of performing both aggressive wide scans as well as stealthy

targeted scans. Through a number of techniques, nmap is able to determine what hosts

are available on the network, what services those hosts are offering, what operating

systems they are running, what type of packet filters/firewalls are in use, and more.

Nmap supports a large number of scanning techniques such as: UDP, TCP

connect(), TCP SYN (half open), ftp proxy (bounce attack), ICMP (ping sweep), FIN,

ACK sweep, Xmas Tree, SYN sweep, IP Protocol, and Null scan. Nmap also offers a

number of advanced features such as remote OS detection via TCP/IP fingerprinting,

stealth scanning, dynamic delay and retransmission calculations, parallel scanning,

detection of down hosts via parallel pings, decoy scanning, port filtering detection,

direct (non-portmapper) RPC scanning, fragmentation scanning, and flexible target and

port specification. [36]

HPING

Inspired by the ping unix command, hping is a simple to use tool that allows for a great

deal of flexibility in creating, analyzing, and sending network packets.

hping is a command-line oriented TCP/IP packet assembler/analyzer that supports TCP,

UDP, ICMP and RAW-IP protocols. While hping was mainly used as a security tool in

the past, it can be used in many ways to test networks and hosts. Some of the

fundamental features of hping include [37]:

• Advanced port scanning

49

• Network testing, using different protocols, TOS, fragmentation

• Advanced traceroute, under all the supported protocols

• Remote OS fingerprinting

• TCP/IP stacks auditing

• Rate control of generated packets

Rich set of packet generation options

2.3.3 Scan and Probe Tests Performed

Detection of a scan and probe attack must take into consideration the source(s),

destination(s), source port(s), and destination ports(s) in order to verify that a scan or

probe is occurring. By design, the RAP algorithm of the Conex IDS system takes into

consideration how frequently these parameters appeared during system training.

In order to accurately perform testing, a number of scenarios needed to be tested for each

type of scan and probe attack. The following eight variations of testing occurred for each

scan and probe attack type.

The first four test types utilized connection attempts from a single source

address/port pair to a single destination address/port pair.

• Test 1 consists of a common IP address and common port. This test utilizes IP
address and port combinations that were utilized during training, and are
represented in the Services.list file

• Test 2 consists of common IP address and uncommon port. This test utilizes IP
addresses that was utilized during training, and represented in the Services.list
file. Ports used in this test were not utilized during training and are not present
in the services.list file

• Test 3 consists of uncommon IP address and common port. This test utilizes
ports frequently utilized during training and present in the services.list file. The

50

IP addresses used in this test were not utilized during training and were not
represented in the services.list file.

• Test 4 consists of uncommon IP address and uncommon port. This test utilizes
only IP address and port combinations that were not utilized during training and
are not present in the services.list file

The next set of tests utilized multiple connection attempts with varying address or

port destinations, creating a series of host sweeps and port sweeps.

• Test 5 consists of a set of common IP address and common ports. This test
utilizes IP address and port combinations that were utilized during training, and
are represented in the Services.list file.

o Part A consists of a host sweep

o Part B consists of a port sweep

• Test 6 consists of a set of common IP address and uncommon ports. This test
utilizes IP addresses that was utilized during training, and represented in the
Services.list file. Ports used in this test were not utilized during training and are
not present in the services.list file

o Part A consists of a host sweep

o Part B consists of a port sweep

• Test 7 consists of a set of uncommon IP address and common ports. This test
utilizes ports frequently utilized during training and present in the services.list
file. The IP addresses used in this test were not utilized during training and were
not represented in the services.list file.

o Part A consists of a host sweep

o Part B consists of a port sweep

• Test 8 consists of a set of set of uncommon IP address and uncommon ports.
This test utilizes only IP address and port combinations that were not utilized
during training and are not present in the services.list file.

o Part A consists of a host sweep

o Part B consists of a port sweep

51

2.3.4 Scan and Probe Test Results

Initial scan and probe tests were inconclusive. The algorithms used in testing were found

to be very dependant on the training results, leading to an alert from any packet with an

uncommon port destination. This lead to very poor results in the specific environment

where testing was performed. The introduction of the RAC correlator allowed these

alerts to be dropped and led to better results. Additionaly, ICMP and UDP protocols

were not working properly during initial testing.

Once UDP and ICMP protocols were functional and the RAC algorithm was used

to reduce the number of false positives seen, results were much more positive. Results of

scan and probe testing are summarized in Table 2.3 and Table 2.4

Table 2.3 Scan and Probe Results — Initial Test

52

Table 2.4 Scan and Probe Results — Final Test

53

54

2.4 Results

Although a good deal of effort was needed to increase the accuracy and usability of the

Conex IDS product, final stages of testing are positive. Typical results of scan and probe

testing reveal miscalculation rates of less than .064%, false positive rates as low as

.074%, and false negative rates of less than .012%. Denial of service attack testing

reveals miscalculation rates of .08%, False positive rates of .09%, and a false negative

rate of 0%.

Manually matching the results of Conex DOS detection to an export of the college's

Tipping Point TS reveals the following results

Detecting known DOS attacks

• Source = truncated dump file @ dump_sources[0] '../../2-17-05dump'

• Number of observed samples = 4107

• Number of positive detections = 75

• Number of negative detections = 4032

• Number of false negative detections = 0

• Number of false positive detections = 7

• Source = truncated dump file @ dump_sources[0] '../../febl5bergendump'

• Number of observed samples = 1004

• Number of positive detections = 10

• Number of negative detections = 994

• Number of false positive=3

• Number of false negative=1 (1.1.1.50)

55

CHAPTER 3

INTRUSION DETECTION ENHANCEMENTS

3.1 Communication Mechanisms

Communication is a key component to the design of the ongoing security project. In

order to take advantage of the various security detection technologies working throughout

the different modules of the project, a flexible and scalable communication mechanism

must be included. The intersite communication module is this component.

As a standalone solution, the current security project is very modular and capable

of existing autonomously. Its ability to provide security alerts would be limited primarily

by its ability to capture all network traffic necessary to detect modern network security

alert events.

Figure 3.1 Standalone Conex station.

The intersite communication module is to be included in each security product,

enabling the ability to share detected information with other devices in order to fully

leverage the detection capabilities of the related technologies. Each security station is

56

57

designed to maintain an independent database containing all alerts originating from any

of the detection mechanisms available to that station. The intersite communication

module allows each device to add security alerts generated from other devices in order to

maximize the detection capabilities of all security stations. Correlators can examine

relevant security alerts from multiple locations in order to gain a more complete

perspective of security relevant events throughout a network of any size.

To ensure flexibility in the creation and design of a security alert, Intrusion

Detection Message Exchange Format [38] was adopted into the basic intersite

communication design. The top-level class for all IDMEF messages is IDMEF-Message.

There are two types of messages defined; Alerts and Heartbeats. Subclasses of the

message class are used to provide the detailed information carried in the message.

The IDMEF data model dictates how an alert should be formatted. The

interperetation of the data contained within a message is left to the specific

implementation of the defined format. The basic subclasses of an IDMEF message

include the following.

• Analyzer - Identification information for the analyzer that originated the alert.

• CreateTime - The time the alert was created. Of the three times that may be
provided with an Alert, this is the only one that is required.

• Classification - The "name" of the alert, or other information allowing the
manager to determine what it is.

Figure 3.2 General IDMEF message.

• DetectTime - The time the event(s) leading up to the alert was detected. In the case
of more than one event, the time the first event was detected. In some
circumstances, this may not be the same value as CreateTime.

• AnalyzerTime - The current time on the analyzer

• Source - The source(s) of the event(s) leading up to the alert.

• Target - The target(s) of the event(s) leading up to the alert.

• Assessment - Information about the impact of the event, actions taken by the
analyzer in response to it, and the analyzer's confidence in its evaluation.

• AdditionalData - Information included by the analyzer that does not fit into the data
model. This may be an atomic piece of data, or a large amount of data provided
through an extension to the IDMEF

59

Figure 3.3 Full IDMEF message.

In order to best utilize the standard, relevant portions of the full IDMEF standard

were identified in order to create the basic structure of an IDMEF alert to be used by our

security project.

60

Figure 3.4 Modified IDMEF message.

A description of the fields that make up the designed IDMEF message can be

found in the following table.

61

Table 3.1 Modified IDMEF message
FIELD TYPE DESCRIPTION

Messageid Primary
Key

A unique identifier for the alert

CreateTime Time NTP timestamps MUST be encoded as two 32-bit
hexadecimal values, separated by a period
(1 . 1). 	 For example, 	 "0x12345678.0x87654321".

DetectTime Time This will be the same as the above timestamp
in most cases, but RAC may be able to provide
a separate create and detect timestamp in the
future.

Text String The alert message
SourcelP String IP address of the attacking node
TargetlP String IP address of the Victim Node
Siteld String This field will repeat the information found

in SYSinfo, but may simplify the initial
coding of the Intersite communication module.

AlertModule String This field will identify the module from
which the alert information was received.
While it could be derived from the Text of
the alert, a separate field will
substantially simplify programming the
intersite module.

Analyzerid STRING A unique identifier for the analyzer
manufacturer
We can use the hostname (BCCConex.bergen.edu)

Model String The model name/number of the analyzer
software and/or hardware.
We would create a model name for the IDS (I
used 100S1 in the example for 100 Megabit
Sensor v1)

version String The version number of the analyzer software
and/or hardware
I used 1.0

location String The location of the equipment.
I used DMZ Network

Address String The network or hardware address of the
equipment.
I used the IP 172.18.0.54

Name String The name of the equipment
We can use the first part of the hostname
(BCCCONEX)

Manufacturer String The equipment Manufacturer
I used CONEX

SrcPort Number The source port of the alert
SrcProtocol String The source Protocol (ICMP,UDP,TCP)
DstPort Number The destination port of the alert
DstProtocol String The Destination Protocol 	 (ICMP,UDP,TCP)

The output of RAP and FSD modules are identical. The MySQL fields generated by a
RAP and FSD alert include:

62

• TimeStamp

• SrcIP

• SrcPort

• DstIP

• DstPort

• AttackType

• Protocol

Due to the lack of a unique identifier in the output of RAP and FSD, this identifier

must be created when the alert is reported to the intersite communication module.

IDMEF defines two types of messages; Alerts and Heartbeats. FSD and RAP

output will fit easily into the IDMEF alert message format as shown below.

63

Figure 3.5 Sample RAP or FSD message.

A sample RAP or FSD alert formatted into an IDMEF message to be used in the

intersite communication module is shown below.

Figure 3.6 Sample RAP/FSD alert.

64

65

RAC output defines a set of related RAP alerts instead of individual alerts. As

such, neither of the defined IDMEF message types will suit its output. Currently RAP

outputs the following fields:

• ScenID

• StartTime

• LastTime

• ServerlP

• ClientIP

• AlertNum

• Randomness

Because this does not adequately fall into either the alert or heartbeat messages defined

by the basic IDMEF format, the IDMEF DTD will need to be extended to accommodate

the AlertNum and Randomness values.

The use of IDMEF AdditionalData fields will allow a custom IDMEF Summary message

type to be created. The new message type is shown below.

66

Figure 3.7 Modified RAC message.

A sample RAC message as defined by our new message type is shown below.

67

Figure 3.8 Sample RAC message.

With the basic design of our IDMEF messages in place, the design of the

communication mechanism can take on several forms.

68

OPTION 1 — Centralized Approach

In this scenario, IDS devices would report alerts to a designated management

station. The management station can be configured to distribute alerts to other IDS

systems under its domain. This group of IDS systems could include all systems or a

subset of the systems in is management domain.

In most cases DOS, RAC, and Snort (Correlated) alerts would be reported to the

central repository. Distribution of full RAP alerts can be optional.

Figure 3.9 Centralized communication module.

The advantages of this approach include:

• Ease of implementation

• Flexible control of information

• Centralized repository of information

Disadvantages include:

• Single point of failure for communication

69

• Incomplete alert information available to IDS software

OPTION 2 — Distributed Approach

In this scenario, IDS devices under a common management domain would share

alert information between them. Each station would have the ability to fully report and

analyze all alerts under the management domain.

In most cases DOS, RAC, and Snort (Correlated) alerts would be shared.

Distribution of full RAP alerts is likely undesirable in this approach.

Figure 3.10 Distributed communication module.

The advantages of this approach include:

• Fault tolerance can be easily achieved

• Complete alert information available to each IDS

Disadvantages include:

• Distribution algorithm required

70

• Complex implementation

While initial implementation of the intersite communication will offer a more

basic communication algorithm, the need for a decentralized peer to peer communication

mechanism is recognized. To efficiently support communication needs the mechanism

must be scalable, efficient, and fault-tolerant. The mechanism for joining and leaving a

peer to peer or multicast group must offer authentication. Finally, the mechanism must

offer an efficient integration with the functionality of our IDS system in order for the

product to benefit from its use.

One possible mechanism for this functionality is Pastry. [41] Offering the basic

peer to peer foundation for the desired multicast functionality, it serves as an easily

integrated framework for the product's communication requirements.

Pastry [41] creates an efficient mechanism for communicating between

participating members through the formation of a communication ring. The

communication ring consists of a series of member nodes identified by a unique 128 bit

nodeId. The nodeId acts as the principal identifier for communicating nodes. Ring

formation, routing decisions, and multicast membership will use the nodeId rather than IP

address to function. The nodeIds of participating hosts should be randomly distributed

for efficient communication and for purposes of this project can be formed through a

simple hash of the member's IP address.

Below is a random sample of 16 addresses and their corresponding

communication ring using MD5 as a hash algorithm to ensure proper distribution of

nodeIds.

71

Table 3.2 Communication Rin
IP MD5 Hash

130.156.1.67 ab9d9b39f6db2847e791c228634e3ab7
130.156.4.12 9ac47c6a1c137255a7c7d27ae69a4364

24.2.3.7 1c41d3f4lefe77f6b21577da81dee100
12.58.124.56 ba46d430fb0b6f8558794170aea62009
45.12.36.85 4ab9bed840f91b4eb65e4a287983ccda
45.12.58.69 33eccd9737617b26223e2e15e7fb0a55
45.23.69.4 b090613bf78190e400f4e925be179528
8.4.214.57 695ef4a046411 e0a7e267915b4f828ad
7.98.41.24 265002def0423efc56484eaa9914e824
54.56.97.2 1fae728167fE27e33cc22058ec52a5b2

21.32.14.48 49648ced6096effa9b6615183bc02df3
87.89.96.5 al41e48d4Oeelebc91724dfl6lcb7c33
25.36.14.8 c9098c2fc8a3166517c60b5063785847
54.74.12.1 fDdb359a008f20be81cc2926f928bdc0

65.87.15.214 3f2034414855c0c9412d96e9f1398683
107.25.68.5 025f8fd188903f09dc7fbf68ebf44b85

Once identified with a unique nodeId, each participating node will maintain:

• Leaf set — a set of neighboring clockwise and counterclockwise nodes. The
number is dependant on the size of your communication ring

• Routing table — A table of nodeIds arranged in rows identifying nodes with
matching prefix's as seen below

72

Table 3.3 Routine Table
0 1 2 3 4 5 6 7 8 9 a b c de
o 1234 6 9a bc f
2c 63a 9 a b a 9 0
5 45 e b 5 c 940 d
f 10c 9 e 4 d69 b
8d0c b f 79d8 3
f 32de 4 cb4c 5
df d9d a 6332 9
1 4 e 7 8 0 a 90 f a
81f 34 4 1 f f c 0
8 e 070 6 c6b8 0
9f 46f 4 1d0a 8
Oe 219 1 3 bb3 f
37371 1 7261 2
f 7ebb e 28f 6 0
Of f 24 0 5486 b
96c 6e a 5755 e
d b 5 2 b 7 a e 51 8
c 2626 e 7787 1
71435 2 c 97c c
f 58e e 6 7196 c
b 7 4 2 4 7 d c 40 2
f 7e e a 9 221 b 9
6da I 2 1 7275 2
8a a 5 8 5 a 800 6
e 8 9 e 7 b e 6a 6 f
b 1 9 7 9 4 63 e 3 9
f d l f 8 f 94 a 7 2
4 e 4 b 3 8 a e 68 8
4e e0c 2 4325 b
bl8ac 8 3a08 d
8025d a 6b04 c
5045a d 47 7 0

Each entry in the routing table will map a nodeId to the corresponding IP address

of the node. The number of total entries in a node's routing table is:

Table 3.4 Table Entries
Source: [43]

Formula Example

[21) — 1] * [log (2) N] +1 entries
or
15 * [log i6 N] +1

15 +1
19

The number of rows required for each node can be calculated using the following

formulas.

Table 3.5 Table Row Calculations
Source: [43]

1 is an even integer parameter identifying the total number of neighboring nodes

that will be entered in the routing table based solely on proximity in the communication

ring.

It is important to realize that the routing table is not a complete table, but instead

offers routing capabilities based on nodeId prefixes, offering a higher number of entries

for nodes with closely matching nodeIds, enabling each node to efficiently route to more

closely matching nodes that can better route the message towards its destination.

Each time a node forwards a message towards its destination, it will route to an

entry in its routing table whose nodeId shares a prefix that is at least one digit longer than

the current nodeId.

The example below outlines a possible series of routing steps used to send a

message originating from node b090613bf78190e400f4e925be179528 and terminating at

node 33eccd9737617b26223e2e15e7fb0a55.

73

Figure 3.9 Scribe communication.

SCRIBE

Scribe [42] provides an application level multicast infrastructure built on a peer to

peer overlay network such as Pastry. Implemented over Pastry, Scribe offers scalability

from one to millions of hosts. Extending the functionality of Pastry to include dynamic

management of group members, Scribe offers decentralized creation of multicast groups.

Multicast groups must first be identified by a groupId. To follow this existing

example, I will take the MD5 hash of a textual group name. A group is created when an

active pastry node requests a JOIN message be delivered using the groupId as a key.

Pastry will route the message to the node whose nodeId is closest to the key, designating

that node as the root of the group's tree.

Once the group is created and a root is designated, Pastry nodes participate in the

multicast group by sending a JOIN message with a destination key of the groupId. As the

message is routed towards the root each routing node checks its own membership to the

tree specified. If it is a member, it adds the sender as a child of the tree and stops the

routing process. If it is not a member, it adds itself to the membership by locally creating

74

75

an entry for the group, adding the sender as a child, and initiating its own JOIN message

for the group.

Table 3.6 Scribe Groups
Group Name Hash — (groupId)

Security Group 1 e2b31eeafc7821749d760b2e5f9b995c

The JOIN process ensures that a single tree is created, allowing existing nodes to

add members locally without the need for a central authority on membership. The

process of leaving an existing group has similar properties.

If a departing member node has entries in its child table for the group, it will mark

itself as no longer a member and continue to route messages up the tree. If a departing

node has no children, it will send a LEAVE message to its parent before leaving the

group. The parent will remove the entry from its list of children. If the removal results in

the parent node having an empty child table, the parent will remove itself from the tree by

sending a leave message to its parent.

Figure 3.12 Multicast tree — original
Source: [43]

3.13 Multicast tree — after E exits
Source: [43]

76

Figure 3.14 Multicast tree — after G exits
Source: [43]

Multicast messages are delivered by addressing the message to the groupId. Once

received by the root, the root will forward the message to its children, which in turn will

forward the message to their children. Pastry's routing algorithm ensures that multicast

group membership trees will be well balanced.

Below is a listing of relevant API entries used to participate in a Pastry network

• nodeId = pastryInit(Credentials) — used to join or create a pastry network

• route(msg,key) — routes a message to the node whose nodeId most closely
matches the specified key.

• send(msg,IP-addr) — send a message to the specified IP address.

77

While the Scribe [42] application running on a Pastry [41] foundation can offer a scalable

decentralized solution for communication, research [12] indicates that its performance is

not effective in small scale solutions. With the growth of peer-to-peer and file-sharing

technologies, decentralized communication mechanisms are much more widely adopted

and the use of related technologies when combined with a flexible communication format

will greatly increase the flexibility of any intrusion detection product.

3.2 Administrator Control

One of the significant challenges in working with an intrusion detection system that relies

on anomaly based detection mechanisms is tuning the system to a custom environment.

The ability to customize a detection engine to a specific environment can be handled in

various ways. In general, the methods can be automatic or administrator controlled. As

seen in the description of RIDS, a training mechanism can be used to tune the

performance of an anomaly based algorithm. In many cases, however, custom

administrator controls can complement even the most sophisticated learning algorithms.

Security based products in the industry use a variety of methods to allow for custom

tuning of their products in several ways.

Tipping point [6] utilizes traffic threshold filters to enable a simple form of anomaly

detection. The UnityOne system keeps track of statistical traffic patterns over time and allows an

administrator to create custom thresholds for each type of traffic, each with its own custom action

set in response to the detected anomaly

78

Figure 3.15 Threshold filters.
Source [6]

Tipping Point's UnityOne allows the creation of four types of thresholds for each

custom filter:

• minor increase 	 Traffic is greatly over the set threshold.

• major increase 	 Traffic is slightly over the set threshold.

• minor decrease 	 Traffic is slightly below the set threshold.

• major decrease 	 Traffic is greatly under the set threshold.

In the case above, statistical parameters are based on number of packets, number

of bytes, or number of connections. The detected statistical values can be compared to

that of normal traffic detected in the past minute, hour, day, 7 days, 30 days, or 35 days.

The rich set of statistical values to compare combined with a fairly flexible set of time

frames allow for effective tuning by a network administrator.

Similar features in Tipping Point's UnityOne product include custom thresholds

for detection of network scanning attempts and SYN flood attacks. The configured

79

parameters for these features include number of hits and number of seconds during which

to detect the configured number of hits.

Figure 3.16 Reconnaissance filters.
Source [6]

Figure 3.17 SYN flood filters.
Source [6]

McAfee's IntruShield® IPS System [39] supports Threshold Mode, a feature that

allows the monitoring and detection of network traffic statistics to detect the presence of

traffic threshold anomalies. Configurable parameters for these features include packet

count and interval (in seconds).

80

Figure 3.18 Threshold dialog box
Source: [39]

An administrator would need to monitor statistics and provide the threshold

information that would work best in the particular environment being monitored. As

stated in system documentation, "You must configure the actual thresholds and intervals

for each DoS Threshold Mode attack you want to detect. Default thresholds are not

provided since the packet rates in every network are different. Customization of DoS

thresholds works best after researching the current levels each DoS Threshold attack

defends against in order to determine exactly what counts and intervals best protect your

network."

Supported threshold mode attacks that can be configured include:

• Link Utilization (Bytes/Sec)

• ICMP Packets

• IP Fragments

• ICMP Packets

• Large UDP Packets

• Rejected UDP Packets

• TCP Connections

• TCP SYNS

81

• UPD Packets

Each threshold attack is assigned a specific severity and action, allowing

administrators to configure a severity level to a higher level correlator and an appropriate

response to the custom environment

Figure 3.19 Intrusion responses.
Source: [39]

Fortigate's Fortigate-4000 [40] supports administrator controls for anomaly

detection. Available administrator controlled anomalies include the following:

• Flooding - If the number of sessions targeting a single destination in one second

is over a threshold, the destination is experiencing flooding.

• Scan - If the number of sessions from a single source in one second is over a

threshold, the source is scanning.

• Source session limit - If the number of concurrent sessions from a single source

is over a threshold, the source session limit is reached.

• Destination session limit - If the number of concurrent sessions to a single

destination is over a threshold, the destination session limit is reached.

Figure 157:Editing the syn_fin IPS anomaly

Figure 3.20 Anomaly dialog boxes.
Source: [39]

Custom actions can be configured for each anomaly detected. Available actions

include Pass, Drop, Reset, Reset Client, Reset Server, Drop Session, Clear Session, or

Pass Session.

Recommendations

Administrator controlled thresholds allow an administrator to identify custom

characteristics of a specific environment in order to increase the accuracy and

effectiveness of the security device.

Administrators require the assistance of an accurate set of statistics from which

comparisons to configured parameters can be made. The statistics should be flexible

enough to allow an administrator to specify the statistics that most accurately fit a

particular environment.

82

83

The resulting alarms generated by the administrator controlled thresholds can be

used as independent alarms as in Tipping Point's UnityOne or can be used with a

corresponding severity level as input into a higher level correlator.

Administrator controlled thresholds can be used to generate alarms indicating:

• Port scans

• Packet flooding

• Fragmentation attacks

• DOS SYN flooding

Because SYN floods, fragmentation attacks and port scanning are effectively

handled by RIDS and RAP modules, administrator controlled thresholds can be combined

with the following statistics to detect flooding attacks and provide input into a central

correlator to assist in improving detection accuracy.

Statistics to be monitored:

• TCP Total Bytes

• TCP Packet Count

• UDP Total Bytes

• UDP Packet Count

• Large UDP Packets

• ICMP Total Bytes

• ICMP Packet Count

• Large ICMP Packets

• Total Packets

• Total Bytes

84

• TCP SYN Packets

User Interface should consist of two features

• Protocol Thresholds

• Traffic Thresholds

Protocol thresholds allow for the monitoring and alerting of the behavior of

individual protocols.

Traffic thresholds allow for the monitoring of network traffic behavior.

Learning mode monitors traffic and calculates all relevant statistics. Monitoring

mode enables alerting based on administrator controlled thresholds.

Figure 3.21 Proposed dialog boxl.

85

Figure 3.22 Proposed dialog box2.

3.3 Conclusion

Ongoing development of Conex intrusion detection mechanisms led to consistently

higher results in live testing. Conex IDS algorithms have been shown to consistently

reveal false positive, false positive, and miscalculation results of under one percent.

With security products regularly combining a number of different IDS

technologies, a series of product enhancements were proposed. Improved

communication between IDS devices will create a more complete security solution for

customers of various sizes. The combination of a scalable communication mechanism

and standards based messages will greatly enhance the potential of the Conex intrusion

detection product.

Improvements in the product's ability to be customized by a security

administrator will help to minimize the disadvantages related to training and tuning on a

site specific basis. These optimization additions will help to create a more usable and

86

scalable product better positioned to compete in a demanding market for security

protection products.

REFERENCES

1. J. P. Anderson, "Computer security threat monitoring and surveillance," tech. rep.,
James P. Anderson Co., Fort Washington, PA, April 1980.

2. J. P. Anderson. "Computer Security Technology Planning Study Volume 2", October
1972, Available at HTTP:
http://seclab.cs.ucdavis.edu/projects/history/papers/ande80.pdf

3. Carnegie Mellon Software Engineering Institute CERT Coordination Center.
"CERT/CC Statistics 1988-2003." [2005Apr 16]. Available at HTTP:
http://www.cert.org/stats/

4. The SANS Institute, "SANS Intrusion Detection FAQ", [2005 April 18] Available
at HTTP: http://www.sans.org/resources/idfaq/what_is id.php

5. Common Intrusion Detection Framework, [2005 January 10] Available at HTTP:
http://www.isi.edu/gost/cidf/drafts/architecture.txt

6. Tipping Point, [2004 November 8] Available at HTTP: http://www.tippingpoint.com

7. Z. Zhang, "Statistical Anomaly Denial of Service and Reconnaissance Intrusion
Detection." May 2004

8. Internet Security Systems, [2004 November 8] Available at HTTP:
http://www.iss.net/products_services/.

9. Symantec NetProwler and Intruder Alert, [2005 October 10] Available at HTTP:
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=%50,
2002

10. Snort, [2004 November 8] Available at HTTP: http://www.snort.org .

11. Top Layer Intrusion Prevention System Products, [2005 October 10] Available at
HTTP:
http://www.toplayer.comlcontent/products/intrusion detection/attack_mitigator.js

12. M. Castro, P. Druschel, A-M. Kermarrec and A. Rowstron, "SCRIBE: A large-scale
and decentralised application-level multicast infrastructure", IEEE Journal on
Selected Areas in Communication (JSAC), Vol. 20, No, 8, October 2002.

13. Juniper Networks ISG Series, [2005 October 10] Available at HTTP:
http://www.juniper.net/products/integrated/ns_isg.html

87

14. C Krügel, T. Toth: "Using Decision Trees to Improve Signature-Based Intrusion
Detection". RAID 2003: 173-191

15. K. Ilgun, R. Kemmerer, and P. Porras. State Transition Analysis: A RuleBased
Intrusion Detection System. IEEE Transactions on Software Engineering, 21(3),
Mar. 1995, [2005 October 10] Available at HTTP:
http://citeseer.ist.psu.edu/ilgun95state.html

16. Bro Intrusion Detection System, [2005 October 10] Available at HTTP:
http://www.bro-ids.org/Overview.html

17. A. K. Ghosh, C. Michael, M. Schatz: "A real-time intrusion detection system".
RAID 2000: 93-109

18. A. Gupta„ and R. Sekar, "An approach for detecting self-propagating email using
anomaly detection". RAID 2003: 55-72

19. A. Gupta„ and R. Sekar, "An approach for detecting self-propagating email using
anomaly detection". RAID 2003: 55-72

20. G. Vigna, S. Eckmann, and R. Kemmerer. The STAT Tool Suite. In Proceedings of
DISCEX 2000, Hilton Head, South Carolina, January 2000. IEEE Computer
Society Press, [2005 October 10] Available at HTTP:
http://citeseer.ist.psu.edu/vigna00stat.html

21. Bro: A System for Detecting Network Intruders in Real-Time, V. Paxson, Computer
Networks, Volume 31, Numbers 23-24 (December 1999), pages 2435-2463.

22. Z. Zhang, "Statistical Anomaly Denial Of Service And Reconnaissance Intrusion
Detection." May 2004

23. Tipping Point. IPS Statistics, [2005 October 10] Available at HTTP:
http://www.tippingpoint.com/technologythreatsuppress.html.

24. Cisco: Configuring SPAN and RSPAN, [2005 October 10] Available at HTTP:
http://www.cisco.com/univercd/cc/td/doc/product/lan/cat3750/12119ea1/3750scg/
swspan.htm# 12866

25. CERT® Advisory CA-1996-21 TCP SYN Flooding and IP Spoofing Attacks, [2005
October 10] Available at HTTP: http://www.cert.org/advisories/CA-1996-21.html

26. Centracomm Communications: Managed Netscreen Denial of Service Protection,
[2005 October 10] Available at HTTP:
http://www.centracomm.net/netscreen/dos.aspx

27. CERT® Advisory CA-1996-01 UDP Port Denial-of-Service Attack, [2005 October
10] Available at HTTP: http://www.cert.org/advisories/CA-1996-01.html

88

28. Advanced Networking Management Lab (ANML) Distributed Denial of Service
Attacks(DDoS) Resources, [2004 October 10] Available at HTTP:
http://www.anml.iu.edu/ddos/types.html.

29. CERT® Advisory CA-1998-01 Smurf IP Denial-of-Service Attacks, [2005 October
10] Available at HTTP: http://www.cert.org/advisories/CA-1998-01.html.

30. C. A. Huegen, "The Latest In Denial Of Service Attacks: "Smurfing" Description
And Information To Minimize Effects." [2004 October 10] Available at HTTP:
http://www.pentics.net/denial-of-service/white-papers/smurf . cgi. February 2000.

31. Cisco: Detecting DoS Attacks, [2004 October 10] Available at HTTP:
http://www.ciscopress.com/articles/article.asp?p=345618

32. Denial of Service Attacks. Smack/Bloop, [2004 November 8] Available at HTTP:
http://www.sabronet.com/dos/smackbloop.html

33. CERT® Advisory CA-1997-28 IP Denial-of-Service Attacks, [2004 November 8]
Available at HTTP: http://www.certorg/advisories/CA-1997-28.html.

34. Jamais vu un zine pareil!, [2004 November 8] Available at HTTP:
http://membres.lycos.fr/hackworldclan2/1amahl.htm.

35. Auckland Department of Computer Science, [2004 November 8] Available at HTTP:
http://www.tcs.auckland.ac.nz/~btech/btech2002/xxue002/resource/mid report.do

36. Insecure.org . Nmap Free Security Scanner, [2004 November 8] Available at HTTP:
http://insecure.org

37. Hping security tool, [2004 November 8] Available at HTTP: http://www.hping.org .

38. H. Debar, D. Curry, B. Feinstein, The Intrusion Detection Message Exchange Format,
[2004 November 8] Available at HTTP: http://www.ietf. org/intemet-drafts/draft-
ietf-idwg-idmef-xml-10.txt

39. McAfee IntruShield Network IPS Appliances, [2005 October 10] Available at HTTP:
http://www.mcafee.com/us/products/mcafee/network_ips/intrushield appliances.h
tm

40. Fortigate-4000 Antivirus Firewall, [2005 October 10] Available at HTTP:
http://www.firewalldepot.com/index.asp.

41. A. Rowstron and P. Druschel. "Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proc. IFIP/ACM Middleware
2001, Heidelberg, Germany, Nov. 2001.

89

42. M. Castro, P. Druschel, A-M. Kermarrec and A. Rowstron, "Scalable Application-
level Anycast for Highly Dynamic Groups", NGC 2003, Munich, Germany,
September 2003.

43. "Pastry - A scalable, decentralized, self-organizing and fault-tolerant substrate for
peer-to-peer applications", [2005 February 10], Available at HTTP:
http://research.microsoft.com/—antr/Pastry/default.htm

90

	Classification, testing and optimization of intrusion detection systems
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction

	Chapter 2: Conex Ids Testing

	Chapter 3: Intrusion Detection Enhancements

	Reference

	List of Tables

	List of Figures (1 of 2)
	List of Figures (2 of 2)

