7 research outputs found

    DeTraC: Transfer Learning of Class Decomposed Medical Images in Convolutional Neural Networks

    Get PDF
    Due to the high availability of large-scale annotated image datasets, paramount progress has been made in deep convolutional neural networks (CNNs) for image classification tasks. CNNs enable learning highly representative and hierarchical local image features directly from data. However, the availability of annotated data, especially in the medical imaging domain, remains the biggest challenge in the field. Transfer learning can provide a promising and effective solution by transferring knowledge from generic image recognition tasks to the medical image classification. However, due to irregularities in the dataset distribution, transfer learning usually fails to provide a robust solution. Class decomposition facilitates easier to learn class boundaries of a dataset, and consequently can deal with any irregularities in the data distribution. Motivated by this challenging problem, the paper presents Decompose, Transfer, and Compose (DeTraC) approach, a novel CNN architecture based on class decomposition to improve the performance of medical image classification using transfer learning and class decomposition approach. DeTraC enables learning at the subclass level that can be more separable with a prospect to faster convergence.We validated our proposed approach with three different cohorts of chest X-ray images, histological images of human colorectal cancer, and digital mammograms. We compared DeTraC with the state-of-the-art CNN models to demonstrate its high performance in terms of accuracy, sensitivity, and specificity

    Automatic Generation of Interpretable Lung Cancer Scoring Models from Chest X-Ray Images

    Full text link
    Lung cancer is the leading cause of cancer death worldwide with early detection being the key to a positive patient prognosis. Although a multitude of studies have demonstrated that machine learning, and particularly deep learning, techniques are effective at automatically diagnosing lung cancer, these techniques have yet to be clinically approved and adopted by the medical community. Most research in this field is focused on the narrow task of nodule detection to provide an artificial radiological second reading. We instead focus on extracting, from chest X-ray images, a wider range of pathologies associated with lung cancer using a computer vision model trained on a large dataset. We then find the set of best fit decision trees against an independent, smaller dataset for which lung cancer malignancy metadata is provided. For this small inferencing dataset, our best model achieves sensitivity and specificity of 85% and 75% respectively with a positive predictive value of 85% which is comparable to the performance of human radiologists. Furthermore, the decision trees created by this method may be considered as a starting point for refinement by medical experts into clinically usable multi-variate lung cancer scoring and diagnostic models

    On-cloud decision-support system for non-small cell lung cancer histology characterization from thorax computed tomography scans

    Get PDF
    Non-Small Cell Lung Cancer (NSCLC) accounts for about 85% of all lung cancers. Developing non-invasive techniques for NSCLC histology characterization may not only help clinicians to make targeted therapeutic treatments but also prevent subjects from undergoing lung biopsy, which is challenging and could lead to clinical implications. The motivation behind the study presented here is to develop an advanced on-cloud decisionsupport system, named LUCY, for non-small cell LUng Cancer histologY characterization directly from thorax Computed Tomography (CT) scans. This aim was pursued by selecting thorax CT scans of 182 LUng ADenocarcinoma (LUAD) and 186 LUng Squamous Cell carcinoma (LUSC) subjects from four openly accessible data collections (NSCLC-Radiomics, NSCLC-Radiogenomics, NSCLC-Radiomics-Genomics and TCGA-LUAD), in addition to the implementation and comparison of two end-to-end neural networks (the core layer of whom is a convolutional long short-term memory layer), the performance evaluation on test dataset (NSCLC-RadiomicsGenomics) from a subject-level perspective in relation to NSCLC histological subtype location and grade, and the dynamic visual interpretation of the achieved results by producing and analyzing one heatmap video for each scan. LUCY reached test Area Under the receiver operating characteristic Curve (AUC) values above 77% in all NSCLC histological subtype location and grade groups, and a best AUC value of 97% on the entire dataset reserved for testing, proving high generalizability to heterogeneous data and robustness. Thus, LUCY is a clinically-useful decision-support system able to timely, non-invasively and reliably provide visuallyunderstandable predictions on LUAD and LUSC subjects in relation to clinically-relevant information

    On-cloud decision-support system for non-small cell lung cancer histology characterization from thorax computed tomography scans

    Get PDF
    Non-Small Cell Lung Cancer (NSCLC) accounts for about 85% of all lung cancers. Developing non-invasive techniques for NSCLC histology characterization may not only help clinicians to make targeted therapeutic treatments but also prevent subjects from undergoing lung biopsy, which is challenging and could lead to clinical implications. The motivation behind the study presented here is to develop an advanced on-cloud decision-support system, named LUCY, for non-small cell LUng Cancer histologY characterization directly from thorax Computed Tomography (CT) scans. This aim was pursued by selecting thorax CT scans of 182 LUng ADenocarcinoma (LUAD) and 186 LUng Squamous Cell carcinoma (LUSC) subjects from four openly accessible data collections (NSCLC-Radiomics, NSCLC-Radiogenomics, NSCLC-Radiomics-Genomics and TCGA-LUAD), in addition to the implementation and comparison of two end-to-end neural networks (the core layer of whom is a convolutional long short-term memory layer), the performance evaluation on test dataset (NSCLC-Radiomics-Genomics) from a subject-level perspective in relation to NSCLC histological subtype location and grade, and the dynamic visual interpretation of the achieved results by producing and analyzing one heatmap video for each scan. LUCY reached test Area Under the receiver operating characteristic Curve (AUC) values above 77% in all NSCLC histological subtype location and grade groups, and a best AUC value of 97% on the entire dataset reserved for testing, proving high generalizability to heterogeneous data and robustness. Thus, LUCY is a clinically-useful decision-support system able to timely, non-invasively and reliably provide visually-understandable predictions on LUAD and LUSC subjects in relation to clinically-relevant information

    Lung nodule diagnosis and cancer histology classification from computed tomography data by convolutional neural networks: A survey

    Get PDF
    Lung cancer is among the deadliest cancers. Besides lung nodule classification and diagnosis, developing non-invasive systems to classify lung cancer histological types/subtypes may help clinicians to make targeted treatment decisions timely, having a positive impact on patients' comfort and survival rate. As convolutional neural networks have proven to be responsible for the significant improvement of the accuracy in lung cancer diagnosis, with this survey we intend to: show the contribution of convolutional neural networks not only in identifying malignant lung nodules but also in classifying lung cancer histological types/subtypes directly from computed tomography data; point out the strengths and weaknesses of slice-based and scan-based approaches employing convolutional neural networks; and highlight the challenges and prospective solutions to successfully apply convolutional neural networks for such classification tasks. To this aim, we conducted a comprehensive analysis of relevant Scopus-indexed studies involved in lung nodule diagnosis and cancer histology classification up to January 2022, dividing the investigation in convolutional neural network-based approaches fed with planar or volumetric computed tomography data. Despite the application of convolutional neural networks in lung nodule diagnosis and cancer histology classification is a valid strategy, some challenges raised, mainly including the lack of publicly-accessible annotated data, together with the lack of reproducibility and clinical interpretability. We believe that this survey will be helpful for future studies involved in lung nodule diagnosis and cancer histology classification prior to lung biopsy by means of convolutional neural networks

    Deep Mining Generation of Lung Cancer Malignancy Models from Chest X-ray Images

    Get PDF
    Lung cancer is the leading cause of cancer death and morbidity worldwide. Many studies have shown machine learning models to be effective in detecting lung nodules from chest X-ray images. However, these techniques have yet to be embraced by the medical community due to several practical, ethical, and regulatory constraints stemming from the “black-box” nature of deep learning models. Additionally, most lung nodules visible on chest X-rays are benign; therefore, the narrow task of computer vision-based lung nodule detection cannot be equated to automated lung cancer detection. Addressing both concerns, this study introduces a novel hybrid deep learning and decision tree-based computer vision model, which presents lung cancer malignancy predictions as interpretable decision trees. The deep learning component of this process is trained using a large publicly available dataset on pathological biomarkers associated with lung cancer. These models are then used to inference biomarker scores for chest X-ray images from two independent data sets, for which malignancy metadata is available. Next, multi-variate predictive models were mined by fitting shallow decision trees to the malignancy stratified datasets and interrogating a range of metrics to determine the best model. The best decision tree model achieved sensitivity and specificity of 86.7% and 80.0%, respectively, with a positive predictive value of 92.9%. Decision trees mined using this method may be considered as a starting point for refinement into clinically useful multi-variate lung cancer malignancy models for implementation as a workflow augmentation tool to improve the efficiency of human radiologists
    corecore